Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工程科學及海洋工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88228
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王昭男zh_TW
dc.contributor.advisorChao-Nan Wangen
dc.contributor.author陳庭賢zh_TW
dc.contributor.authorTing-Shian Chenen
dc.date.accessioned2023-08-09T16:06:22Z-
dc.date.available2023-11-09-
dc.date.copyright2023-08-09-
dc.date.issued2023-
dc.date.submitted2023-07-03-
dc.identifier.citationR. M. Corey, U. Jones, and A. C. Singer, “Acoustic effects of medical, cloth, and transparent face masks on speech signalsa)”, The Journal of the Acoustical Society of America 148, 2371–2375 (2020).
C. Pörschmann, T. Lübeck, and J. M. Arend, “Impact of face masks on voice radiationa)”, The Journal of the Acoustical Society of America 148, 3663–3670 (2020).
S. R. Atcherson, B. R. McDowell, and M. P. Howard, “Acoustic effects of non-transparent and transparent face coveringsa)”, The Journal of the Acoustical Society of America 149, 2249–2254 (2021).
M. Magee, C. Lewis, G. Noffs, H. Reece, J. C. S. Chan, C. J. Zaga, C. Paynter, O. Birchall, S. Rojas Azocar, A. Ediriweera, K. Kenyon, M. W. Caverlé, B. G. Schultz, and A. P. Vogel, “Effects of face masks on acoustic analysis and speech perception: Implications for peri-pandemic protocolsa)”, The Journal of the Acoustical Society of America 148, 3562–3568 (2020).
P. Bottalico, S. Murgia, G. E. Puglisi, A. Astolfi, and K. I. Kirk, “Effect of masks on speech intelligibility in auralized classroomsa)”, The Journal of the Acoustical Society of America 148, 2878–2884 (2020).
H. Kuttruff and E. Mommertz, “Room Acoustics”, en, in Handbook of Engineering Acoustics, edited by G. Müller and M. Möser (Springer, Berlin, Heidelberg, 2013), pp. 239–267.
J. S. Bradley, “Review of objective room acoustics measures and future needs”, en, Applied Acoustics 72, 713–720 (2011).
K. M. Li and H. Y. Wong, “A review of commonly used analytical and empirical formulae for predicting sound diffracted by a thin screen”, en, Applied Acoustics 66, 45–76 (2005).
N. Prodi, C. Visentin, and A. Farnetani, “Intelligibility, listening difficulty and listening efficiency in auralized classrooms”, The Journal of the Acoustical Society of America 128, 172–181 (2010).
A. J. Burton and G. F. Miller, “The Application of Integral Equation Methods to the Numerical Solution of Some Exterior Boundary-Value Problems”, Proceedings of the Royal Society of London.Series A, Mathematical and Physical Sciences 323, Publisher: The Royal Society, 201–210 (1971).
O. C. Zienkiewicz, D. W. Kelly, and P. Bettess, “The coupling of the finite element method and boundary solution procedures”, en, International Journal for Numerical Methods in Engineering 11, _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/nme.1620110210, 355–375 (1977).
“THE DEVELOPMENT OF STATISTICAL ENERGY ANALYSIS”, en, in Theory and Application of Statistical Energy Analysis (Second Edition), edited by R. H. Lyon and R. G. DeJong (Newnes, Boston, Jan. 1995), p. i.
L. Savioja and U. P. Svensson, “Overview of geometrical room acoustic modeling techniques”, The Journal of the Acoustical Society of America 138, 708–730 (2015).
H. S. Carslaw, “Some multiform solutions of the partial differential equations of Physical”, Proc. London Math. Soc. 30, 121–161 (1899).
J. B. Allen and D. A. Berkley, “Image method for efficiently simulating small‐room acoustics”, The Journal of the Acoustical Society of America 65, 943–950 (1979).
A. Krokstad, S. Strom, and S. Sørsdal, “Calculating the acoustical room response by the use of a ray tracing technique”, en, Journal of Sound and Vibration 8, 118–125 (1968).
M. Vorländer, Auralization: Fundamentals of Acoustics, Modelling, Simulation, Algorithms and Acoustic Virtual Reality, English, 2nd (Springer and ASA Press, 2008).
J. K. Haviland and B. D. Thanedar, “Monte Carlo applications to acoustical field solutions”, The Journal of the Acoustical Society of America 54, 1442–1448 (2005).
U. M. Stephenson, “Quantized Pyramidal Beam Tracing - a New Algorithm for Room Acoustics and Noise Immission Prognosis”, Acta Acustica united with Acustica 82, 517–525 (1996).
A. Sommerfeld, “Mathematische Theorie der Diffraction”, de, Mathematische Annalen 47, 317–374 (1896).
H. M. MacDonald, “A Class of Diffraction Problems”, en, Proceedings of the London Mathematical Society s2_14, _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1112/plms/s2_14.1.410, 410–427 (1915).
