請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88226完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃宇廷 | zh_TW |
| dc.contributor.advisor | Yu-tin Huang | en |
| dc.contributor.author | 賴允忠 | zh_TW |
| dc.contributor.author | Yun-Chung Lai | en |
| dc.date.accessioned | 2023-08-09T16:05:50Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-08-09 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-07-21 | - |
| dc.identifier.citation | G. B. Arfken, H. J. Weber, and F. E. Harris. Chapter 11 - complex variable the- ory. In G. B. Arfken, H. J. Weber, and F. E. Harris, editors, Mathematical Methods for Physicists (Seventh Edition), pages 469–550. Academic Press, Boston, seventh edition edition, 2013.
N. Arkani-Hamed, T.-C. Huang, and Y.-t. Huang. Scattering amplitudes for all masses and spins. JHEP, 11:070, 2021. Z. Bern and Y.-t. Huang. Basics of Generalized Unitarity. J. Phys. A, 44:454003, 2011. Z. Bern, A. Luna, R. Roiban, C.-H. Shen, and M. Zeng. Spinning black hole bi- nary dynamics, scattering amplitudes, and effective field theory. Phys. Rev. D, 104(6):065014, 2021. N. E. J. Bjerrum-Bohr, J. F. Donoghue, and B. R. Holstein. Quantum gravitational corrections to the nonrelativistic scattering potential of two masses. Phys. Rev. D, 67:084033, 2003. [Erratum: Phys.Rev.D 71, 069903 (2005)]. M. Blagojevic, S. Meljanac, I. Picek, and P. Senjanovic. The Infrared Problem and Radiation Effects in Monopole Processes. Nucl. Phys. B, 198:427–440, 1982. D. G. Boulware, L. S. Brown, R. N. Cahn, S. D. Ellis, and C. Lee. Scattering on magnetic charge. Phys. Rev. D, 14:2708–2727, Nov 1976. S. Caron-Huot and Z. Zahraee. Integrability of Black Hole Orbits in Maximal Su- pergravity. JHEP, 07:179, 2019. W.-M. Chen, M.-Z. Chung, Y.-t. Huang, and J.-W. Kim. The 2PM Hamiltonian for binary Kerr to quartic in spin. JHEP, 08:148, 2022. C. Csáki, Z.-Y. Dong, O. Telem, J. Terning, and S. Yankielowicz. Dressed vs. pair- wise states, and the geometric phase of monopoles and charges. JHEP, 02:211, 2023. C. Csaki, S. Hong, Y. Shirman, O. Telem, J. Terning, and M. Waterbury. Scattering amplitudes for monopoles: pairwise little group and pairwise helicity. JHEP, 08:029, 2021. P. A. M. Dirac. Quantised singularities in the electromagnetic field,. Proc. Roy. Soc. Lond. A, 133(821):60–72, 1931. J. F. Donoghue and T. Torma. On the power counting of loop diagrams in general relativity. Phys. Rev. D, 54:4963–4972, 1996. D. Forde. Direct extraction of one-loop integral coefficients. Phys. Rev. D, 75:125019, 2007. L. P. Gamberg and K. A. Milton. Dual quantum electrodynamics: Dyon-dyon and charge monopole scattering in a high-energy approximation. Phys. Rev. D, 61:075013, 2000. G. W. Gibbons and N. S. Manton. Classical and Quantum Dynamics of BPS Monopoles. Nucl. Phys. B, 274:183–224, 1986. D. J. Griffiths and D. F. Schroeter. Introduction to Quantum Mechanics. Cambridge University Press, 3 edition, 2018. Y.-T. Huang, U. Kol, and D. O’Connell. Double copy of electric-magnetic duality. Phys. Rev. D, 102(4):046005, 2020. J. D. Jackson. Classical Electrodynamics. Wiley, 1998. D. N. Kabat and M. Ortiz. Eikonal quantum gravity and Planckian scattering. Nucl. Phys. B, 388:570–592, 1992. V. K. Khersonskii, A. N. Moskalev, and D. A. Varshalovich. Quantum Theory Of Angular Momentum. World Scientific Publishing Com- pany, 1988. J.-W. Kim and M. Shim. Gravitational Dyonic Amplitude at One-Loop and its In- consistency with the Classical Impulse. JHEP, 02:217, 2021. D. A. Kosower, B. Maybee, and D. O’Connell. Amplitudes, Observables, and Clas- sical Scattering. JHEP, 02:137, 2019. H. Lee, S. Lee, and S. Mazumdar. Classical observables from partial wave ampli- tudes. 