W. J. Hadden Jr. and A. D. Pierce, “Sound diffraction around screens and wedges for arbitrary point source locations”, The Journal of the Acoustical Society of America 69, 1266–1276 (1981).
Z. Maekawa, “Noise reduction by screens”, en, Applied Acoustics 1, 157–173 (1968).
E. J. Rathe, “Note on two common problems of sound propagation”, en, Journal of Sound and Vibration 10, 472–479 (1969).
U. J. Kurze and G. S. Anderson, “Sound attenuation by barriers”, en, Applied Acoustics 4, 35–53 (1971).
P. Menounou, “A correction to Maekawa's curve for the insertion loss behind barriers”, The Journal of the Acoustical Society of America 110, 1828–1838 (2001).
Y. W. Lam and S. C. Roberts, “A simple method for accurate prediction of finite barrier insertion loss”, The Journal of the Acoustical Society of America 93, 1445–1452 (1993).
M. A. Biot and I. Tolstoy, “Formulation of Wave Propagation in Infinite Media by Normal Coordinates with an Application to Diffraction”, The Journal of the Acoustical Society of America 29, 381–391 (1957).
H. Medwin, “Shadowing by finite noise barriers”, The Journal of the Acoustical Society of America 69, 1060–1064 (1981).
J. B. Keller, “Geometrical Theory of Diffraction”, EN, JOSA 52, Publisher: Optica Publishing Group, 116–130 (1962).
R. Kouyoumjian and P. Pathak, “A uniform geometrical theory of diffraction for an edge in a perfectly conducting surface”, Proceedings of the IEEE 62, Conference Name: Proceedings of the IEEE, 1448–1461 (1974).
F. A. Bilsen, “Repetition Pitch: Monaural Interaction of a Sound with the Repetition of the Same, but Phase Shifted, Sound”, Acta Acustica united with Acustica 17, 295–300 (1966).
F. A. Bilsen, “Thresholds of Perception of Repetition Pitch. Conclusions Concerning Coloration in Room Acoustics and Correlation in the Hearing Organ”, Acta Acustica united with Acustica 19, 27–32 (1967).
M. Barron, “The subjective effects of first reflections in concert halls—The need for lateral reflections”, en, Journal of Sound and Vibration 15, Publisher: Academic Press, 475–494 (1971).
M. Barron and A. H. Marshall, “Spatial impression due to early lateral reflections in concert halls: The derivation of a physical measure”, en, Journal of Sound and Vibration 77, 211–232 (1981).
J. S. Bradley and G. A. Soulodre, “Objective measures of listener envelopment”, The Journal of the Acoustical Society of America 98, 2590–2597 (1995).
J. S. Bradley and G. A. Soulodre, “The influence of late arriving energy on spatial impression”, The Journal of the Acoustical Society of America 97, 2263–2271 (1995).
K. D. Kryter, “Methods for the Calculation and Use of the Articulation Index”, The Journal of the Acoustical Society of America 34, 1689–1697 (1962).
A. S3.5-1997, American National Standard: Methods for the Calculation of the Speech Intelligibility Index, 1997.
H. J. Steeneken and T. Houtgast, “A physical method for measuring speech-transmission quality”, eng, The Journal of the Acoustical Society of America 67, 318–326 (1980).
D. Crighton, A. Dowling, J. Ffowcs Williams, M. Heckel, and F. Leppinton, Modern Methods in Analytical Acoustics: Lecture Notes, English (Springer-Verlag, 1992).
U. Ingard, “On the Reflection of a Spherical Sound Wave from an Infinite Plane”, The Journal of the Acoustical Society of America 23, 329–335 (2005).
J. H. Rindel, “Modelling the angle-dependent pressure reflection factor”, en, Applied Acoustics 38, 223–234 (1993).
A. V. Oppenheim and A. S. Willsky, Signals and Systems, English, 2nd ed. (Prentice Hall, 1997).
G. N. Watson, A treatise on the theory of Bessel functions, English, 2nd ed. (The University Press, Cambridge Eng, 1944).
H. Medwin, E. Childs, and G. M. Jebsen, “Impulse studies of double diffraction: A discrete Huygens interpretation”, The Journal of the Acoustical Society of America 72, 1005–1013 (1982).
U. P. Svensson, R. I. Fred, and J. Vanderkooy, “An analytic secondary source model of edge diffraction impulse responses”, The Journal of the Acoustical Society of America 106, 2331– 2344 (1999).
P. Calamia, “Advances in Edge-Diffraction Modeling for Virtual-Acoustic Simulations”, PhD (Princeton University, June 2009).
Bentley and Ottmann, “Algorithms for Reporting and Counting Geometric Intersections”, IEEE Transactions on Computers C-28, Conference Name: IEEE Transactions on Computers, 643–647 (1979).
Y. Cui, Q. Liu, G. Chen, and H. Zhang, “A general method for decomposing self-intersecting polygon to normal based on self-intersection points”, en, Theoretical Computer Science 842, 118–129 (2020).
J. Borish, “Extension of the image model to arbitrary polyhedra”, The Journal of the Acoustical Society of America 75, 1827–1836 (1984).
S. G. McGovern, “Fast image method for impulse response calculations of box-shaped rooms”, en, Applied Acoustics 70, 182–189 (2009).
S. M. Dance and B. M. Shield, “THE COMPLETE IMAGE-SOURCE METHOD FOR THE PREDICTION OF SOUND DISTRIBUTION IN NON-DIFFUSE ENCLOSED SPACES”, en, Journal of Sound and Vibration 201, 473–489 (1997).
P. M. Peterson, “Simulating the response of multiple microphones to a single acoustic source in a reverberant room”, The Journal of the Acoustical Society of America 80, 1527–1529 (1986).
A. Jerri, “The Shannon sampling theorem—Its various extensions and applications: A tutorial review”, Proceedings of the IEEE 65, Conference Name: Proceedings of the IEEE, 1565–1596 (1977).
U. Zölzer, “Digital Audio Signal Processing”, English, in Digital Audio Signal Processing (John Wiley & Sons, 1997), p. 21.
A. Farina, “Simultaneous measurement of impulse response and distortion with a swept-sine technique”, journal of the audio engineering society (2000).
G.-B. Stan, J.-J. Embrechts, and D. Archambeau, “Comparison of Different Impulse Response Measurement Techniques”, English, Journal of the Audio Engineering Society 50, Publisher: Audio Engineering Society, 249–262 (2002).
A. Novak, P. Lotton, and L. Simon, “Synchronized Swept-Sine: Theory, Application, and Implementation”, English, Journal of the Audio Engineering Society 63, Publisher: Audio Engineering Society, 786–798 (2015).
Audio Precision, Inc, Apx500 user’s manual, English, version Version 7.0.0, [Online]. Available: https://www.ap.com/download/apx500-user-manual-3/, Audio Precision, Inc (5750 SW Arctic Drive Beaverton, Oregon 97005), pp. 328–330.
R. B. Blackman and J. W. Tukey, “The Measurement of Power Spectra from the Point of View of Communications Engineering —Part I”, en, Bell System Technical Journal 37, _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/j.1538-7305.1958.tb03874.x, 185–282 (1958).
F. Harris, “On the use of windows for harmonic analysis with the discrete Fourier transform”, Proceedings of the IEEE 66, Conference Name: Proceedings of the IEEE, 51–83 (1978).
J. G. Tylka and E. Y. Choueiri, On the Calculation of Full and Partial Directivity Indices, English, tech. rep. 1 (3D Audio and Applied Acoustics Laboratory, Princeton University, Nov. 2014), pp. 5–6.
ISO 3382-2:2008. Acoustics —Measurement of room acoustic parameters —Part 2: Reverberation time in ordinary rooms, Standard (International Organization for Standardization, June 2008), p. 17.
S. T. Neely and J. B. Allen, “Invertibility of a room impulse response”, The Journal of the Acoustical Society of America 66, 165–169 (1979).
L. Rabiner and B.-H. Juang, “Fundamentals of Speech Recognition”, English, in Fundamentals of Speech Recognition (Prentice Hall, 1993), pp. 158–164.
J. S. Bradley, H. Sato, and M. Picard, “On the importance of early reflections for speech in rooms”, The Journal of the Acoustical Society of America 113, 3233–3244 (2003).