3 2023. M. Lévy and J. Sucher. Eikonal approximation in quantum field theory. Phys. Rev., 186:1656–1670, Oct 1969. B. Maybee, D. O’Connell, and J. Vines. Observables and amplitudes for spinning particles and black holes. JHEP, 12:156, 2019. N. Moynihan and J. Murugan. On-shell electric-magnetic duality and the dual gravi- ton. Phys. Rev. D, 105(6):066025, 2022. A. M. Polyakov. Particle Spectrum in Quantum Field Theory. JETP Lett., 20:194– 195, 1974. M. V. S. Saketh, J. Vines, J. Steinhoff, and A. Buonanno. Conservative and radiative dynamics in classical relativistic scattering and bound systems. Phys. Rev. Res., 4(1):013127, 2022. J. J. Sakurai and J. Napolitano. Modern Quantum Mechanics. Quantum physics, quantum information and quantum computation. Cambridge University Press, 10 2020. Y. M. Shnir. Magnetic Monopoles. Text and Monographs in Physics. Springer, Berlin/Heidelberg, 2005. G. ’t Hooft. Magnetic Monopoles in Unified Gauge Theories. Nucl. Phys. B, 79:276– 284, 1974. D. Tong. TASI lectures on solitons: Instantons, monopoles, vortices and kinks. In Theoretical Advanced Study Institute in Elementary Particle Physics: Many Dimensions of String Theory, 6 2005. L. F. Urrutia. Zeroth-order eikonal approximation in relativistic charged-particle- magnetic-monopole scattering. Phys. Rev. D, 18:3031–3034, Oct 1978. S. Weinberg. Photons and gravitons in perturbation theory: Derivation of maxwell’s and einstein’s equations. Phys. Rev., 138:B988–B1002, May 1965. T. T. Wu and C. N. Yang. Dirac Monopole Without Strings: Monopole Harmonics. Nucl. Phys. B, 107:365, 1976. D. Zwanziger. Local-lagrangian quantum field theory of electric and magnetic charges. Phys. Rev. D, 3:880–891, Feb 1971. 58 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88226 | - |
| dc.description.abstract | 在這篇碩論中我們討論了電子與磁單極之間的交互作用並從古典的角度出發去計算衝量跟散射角度. 同時我們也透過解薛丁格方程在磁單極的位能下得到波函數, 進一步取它的漸近形式來獲取散射幅度. 以及我們也透過在殼旋轉方法得到電子與磁單極的傳播子, 其中也包含了狄拉克弦的部分,但我們透過計算可以發現在古典極限下狄拉克弦並不會出現在最後觀測量, 包括衝量, 散射角度以及散射幅度. | zh_TW |
| dc.description.abstract | In this thesis, we consider the interaction between an electron and a monopole. We calculate the impulse in the classical picture and the cross section in quantum mechanics. Additionally, we employ on-shell phase rotation to reproduce the same result and demonstrate that the observables are independent of the Dirac string in the eikonal limit. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-09T16:05:50Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-08-09T16:05:50Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Verification Letter from the Oral Examination Committee I
Acknowledgements III 摘要V Abstract VII Contents IX List of Figures XI Chapter 1 Introduction 1 Chapter 2 Classical Dynamics in monopole background 3 2.1 Monopole as a point source 3 2.2 Deflection angle and Impulse 6 2.3 Vector Potential of Monopole 9 Chapter 3 Quantum Daynamics in monopole background 13 3.1 Quantum Mechanics in Monopole Background 13 3.2 Schrödinger equation in the monopole background 14 3.3 Quantum Scattering in Electron-Monopole System 16 3.4 Electromagnetic Duality 20 Chapter 4 On-Shell approach to monopole scattering 23 4.1 The on-shell phase rotation 23 4.2 KMOC formalism 25 4.3 Impulse from tree amplitude 28 4.4 One-loop amplitude to impulse 30 4.5 From eikonal phase to all order amplitude 35 Chapter 5 Conclusion 41 Appendix A — Spinor Helicity Formalism 43 A.1 Spinor Helicity Formalism 43 A.1.1 Contraction and the Levi-Civita Tensor 43 A.1.2 Pauli matrices and Gamma matrices 43 A.1.3 Massive Momentum and Massless Momentum 45 A.1.4 Vector Inner Product in Spinor Representation 45 A.1.5 Determinant of Massive Spinor 46 A.1.6 Identities in Massive Amplitudes 47 A.1.6.1 Two Massless One Massive 47 A.1.6.2 Two Massive:Unequal Mass 47 A.1.6.3 Two Massive:Equal Mass 48 A.1.7 Explicit Kinematics 49 Appendix B — ratio of x1/x2 51 Appendix C — The Generalized Spherical Harmonics 53 References 55 | - |
| dc.language.iso | en | - |
| dc.subject | 磁單極 | zh_TW |
| dc.subject | 散射幅度 | zh_TW |
| dc.subject | 本徵近似 | zh_TW |
| dc.subject | eikonal approximation | en |
| dc.subject | monopole | en |
| dc.subject | scattering amplitude | en |
| dc.title | 在殼方法與磁單極 | zh_TW |
| dc.title | On-shell Method and Monopole | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 賀培銘;林豐利 | zh_TW |
| dc.contributor.oralexamcommittee | Pei-Ming Ho;Feng-Li Lin | en |
| dc.subject.keyword | 磁單極,散射幅度,本徵近似, | zh_TW |
| dc.subject.keyword | monopole,scattering amplitude,eikonal approximation, | en |
| dc.relation.page | 58 | - |
| dc.identifier.doi | 10.6342/NTU202301618 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2023-07-24 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 物理學系 | - |
| 顯示於系所單位: | 物理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf | 677.3 kB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