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88228-
dc.description.abstract生活中的交談環境中的隔板影響聲音訊息的傳遞,不同聆聽者、對談者位置以及環境空間組成導致接收聲音的變化,若要設計或改善交談環境的聲音傳遞品質,分析並評估隔板介入造成的聲音變化為不可或缺的一環。本研究主要有三個目的:發展一套數值模型計算隔板介入前後的室內空間脈衝響應(RIR)、以實驗驗證數值模型在不同複雜空間的適用性、探討特定情境中隔板介入的聲學影響。本研究模型採用幾何聲學的觀點,將波動問題轉換成幾何問題來計算所有可能的聲音路徑,再透過像源法與Biot-Tolstoy-Medwin(BTM)繞射模型來計算特定路徑的響應,最後使用混合訊號電路以對數正弦啁啾法(logarithmic chirp technique)量測真實的無響、半無響、長方形空間的RIR比對模擬的結果,藉此驗證模型的適用性。本研究發現聆聽者位置的清晰度指數C50在隔板介入後下降1.7~ 6.7 dB,發話者位置的$C_{50}$則沒有明顯的變化(提升0.00~ 0.15 dB)。早期響應能量損失與清晰度指數下降,主要是因為隔板的介入使得直接音或部分早期反射改為繞射抵達,本研究更發現面對面坐相較於相鄰而坐的情況損失多 4 dB,且若桌子靠近牆邊,損失則會額外再多 2 dB。我們預期本研究的模型能預先在設計規劃空間階段評估最佳的聆聽位置、分析交談環境的響應,最終改善交談環境使人們的對談更加清晰。zh_TW
dc.description.abstractIn conversational environments, partitions would impede sound transmission. The resultant sound variation depends both on the room shape and the set of locations listeners and speakers. To improve the quality of the sound transmission in such environments, it is essential to analyze and evaluate the sound changes caused by partition insertions. This study has three main objectives: developing a numerical model to calculate the room impulse responses (RIR) before and after partition interventions, validating the applicability of the numerical model through experiments in rooms of different complexity, and examining the acoustic impact of partition insertions in specific scenarios. The proposed model adopts a geometrical acoustics approach, converting the wave propagation problem into a geometry problem to evaluate all possible sound paths. The responses of specific paths are then calculated from the image source method and the Biot-Tolstoy-Medwin (BTM) diffraction model. The measured RIR of anechoic, semi-anechoic, and rectangular spaces using the logarithmic chirp technique are compared with the simulated results to validate the model's applicability. The study finds that the clarity index C50 for the listener position decreases by 1.7 to 6.7 dB after partition insertions, while there is no significant change in the clarity index for the speaker position (increasing by 0.00 to 0.15 dB). The loss of early response energy and the decrease in clarity index are primarily attributed to the detour direct sound or some early reflections. Furthermore, our study reveals that sitting face to face results in a 4 dB higher loss compared to sitting adjacent to each other, and if the table is placed near the wall, an additional 2 dB loss is observed. It is expected that the model developed in this study can assess optimal listening positions and analyze the room response during the spatial design phase, ultimately improving the conversational environment and enhancing clarity in communication.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-09T16:06:22Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-08-09T16:06:22Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 iii
摘要 v
Abstract vii
目錄 ix
第一章 緒論 1
1.1 文獻回顧 1
1.1.1 室內幾何聲學 2
1.1.2 受阻隔之聲音繞射 3
1.1.3 語言清晰度 3
1.2 研究架構 4
第二章 理論根基 5
2.1 幾何聲學:像源法 6
2.2 線性非時變聲學空間系統:脈衝響應分析 10
2.3 聲波繞射模型:Biot-Tolstoy-Medwin 12
第三章 幾何聲學模型 19
3.1 像源產生準則 20
3.2 幾何特性與像空間規律 23
3.3 計算聲音路徑 26
3.4 脈衝響應計算 31
第四章實驗響應與驗證方法41
4.1 實驗量測理論與設備 41
4.2 實驗設計與執行 48
4.3 驗證方法 61
4.4 驗證結果 67
4.4.1 實驗一:全無響空間 67
4.4.2 實驗二第一組:隔板緊貼單反射面之空間 69
4.4.3 實驗二第二組:隔板遠離單反射面之空間 74
4.4.4 實驗三:包含桌面之單反射面空間 78
4.4.5 實驗四:包含長桌之長型房間 82
第五章 隔板的介入影響 87
5.1 室內響應之差異分析方法 88
5.1.1 響應總能量 89
5.1.2 頻域幅度響應 90
5.1.3 清晰度指數 91
5.1.4 聲源側反射量 91
5.2 分析結果與情境探討 92
第六章 總結 95
6.1 侷限性與潛在的改善方向 95
6.1.1 理論限制 95
6.1.2 模型限制 96
6.1.3 實驗驗證有效性 96
6.1.4 模型實用性 97
參考文獻 99
-
dc.language.isozh_TW-
dc.title以像源法與BTM模型探討長方形房間中隔板介入的聲學影響zh_TW
dc.titleThe Acoustic Impact for the Insertion of a Thin Partition in a Shoebox Room: an Image-Source and BTM Diffraction Model Approachen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee謝傳璋;宋家驥;湯耀期zh_TW
dc.contributor.oralexamcommitteeChuan-Cheung Tse;Chia-Chi Sung;Yao-Chi Tangen
dc.subject.keyword繞射,室內聲學,像源法,BTM繞射模型,空間可聽化,zh_TW
dc.subject.keyworddiffraction,room acoustics,image-source method,BTM diffraction model,auralization,en
dc.relation.page103-
dc.identifier.doi10.6342/NTU202301298-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2023-07-05-
dc.contributor.author-college工學院-
dc.contributor.author-dept工程科學及海洋工程學系-
顯示於系所單位:工程科學及海洋工程學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf8.98 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved