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摘要

在這篇碩論中我們討論了電子與磁單極之間的交互作用並從古典的角度出發

去計算衝量跟散射角度.同時我們也透過解薛丁格方程在磁單極的位能下得到波函

數,進一步取它的漸近形式來獲取散射幅度.以及我們也透過在殼旋轉方法得到電

子與磁單極的傳播子,其中也包含了狄拉克弦的部分，但我們透過計算可以發現在

古典極限下狄拉克弦並不會出現在最後觀測量,包括衝量,散射角度以及散射幅度.

關鍵字：磁單極、散射幅度、本徵近似

V



doi:10.6342/NTU202301618VI



doi:10.6342/NTU202301618

Abstract

In this thesis, we consider the interaction between an electron and a monopole. We

calculate the impulse in the classical picture and the cross section in quantum mechan-

ics. Additionally, we employ on-shell phase rotation to reproduce the same result and

demonstrate that the observables are independent of the Dirac string in the eikonal limit.

Keywords: Monopole, scattering amplitude, eikonal approximation
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Chapter 1 Introduction

Since Dirac’s first paper on the appearance of monopoles, researchers have been ac-

tively searching for experimental evidence and examining its consistency with contem-

porary theories. The concept of a monopole can be naturally extended from Maxwell’s

equations, implying a non-vanishing Bianchi identity

∂µF
µν = Jνe

∂µF̃
µν = Jνg (1.1)

If we focus on the U(1) gauge symmetry for the monopole, the field strength automatically

satisfies the Bianchi identity and possesses zero magnetic charge

F̃ µν ≡ 1

2
ϵµναβFαβ

∂µF̃
µν = ϵµναβ∂µ∂αAβ = 0

To address this issue, Zwanziger proposed the two-potential formalism [37], which in-

volves non-local variables. Similarly, in order to construct the classical monopole, Dirac

introduced a magnetic point source with an attached infinite string. Undoubtedly, the

string breaks Lorentz symmetry and encodes its information in both the theory and ob-

servables.

There is another problematic issue known as Dirac quantization

eg = 2πn, n ∈ Z (1.2)

In [12], Dirac combined the gauge symmetry for the monopole with the single-valued

constraint on the wave function to argue for nontrivial quantization results. Furthermore,

according to Dirac quantization and electromagnetic duality, electric andmagnetic charges

1
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must be quantized simultaneously. The electric part of this quantization was indicated

by Millikan’s oil experiment. This quantization also poses a challenge to perturbation

theory. In classical results for gravitational or electric forces, the leading order is based

on O(g2), and higher-order effects depend on loop corrections, which can be calculated

in quantum field theory (QFT). However, due to quantization, perturbing both types of

coupling constants is prohibited, rendering renormalization meaningless. In this thesis,

we aim to investigate whether physical observables depend on strings or not.

In our research, we follow the approach outlined in [18] to derive the tree-level ampli-

tude for the 2 → 2 charge-monopole system. We calculate the impulse using the KMOC

formalism [23]. Additionally, we extend our analysis to the 1-loop amplitude using the

unitary cut method and demonstrate that the results are consistent with classical compu-

tations. Furthermore, we provide a comprehensive review of calculations already known

in classical mechanics, quantum mechanics, and the eikonal approximation for charge-

monopole interactions.

This thesis is organized as follows. Chapter 2 provides a review of the classical point

source for the monopole. We combine the Lorentz force to calculate classical observables

such as impulse and deflection angle. Additionally, we explore the two vector potentials

for the monopole and examine gauge transformations.Chapter 3, we solve the Schrödinger

equation in the presence of a monopole background to obtain the wave function. We then

use this wave function to calculate the scattering amplitude. Chapter 4 focuses on using

the on-shell phase rotation technique to recover the propagator between the electron and

the monopole. From this propagator, we deduce the deflection angle and impulse, which

are consistent with classical results. We also explore the summation of all-order Feynman

diagrams in the eikonal limit, even considering Dirac quantization, to obtain the scattering

amplitude. The results are consistent with those obtained from quantum mechanics in

the small-angle limit. Finally, in Chapter 5, we conclude our findings and provide some

outlook for future research directions.

2
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Chapter 2 Classical Dynamics in
monopole background

In this chapter, we provide a brief review of the monopole in the abelian U(1) gauge

group. We solve the equation of motion for the electron-monopole system and examine

its dynamics.

Next, we introduce the vector potential for the monopole and demonstrate that the

transformation involving the string is actually a gauge transformation. Additionally, we

touch upon the duality between the electron and the monopole.

The content of this chapter is largely adapted from the works of [31] and [7].

2.1 Monopole as a point source

To construct the monopole, we can start from generalized Maxwell equation (1.1)

and static point source with magnetic charge at r′. The magnetic field can be solved by

F ij ≡ εijkBk, F i0 ≡ Ei

⇒∂iF̃
i0 = ∇ · B(r) = g δ(r′ − r) (2.1)

The solution can be extended from the electric case by replacing the electric charge

e with the magnetic charge g.

B(r) = g

4π

r− r′

(r− r′)3
(2.2)

To detect the magnetic field, we can consider a test particle that carries an electric charge.

3
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In this case, the equation of motion for the electrically charged particle in an electromag-

netic background is described by the Lorentz force equation.

dpµ

dτ
= e F µν dxν

dτ
⇐⇒ dp

dt
= e (E+ v× B) (2.3)

The force experienced by a particle with an electric charge in a monopole background is

given by

m
d2r
dt2

=e[
dr
dt

× Bg] (2.4)

=
eg

4πr3
[
dr
dt

× r] (2.5)

with the monopole located at the origin and the position of the electric charge particle

denoted by the vector r

m

2

dv2

dt
=

1

m

dr
dt

· d
2r
dt2

= 0

mv2

2
≡ E (2.6)

To determine the magnitude of radius, we observe that

d2

dt2
r2 = 2

d
dt

(
r · dr

dt

)
= 2v2 + 2r · d

2r
dt2

= 2v2 (2.7)

Taking into account time reversal symmetry, we can express

r =
√
v2t2 + b2

r · dr
dt

= r · v = v2t (2.8)

Here, we introduce the impact parameter b as the minimum distance between the electron

and the monopole. Before calculating the equation of motion for the electron-monopole

system, we need to consider some time-independent constants, in addition to the kinematic

energy, that describe the system’s properties. Furthermore, we are interested in studying

the orbital angular momentum associated with the motion of the particles.

L̃ = m[r× dr
dt
] (2.9)

4
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In an electron-electron system, the orbital angular momentum is a constant of motion

m
d2r
dt2

=
e2

4π

r
r3

(2.10)

dL̃
dt

= m[r× r̈] = e2

4πr3
[r× r] = 0 (2.11)

but in the background field of monopole (4.1), the orbital angular momentum is no longer

constant

dL̃
dt

= m[r× r̈] = eg

4πr3
[r× dr

dt
× r]

=
eg

4π
[
1

r

dr
dt

− (r · dr
dt
)
r
r3
]

=
eg

4π

d
dt

(r
r

)
(2.12)

However, we can define angular momentum as a new constant of motion

L ≡ L̃− eg

4π

r
r

(2.13)

which satisfy

dL
dt

= 0

L2 ≡ L2 = L̃2 +
e2g2

(4π)2
= (mvb)2 +

e2g2

(4π)2

The physical meaning of the additional angular momentum in the presence of a monopole

background field arises from the electromagnetic field itself. The angular momentum of

the electromagnetic field can be described by

Lem =

∫
d3r′ [r′ × (E× B)] = g

4π

∫
d3r′ [r′ × (E× r′

r′3
)]

=
g

4π

∫
d3r′ [E 1

r′
− r′

r′3
(E · r′)] = g

4π

∫
d3r′ (E ·∇′)

r′

r′

= − g

4π

∫
d3r′ (∇ · E)r

′

r′
= − eg

4π

r
r

(2.14)

In last equation, we use integration by part and Gauss law for electric point source

∇′ · E = e δ(3)(r− r′) (2.15)

5
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Figure 2.1: geometry of scattering of an electron by a monopole at the origin from [31]

2.2 Deflection angle and Impulse

In this section, we calculate the deflection angle for the electron-monopole system.

We consider an electron approaching the monopole at the origin from the asymptotic re-

gion, and the deflection angle is measured by the inner product of the unit vectors of

velocity at t = ±∞. The trajectory of the probe particle in the background field of the

monopole can be observed by

L · r̂ = − eg

4π
(2.16)

Thus, the trajectory form a cone (Fig:2.1). The corresponding cone angle is

tan θ =
L̃

µ
=
mvb

µ
(2.17)

where µ ≡ eg
4π
. Since the trajectory lies on a cone, the system possesses only two de-

grees of freedom. We have already established that the magnitude of velocity v and the

angular momentum L are constants of motion. Therefore, the equation of motion can be

completely determined by these two variables. We can observe

L× r = mr× v× r = mr2v−m(r · v)r

= mr2v−mv2tr

⇒ v =
L× r
mr2

+
v2t

r
r̂ = ω × r+ vrr̂ (2.18)

6
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Figure 2.2: Deflection angle ϑ(b) with rescaling eg/mv ≡ 1

where the angular and radial velocity are

ω ≡ L
mr2

, vr ≡
v√

1 + (b/vt)2

Then boundary condition will be

lim
t→±∞

ω ≡ lim
t→±∞

|ω| = 0, lim
t→±∞

vr = ±v

Because the angular velocity ω = dϕ/dt, the azimuthal angle ϕ will be

ϕ(t) =
|L|
m

∫
dt

v2t2 + b2
=

1

sin θ
arctan

vt

b
(2.19)

Due to the boundary condition, we can parameterize the velocity in asymptotic form

v|t=±∞ = v

(
± sin θ cos

∆ϕ

2
, sin θ sin

∆ϕ

2
,± cos θ

)
(2.20)

where ∆ϕ = ϕ(∞)− ϕ(−∞) = π/ sin θ. The deflection angle ϑ is defined as

cosϑ =
v|t=∞ · v|t=−∞

v2
= 2 sin2 θ sin2

( π

2 sin θ

)
− 1

⇐⇒ cos
ϑ

2
= sin θ

∣∣ sin( π

2 sin θ

)∣∣ (2.21)

The deflection angle of electron-monopole scattering is not a monotonous function of

impact parameter b.The function ϑ(b) is ploted in Fig 2.2. In large impact parameter, We

7
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can consider O
(
1
b

)
of deflection angle

ϑ = π − 2θ ≈ 2µ

mvb
(2.22)

Another classical observable closely related to scattering is impulse. Impulse is a

classical observable from Newtonian mechanics that measures the difference in momen-

tum between the incoming and outgoing particles. In order to obtain a non-perturbative

result for impulse, we follow the approach outlined in [24]. In three dimensions, we can

expand the outgoing momentum in terms of a basis consisting of the incoming momentum

and the impact parameter.

kout = c1 kin + c2|kin| b̂+ c3 (kin × b̂) (2.23)

The coefficient can be determined by

k̂in · k̂out = cosϑ, (kin + kout) · L = 0, |kin| = |kout|

⇒ c1 = cosϑ, c2 = cos θ sin θ
[
1− cos

( π

sin θ

)]
, c3 = sin θ sin

( π

sin θ

)
(2.24)

Then the impulse of electron-monopole scattering can be read as

∆k = kout − kin (2.25)

Perturbatively, We can expand the impulse order by order in eg
4πL

.

O(eg) : 2
eg

4πL
(kin × b̂)

O
(
e2g2

)
: (

eg

4πL
)2
(
−2kin −

π

2
|kin|b̂

)
(2.26)

Another way to derive the impulse of order eg can be found in [17]. This approach in-

volves considering a probe charged particle with a velocity of (0, 0, v) being deflected by

a monopole located at the origin, as depicted in Figure 2.3. In large impact parameter, we

can consider O
(
1
b

)
of impulse, which can be easily calculate as

∆k(1) =
∫ ∞

−∞
F dt ≈ egbv

4π

∫ ∞

−∞

dt

(b2 + v2t2)3/2
ŷ = 2

eg

4πb
ŷ (2.27)

the same as (2.26) with identify b̂ ≡ x̂ andmvb ≡ L

8
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Figure 2.3: Charged particle pass a monopole at large impact parameter from [19]

2.3 Vector Potential of Monopole

In the previous section, we discussed classical observables for electron-monopole

scattering. However, to extend the calculation to quantum physics, we need to consider

the Lagrangian that describes the dynamics of both electric and magnetic charges. The

standard Lagrangian for an electrically charged particle in the background of a vector

potential is given by

L =
1

2
mv2 + ev · A (2.28)

Then equation of motion can be solved by Lagrangian equation

d
dt

(
∂L
∂v

)
=
∂L
∂r

⇒∂L
∂r

= ∇L = e∇(A · v)

d
dt

(
∂L
∂v

)
=

d
dt
(mv+ eA) (2.29)

with the identity of vector analysis

∇(A · B) = (A · ∇)B+ (B · ∇)A+ B× (∇× A) + A× (∇× B) (2.30)

then Lagrangian equation will be

d
dt
(mv+ eA) = e (v · ∇)A+ e v× (∇× A) (2.31)

9
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The total differential, dA, contains two parts: the change with respect to time, dt, and the

change with respect to displacement.dr.

dA
dt

=
∂A
∂t

+ (v · ∇)A

Then the equation of motion is just

m
dv
dt

= −∂A
∂t

+ e v× (∇× A) (2.32)

If vector potential is time-independent, the EOM is nothing but Lorentz fore equation (2.4)

with identify

B = ∇× A (2.33)

However, there is a disaster for monopole. Since

Bg = g
r̂

4πr2
⇒ ∇ · B = g δ(3)(r) (2.34)

To resolve the contradiction in equation (2.33) which implies ∇ · B = 0, we introduce a

vector potential that does not cover R3 globally but contains a singularity region repre-

senting the Dirac string. To achieve this, we assume the existence of two types of vector

potentials, AN and AS , as described in [36]. These vector potentials satisfy(2.33)

∇× A =
1

r sin θ

(
∂

∂θ
(Aϕ sin θ)−

∂Aθ
∂ϕ

)
r̂ = Bg = g

r̂
4πr2

(2.35)

To process azimuthal symmetry, we take Aθ is zero 1. The simplest solution is

Aϕ = g
− cos θ + c

4πr sin θ
(2.36)

c is constant.To determine the constant c for the two vector potentials AN and AS , we

assume that they coincide on the equatorial plane (or any other chosen closed curve). By

making this assumption, we can integrate the surface∮
dS · Bg =

∮
(AN − AS) · dℓ =

1

2
g(cN − cS) = g (2.37)

1Since r.h.s only contain f(r),the solution for non-zero Aθ is ϕ + g(r, θ), which means A(ϕ + 2π) ̸=
A(ϕ)

10
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We can trivially choose cN = 1 and cS = −1. Then final result would be

AN =
g

4π

− cos θ + 1

r sin θ
ϕ̂

AS =
g

4π

− cos θ − 1

r sin θ
ϕ̂ (2.38)

We combine these two expression into

A(r) = g

4πr

r× n
r − (r · n)

(2.39)

For the vector potential AN , the normal vector is n = (0, 0,−1), while for AS , the normal

vector is n = (0, 0, 1). It is evident that each vector potential has its own singularity:

AN diverges at the south pole, and AS diverges at the north pole. These singularities

correspond to the existence of the Dirac string. In classical observables, the singularity can

be avoided due to the presence of the cone, onwhich the trajectory of the probe particle lies.

Since we have two vector potentials to cover each singularity, the next issue to consider

is their overlapping region, where the vector potential is not uniquely defined. However,

the curl ofA remains the same in this region, and therefore the difference between the two

vector potentials must be a U(1) gauge transformation. This gauge transformation ensures

that the physical properties of the system are preserved despite the non-uniqueness in the

overlapping region

AN − AS =
g

2πr sin θ
= ∇λ(r)

⇒λ(r) = g

2π
ϕ (2.40)

The general gauge transformation for arbitrary string is

An′(r) = An′(r) +∇Ωn′,n(r) (2.41)

whereΩn′,n(r) is solid angle under the surface between new string, old string and position

vector. We leave it to the reader to prove this nontrivial result. However, in the next

chapter, we will focus solely on equation (2.38) and consider the vector potentials AN
and AS derived from it. The significance of gauge transformations in quantum mechanics

will be explored and discussed in the subsequent chapter, where we will examine their

implications and the resulting effects.

11
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Chapter 3 Quantum Daynamics in
monopole background

In this chapter, we provide a comprehensive review of gauge symmetry in quantum

mechanics, emphasizing its significance and implications. We particularly focus on one of

its most intriguing consequences, known as Dirac quantization. This phenomenon high-

lights the constraint placed on the allowed values of electric and magnetic charges in a

gauge theory.

Furthermore, we delve into solving the Schrödinger equation in the background of a

monopole, aiming to derive the scattering amplitude and cross section in the framework of

quantum mechanics. By considering the interaction between particles and the monopole,

we explore the quantum mechanical aspects of the scattering process.

The content of this chapter is primarily based on the research and findings presented

in the works of [7] and [31].

3.1 Quantum Mechanics in Monopole Background

Recall the Lagrangian with external vector potential

L =
1

2
mv2 + eA · v

Then the generalized momentum is defined as

Π ≡ ∂L
∂v

= mv+ eA

13
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The corresponding Hamiltonian is

H ≡ Π · v− L =
1

2
mv2 = 1

2m
(Π− eA)2

In quantum mechanics, generalized momentum is replace by operator

Π → −i∇

The time-independent Schrödinger equation with vector potential is

− 1

2m
(∇− ieA)2ψ(r) = Eψ(r) (3.1)

If we recall the gauge transformation

A(r) → A(r) +∇λ(r)

To guarantee the gauge invariant of Schrödinger equation, wave function must transform

as

ψ(r) → eieλ(r)ψ(r)

Since wave function must be single-valued, the gauge transformation for monopole (2.40)

lead to dirac quantization

eieg = 1 ⇒ eg = 2πn, n ∈ Z (3.2)

If the wave function is symmetric under rotation ϕ→ ϕ+ 2π, then eg = 2πn, n ∈ Z. Or

it is anti-symmetric , then eg = (2n+ 1)π.

3.2 Schrödinger equation in the monopole background

The wave function in the background of a monopole can be solved using a similar

procedure as that for the hydrogen atom. We begin by substituting the vector potential

AN , as given in equation (2.38), into the Schrödinger equation. This substitution allows

14
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us to express the Hamiltonian as follows

H = − 1

2mr2

{
∂

∂r

(
r2
∂

∂r

)
+ L2 − µ2

}
(3.3)

where µ ≡ eg
4π

and angular momentum in quantum mechanics can be derived from (2.13)

L = r× p− µr̂ = r× (Π− eA)− µ r̂ = L̃− e(r× A)− µ r̂

=
1

sin θ

(
i
∂

∂ϕ
+ µ(1− cos θ)

)
θ̂ − i

∂

∂θ
ϕ̂− µ r̂ (3.4)

and

L2 = − 1

sin θ2

[
sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

(
∂

∂ϕ
− iµ(1− cos θ)

)2
]
+ µ2

L3 = −i ∂
∂ϕ

− µ

with separation of variables

ψ(r) = Fkℓ̃(r)Yµlm(θ, ϕ) (3.5)

where

L2Yµlm(θ, ϕ) = l(l + 1)Yµlm, L3Yµlm = mYµlm(θ, ϕ)

l = µ, µ+ 1, . . . m = −l,−l + 1, . . . ,+l (3.6)

Yµ,lm(θ.ϕ) is generalized spherical harmonics [36] and some property list in appendix C.

The radial part of the wave function satisfy

− 1

2m

{
d2

dr2
+

2

r

d
dr

− ℓ(ℓ+ 1)− µ2

r2

}
Fkℓ̃(r) = EFkℓ̃(r) (3.7)

It can be solved by spherical Bessel functions of the order

ℓ̃ =

√(
l +

1

2

)2

− µ2 − 1

2
(3.8)

The solution is

Fkℓ̃(r) =

√
k

r
Jℓ̃+1/2(kr) =

1

k

√
2

π
jℓ̃(kr), k =

√
2mE (3.9)

15
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where Bessel function is defined as

jn(x) ≡ (−x)n
(
1

x

d
dx

)n sinx
x

(3.10)

3.3 Quantum Scattering in Electron-Monopole System

In scattering theory [30], we assume a time-independent Hamiltonian as

H = H0 + V (3.11)

whereH0 ≡ Π2

2m
is the kinetic-energy operator. In usual, we have two eigenstate

H |ψ⟩ = E |ψ⟩

H0 |ϕ⟩ = E0 |ϕ⟩

The perturbation theory can guide us in obtaining the wave function |ψ⟩ from an initial

state |ϕ⟩. However, in the electron-monopole system, there is no free Hamiltonian that

can be used as a reference for perturbation theory. Consequently, alternative approaches

are needed.

To analyze the wave function in the absence of a free Hamiltonian, we adopt a partial

wave expansion technique. This involves expanding the wave function using a series of

partial waves, which correspond to different angular momentum states. By employing this

expansion, we can express the wave function as:

Ψk(r) =
∑
ℓ,m

Sℓ,m jℓ̃(kr)Yµℓm(θ, ϕ) (3.12)

with the asymptotic form of radial Bessel function

jℓ̃(kr)
r≫1−−→ 1

kr
sin

(
kr − πℓ̃

2

)
=

1

2ikr

(
eikr−iπℓ̃/2 − e−ikr+iπℓ̃/2

)
(3.13)

The wave function will be

Ψ(r) r≫1−−→
∑
ℓ,m

Sℓ,m
1

2ikr

(
eikr−iπℓ̃/2 − e−ikr+iπℓ̃/2

)
Yµℓm(θ, ϕ) (3.14)

16
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The plane wave can be expanded on ordinary spherical harmonics and Bessel function

ei k·r = 4π
∑
ℓ,m

iℓ jℓ(kr)Yℓm(k̂)Y ∗
ℓm(r̂) (3.15)

In asymptotic form with the completeness relation, plane wave can be expressed as

ei k·r
r≫1−−→ eikr

2ikr
δ2(r̂ · k̂)− e−ikr

2ikr
δ2(−r̂ · k̂) (3.16)

The first term in equation (3.12) corresponds to the outgoingwave function, while the latter

term represents the incoming wave function. Considering the principle of causality, as the

scattering process is solely outgoing, the incoming part of the wave function in equation

(3.12) must match with the incoming part of the plane wave function. By ensuring this

match, we can determine the coefficients Sℓ,m using the completeness of the generalized

spherical harmonics.

∑
ℓ,m

Y ∗
µℓm(θ, ϕ)Yµℓm(θ

′, ϕ′) = δ(cos θ − cos θ′)δ(ϕ− ϕ′)

⇒ Sℓ,m = Y ∗
µ ℓm(−k̂)e−iπℓ̃/2 (3.17)

Thus, the outgoing part of (3.12) in asymptotic limit is

Ψout(r) ≈
eikr

2ikr

∑
ℓm

Y ∗
µℓm(−k̂)Yµℓm(r̂) (3.18)

With the relation between Wigner D matrix and spin-weighted spherical harmonics (ap-

pendix C), the additional theorem is [21]

∑
b

Dl
ab(α2, β2, γ2)Dl

bc(α1, β1, γ1) = Dl
ac(α, β, γ) (3.19)

The angle α, β, γ can be expressed in terms of α1, β1, γ1 and α2, β2, γ2

cot (α− α2) = cos β2 cot (α1 + γ2) + cot β1
sin β2

sin (α1 + γ2)

cos β = cos β1 cos β2 − sin β1 sin β2 cos (α1 + γ2)

cot (γ − γ2) = cos β1 cot (α1 + γ2) + cot β2
sin β1

sin (α1 + γ2)
(3.20)

17
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The outgoing part can be simplify as

Ψout(r) ≈
eikr

r
f(Θ,Φ)

2ikf(Θ,Φ) =
∑
ℓ

2ℓ+ 1

4π
Dℓ
µµ(Φ, π −Θ,Φ)e−iπℓ̃ (3.21)

where f(Θ,Φ) is defined as scattering amplitude. Θ is the angle between k̂ and r̂ and Φ

can be determined by (3.20)

cosΘ = cos θk cos θr + sin θk sin θr cos (ϕk − ϕr) (3.22)

In eikonal limit Θ ≪ 1 , the main contribution for amplitude is from large ℓ. Therefore,

we can approximate

ℓ̃ =

√
(ℓ+

1

2
)2 − µ2 − 1

2

ℓ≫1−−→ ℓ

Then the amplitude become

2ikf(Θ,Φ) ≈
∑
ℓ

(−1)ℓ(2ℓ+ 1)dℓµµ(π −Θ)e2iµΦ (3.23)

To carry out this series, we utilize the generating function of characteristic function [21]

∑
ℓ

t2ℓχℓ(κ) =
1

1− 2t cosκ+ t2
(3.24)

where

χℓ(κ) =
m=ℓ∑
m=−ℓ

Dℓ
mm(α, β, γ)

=
sin (ℓ+ 1/2)κ

sinκ/2
(3.25)

in which

cos
κ

2
= cos

β

2
cos

α + γ

2
(3.26)

However, we only need sum of ℓ. Thus we take α = γ and take Fourier transform γ on

18
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both side.

∑
ℓ

t2ℓDℓ
µµ(0, π −Θ, 0) =

∫ 2π

0

dγ
2π

e2iµγ

1− tΘ cos γ + t2
(3.27)

And times t, differentiating respect t and substitute t as i

∑
ℓ

(−1)ℓ(2ℓ+ 1)dℓµµ(π −Θ) =

∫ 2π

0

dγ
2π

∂

∂t

(
te2iµγ

1− tΘ cos γ + t2

)∣∣∣∣∣
t=i

(3.28)

This integral can be implemented in complex plane with z ≡ eiγ . It turn out to be

1

2πi

∮
C

dz
−2z1+2µ

(1 + z2)2
4

Θ2
(3.29)

The pole of integrand ±i lie on the contour which is unit circle. To prevent the divergent,

we take the integral as principal value [1] and deform contour to

C1

C2

C+

C−

Figure 3.1: Contour of the integral

C1,C2 are part of unit circle and C± are half circle where center is γ± = ±i. Principal

value of the integral is

P.V.
∫

f(z) dz =

∫
C1+C2

f(z) dz, where f(z) ≡ z2µ+1

(z − γ+)2(z − γ−)2

There are two different contour for each C±, include the pole or exclude the pole. If we

19
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choose including the pole, residue theorem imply∮
C

f(z) dz = 2πi
∑
k

Res(f, γk)

⇒ P.V.
∫

f(z) dz + iπ
∑
k

Res(f, γk) = 2πi
∑
k

Res(f, γk)

= P.V.
∫

f(z) dz − iπ
∑
k

Res(f, γk) = 0 (3.30)

The same contribution for excluding the pole. Thus, the principal value will be

P.V.
∫

f(z) dz = iπ
∑
k

Res(f, γk)

= iπ
∂[f(z) ∗ (z − γ+)

2]

∂z

∣∣∣∣
z=γ+

+ iπ
∂[f(z) ∗ (z − γ−)

2]

∂z

∣∣∣∣
z=γ−

= −iµπ(−1)µ (3.31)

Restoring all the factor, the eikonal limit of the amplitude is

2ikf(Θ,Φ) ≈
∑
ℓ

(−1)ℓ(2ℓ+ 1)dℓµµ(π −Θ)e2µΦ = (−1)µ
4µ

Θ2
e2iµΦ (3.32)

Then the differential cross section can be easily computed as

dσ
dΩ

= |f(Θ,Φ)|2 ≈ 4µ2

k2Θ4
(Θ ≪ 1) (3.33)

3.4 Electromagnetic Duality

In this section, we discuss the duality between electric charge and monopole charge.

We can start from a free Lagrangian

L =
1

4
(F 2 + F̃ 2) (3.34)

where F̃ µν ≡ 1
2
ϵµναβFαβ . Apparently, the Lagrangian possesses an SO(2) symmetry.F

F̃

→

cos θ − sin θ

sin θ cos θ

F
F̃


20
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If we consider an additional current source coupled to the gauge field in the Lagrangian,

the equation of motion would be

∂µF
µν = Jνe

∂µF̃
µν = Jνg (3.35)

Jνe , Jνg represent the source of two type of current and F̃ µν ≡ 1
2
ϵµναβFαβ . Then the

corresponding transformation of current isJe
Jg

→

cos θ − sin θ

sin θ cos θ

Je
Jg

 (3.36)

If we consider only Fµν without the dual part

L =
1

4
FµνF

µν (3.37)

After dual transformation

L′ =
1

4

{
FµνF

µν cos2 θ + F̃µνF̃
µν sin2 θ + FµνF̃

µν sin 2θ
}

=
1

4
FµνF

µν +
sin 2θ
2

∂µ(AνF̃
µν) (3.38)

Since the latter term is a total derivative as a boundary condition, the equation of motion

is still invariant under dual transformation. Although we won’t consider the boundary

term in this thesis, but the topological effect plays crucial role in SU(N) monopole and

instanton[33].

To simplify the situation, we consider a point source as classical particle. Then current

can be read as

Jµe = ρe
dxµ

dτ
, Jµg = ρg

dxµ

dτ
(3.39)

Since Q =
∫
ρdx3, the dual transformation can be treated as the rotation of charge

e+ ig → eiθ(e+ ig) (3.40)

Therefore, if the Lagrangian is dual-invariant, the charge of a single particle is irrelevant.

Since we can always apply a dual transformation to obtain another charge, the only rele-
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vant factor is the phase of the charge difference between any two particles.

|Q1||Q2| cos θ12 = e1e2 + g1g2

|Q1||Q2| sin θ12 = e1g2 − e2g1

For pure charge-monopole system, θ12 = π/2. The electric charge and magnetic charge

are exchanged, which means we have to treat the monopole and electron on equal footing.

However, from experiments, we already know the value of the unit electric charge. Com-

bined with Dirac quantization (3.2), there are two different couplings for this two-charge

system. In low energy, such as our daily life, the electric coupling is weak, while the

magnetic coupling is strong. This can explain why laboratories cannot find the existence

of a monopole. However, in Grand Unified Theory (GUT), a solution for the monopole is

needed. Therefore, in high energy, perhaps experiments can tell us whether the monopole

exists or not.
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Chapter 4 On-Shell approach to
monopole scattering

In this chapter, we begin with the 2 → 2 tree-level scattering amplitude for the

electron-monopole system1. We then derive the impulse, scattering angle, and non-perturbative

amplitude using the eikonal approximation.

4.1 The on-shell phase rotation

The minimal coupling[2] for a spin S particle to a photon is given by

qh

2S

1S

M3(1
S, 2S, q+) =

√
2Q(xm)h

⟨12⟩2S

m2S
(4.1)

The factor x is defined in (A.1.6.3), and Q represents the coupling constant, which

serves as an effective charge. According to [8, 18], we can apply a complex phase shift to

the x factor in order to obtain the dyon-dyon amplitude.

x→ xeiθ (4.2)

This corresponds to an electromagnetic duality transformation (3.4) that rotates an electri-
1In this chapter, we consider the electron as an electric-charged scalar and the monopole as a magnetic-

charged scalar
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3

1 2

4

+

−
−
+

q

Figure 4.1: 4-point tree level in t channel

cally charged particle into a dyon, which carries both electric and magnetic charges. More

specifically

Q ≡ e2 + g2, θ ≡ arctan (
g

e
) (4.3)

We are interested in the tree-level 2 → 2 scattering amplitude, whose limit as q2 → 0

is the product of the three-point amplitudes summed over all possible helicities. Combin-

ing (4.2) and (4.1),we have

M3(q
±13) =

√
2Q1m1x

±1
1 e±iθ1 , M3(q

±24) =
√
2Q2m2x

±1
2 e±iθ2 (4.4)

Therefore

M4(1, 2 → 3, 4)
∣∣
q2→0

=
M3(q

+13)M3(q
−24) +M3(q

−13)M3(q
+24)

q2

=
2m1m2Q1Q2

q2

(x1eiθ1
x2eiθ2

+
x2e

iθ2

x1eiθ1

)
(4.5)

With the relation (4.3), we can write the above expression as

M4(1, 2 → 3, 4)
∣∣
q2→0

=
2m1m2

q2
{
Q1Q2 cos θ12(

x1
x2

+
x2
x1

) + iQ1Q2 sin θ12(
x1
x2

− x2
x1

)
}

(4.6)

As we explicitly show in appendix (A.1.7), the ratio of x is

x1
x2

=
p1 · p2
m1m2

+
iϵ(η, p1, q, p2)

m1m2(q · η)
(4.7)

x2
x1

=
p1 · p2
m1m2

− iϵ(η, p1, q, p2)

m1m2(q · η)
(4.8)
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We have also defined

ϵ(a, b, c, d) ≡ ϵµνρσaµbνcρdσ

Thus eq.(4.6) will be

M4(1, 2 → 3, 4)
∣∣
q2→0

=
4m1m2

q2
{
Q1Q2 cos θ12

[p1 · p2
m1m2

]
+iQ1Q2 sin θ12

[ iϵ(η, p1, q, p2)
m1m2(q · η)

]}
(4.9)

In this thesis, we focus on electron-monopole system , which means Q1 = e, Q2 =

g, and θ12 = π/2. Then

M2→2(e, g → e, g)
∣∣
q2→0

= 4eg
ϵ(η, p1, q, p2)

q2
1

q · η
(4.10)

This exactly match with photon propagator[35, 37] between electric current and a mag-

netic current in q2 → 0.

4.2 KMOC formalism

In this section, we will provide a brief overview of the relationship between impulse

and amplitude [23, 26]. We prepare the initial state as |ψin⟩, which consists of two incom-

ing particles with wave functions ϕi(pi). Since we are interested in classical point-like

particles, the wave function should have a a well-defined momentum and position. The

wave packet can be defined as follows

|ψ⟩in ≡
∫
dΦ(p1)dΦ(p2)ϕ1(p1)ϕ2(p2)e

ib·p1/ℏ|p1p2⟩ (4.11)

where

dΦ(p) ≡ d̂4p δ̂(+)(p2 −m2)

d̂np ≡ dnp

(2π)n

δ̂(+)(p2 −m2) ≡ 2πΘ(p0)δ(p2 −m2) (4.12)
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and b is impact parameter, which is distance between two particle. In quantum physics,

the observable is the expectation value of operator. Then the outing momentum is

〈
pµout,1

〉
= ⟨ψ|Pµ1 |ψ⟩out out

= ⟨ψ|U(∞,−∞)†Pµ1U(∞,−∞)|ψ⟩in in

whereU(∞,−∞) is the time operator from the past to future in asymptotic state. In quan-

tum field theory, the time evolution operator is nothing but S-matrix. Impulse is defined

as the difference between incoming momentum and outgoing momentum. Therefore

⟨∆pµ1⟩ = ⟨ψ|Pµ1 |ψ⟩out out − ⟨ψ|Pµ1 |ψ⟩in in

= ⟨ψ|S†Pµ1S|ψ⟩in in − ⟨ψ|Pµ1 |ψ⟩in in (4.13)

We can write S-matrix in terms of transition matrix T via S = 1 + iT and combine the

unitary condition S†S = 1. Eq.(4.13) can reduce to

⟨∆pµ1⟩ = Iµ(1) + Iµ(2)

Iµ(1) ≡ ⟨ψ|i[Pµ1 , T ]|ψ⟩

Iµ(2) ≡ ⟨ψ|T †[Pµ1 , T ]|ψ⟩ (4.14)

Insert eq.(4.11) into eq.(4.13) and first part contribute to amplitude would be

Iµ(1) =

∫
dΦ(p1)dΦ(p2)dΦ(p

′
1)dΦ(p

′
2)ϕ1(p1)ϕ

∗
1(p

′
1)ϕ2(p2)ϕ

∗
2(p

′
2)

×eib·(p1−p′1)/ℏi(p′µ1 − pµ1)⟨p′1p′2|T |p1p2⟩ (4.15)

where the matrix element is

⟨p′1p′2|T |p1p2⟩ =M4(p1, p2 → p′1, p
′
2)δ̂

(4)(p′1 + p′2 − p1 − p2) (4.16)

Here, we label the incoming state as p1,2 and their conjugate as p′1,2. And we introduce the

momentum mismathch qµi = p
′µ
i − pµi and change the integral variable from p′i to qi

dΦ(qi + pi) = d̂4qiδ̂((pi + qi)
2 −m2

i )Θ(p0i + q0i ) (4.17)
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Then

Iµ(1) =

∫
dΦ(p1)dΦ(p2)Φ(p1 + q1)dΦ(p2 + q2)

× e−ib·q1/ℏϕ(p1)ϕ
∗(p1 + q1)ϕ(p2)ϕ

∗(p2 + q2)

× iqµ1M4(p1, p2 → p1 + q1, p2 + q2) (4.18)

We can integrate q2 variable and relabel q1 to q, then

Iµ(1) =

∫
dΦ(p1)dΦ(p2)d̂

4qδ̂(2p1 · q + q2)Θ(p01 + q0)δ̂(2p2 · q − q2)Θ(p02 − q0)

× e−ib·q/ℏϕ(p1)ϕ
∗(p1 + q)ϕ(p2)ϕ

∗(p2 − q)

× iqµM4(p1, p2 → p1 + q, p2 − q) (4.19)

Now we shift our focus to the second part of the impulse and utilize the complete set

of intermediate states labeled by momentum ℓ1 and ℓ2, along with an additional degree of

freedom denoted as X .

Iµ(2) = ⟨ψ|T †[Pµ1 , T ]|ψ⟩

=
∑
X

∫ ∏
i=1,2

dΦ(ℓi) ⟨ψ|T † |ℓ1ℓ2X⟩ ⟨ℓ1ℓ2X| [Pµ1 , T ] |ψ⟩ (4.20)

Here we adopt the normalization of momentum state as

⟨p′|p⟩ ≡ 2Ep δ̂
(3)(p′ − p) (4.21)

Insert the definition of incoming state and the matrix element,then

Iµ(2) =
∑
X

∫ ∏
i=1,2

dΦ(ℓi)dΦ(pi)dΦ(p
′
i)ϕ(pi)ϕ(p

′
i)e

ib·(p1−p′1)/ℏ(ℓµ1 − pµ1)

× δ̂(4)(p1 + p2 − ℓ1 − ℓ2)δ̂
(4)(p′1 + p′2 − ℓ1 − ℓ2)

×M(p1, p2 → ℓ1, ℓ2)M
∗(p′1, p

′
2 → ℓ1, ℓ2) (4.22)

We introduce the momentum mismatch qµi = p
′µ
i − pµi and momentum transfer ωµi =
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ℓµi − pµi . Then we integrate out q1, ω1 and relabel q2 → q and ω2 → ω

Iµ(2) =
∑
X

∫ ∏
i=1,2

dΦ(pi)d̂
4qd̂4ωδ̂(2p1 · q + q2)Θ(p01 + q0)δ̂(2p2 · q − q2)Θ(p02 − q0)

× ϕ(p1)ϕ(p2)ϕ
∗(p1 + q)ϕ∗(p2 − q)δ̂(2p1 · ω + ω2)Θ(p01 + ω0)δ̂(2p2 · ω − ω2)Θ(p02 − ω0)

× e−ib·q/ℏωµM(p1, p2 → p1 + ω, p2 − ω)M∗(p1 + q, p2 − q → p1 + ω, p2 − ω)

(4.23)

Since our interest lies in classical observables, we need to extract the classical contribution

from the impulse. In practice, we rescale the momentum transfer as q → ℏq, ω → ℏω

and the coupling constant as gc → gc/
√
ℏ, and then consider the terms up to O(ℏ0) in the

impulse. The remaining part involves integrating over the wave function ϕ(pi). From a

classical standpoint, the peak of the wave function corresponds to the classical value, and

the expectation of momentum coincides with the classical momentum.

⟨pµ⟩ =
∫
dΦ(p)pµ|ϕ(p)|2 = pµclassical +O(ℓc) (4.24)

where ℓc is Compton wavelength.

4.3 Impulse from tree amplitude

In this section, we derive the impulse formula for tree-level scattering. In the classical

scenario, we prepare particles with certain momenta and capture them after scattering. The

impulse formula can be simplified as

∆pµ1 = −∂χ(b)
∂bµ

+ iχ∗(−b)∂χ(b)
∂bµ

(4.25)

where χ(b) is eikonal phase[25] and defined as

χ(b) =

∫
d4q̂ δ̂(2q · p1)δ̂(2q · p2)× eib·qM4(1, 2 → 1′, 2′)|q2→0 (4.26)

dnq̂ ≡ dnq

(2π)n
, δ̂(x) ≡ 2πδ(x)

Since the mass of the monopole is assumed to be very heavy, we can consider particle 2

as the monopole and set it in the rest frame, where p2 = (m2, 0, 0, 0) acts as a classical

background. To simplify our calculations, we consider particle 1, the electron, moving
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along the z-axis, which gives p1 = m1(γ, 0, 0, γβ). The impact parameter b lies in the xy

plane as a two-dimensional vector, and η is represented as (0, n, 0). The eikonal phase is

then given by

χ(b) =
eg

4π2

∫
dq2 eib·q

nxqy − nyqx
q2

1

q · n
(4.27)

To carry out this integral, we follow [6] to regulate the integral to

χ(b) =
eg

8π2

∫
dq2 eib·q

nxqy − nyqx
q2

(
1

q · n+ iε
+

1

q · n− iε

)
(4.28)

and use Schwinger parameters

1

q2
=

∫ ∞

0

ds e−sq
2

1

q · n+ iε
=

1

i

∫ ∞

0

dλ eiλ(q·n)−λε, Re{ε} > 0

1

q · n− iε
=

−1

i

∫ ∞

0

dλ e−iλ(q·n)−λε, Re{ε} > 0

Then integral become

χ(b) =
eg

8π2

∫ ∞

0

dλ

∫ ∞

0

ds

∫
d2q e−sq

2

(nxqy − nyqx)
1

i[
eiλ(q·n) − e−iλ(q·n)

]
e−λϵeiq·b

= − eg

4π
(nxby − nybx)

∫ ∞

0

ds

(
1

(b+ sn)2
− 1

(b− sn)2

)
e−sε (4.29)

We also know that ε as regulator have to be small. Therefore, we can perturb ε to first

order

χ(b) = − eg

4π
(nxby − nybx)

∫ ∞

0

ds

(
1

(b+ sn)2
− 1

(b− sn)2

)(
1− sε+O

(
ε2
))
(4.30)

and decompose χ = χ(0) + εχ(1) +O(ε2). If we change our variable as

u = s+ n · b (4.31)

v = s− n · b (4.32)
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Then χ(0) can be expressed as

χ(0) =− eg

4π
(nxby − nybx)

(∫ ∞

n·b

du

u2 + b2 − (n · b)2
−
∫ ∞

−n·b

dv

v2 + b2 − (n · b)2

)
=− eg

4π
(nxby − nybx)

∫ −n·b

n·b

du

u2 + b2 − (n · b)2
(4.33)

move to polar coordinate n = (cos θ, sin θ), b = b(cosϕ, sinϕ)

χ(0) = − eg

4π
b sin(ϕ− θ)

∫ −b cos(ϕ−θ)

b cos(ϕ−θ)

du

u2 + b2 sin2(ϕ− θ)

= − eg

4π
[arctan(− cot(ϕ− θ))− arctan(cot(ϕ− θ))]

= 2
eg

4π
(
π

2
+ θ − ϕ) (4.34)

According (4.25),the leading order of impulse is

∆p = −1

b

∂χ(0)

∂ϕ
= 2

eg

4πb
ϕ̂ (4.35)

The result matches the classical result (2.27), and this correspondence has already been

demonstrated in [18, 24]. In the non-relativistic limit, the momentum of the incoming

particle is given by pin = mv. The deflection angle is defined as

ϑ ≡ |∆p|
|pin|

=
2eg

4πL̃
(4.36)

the same formula with electron-monopole scattering (eq.2.22) in small angle.

4.4 One-loop amplitude to impulse

In this section, we consider the next leading order of the impulse. Therefore, we need

to compute the one-loop amplitude using the unitarity method [3]. Since the impulse is a

purely classical observable, we only consider the box and triangle diagrams. Hence, we

expand the amplitude using an integral basis.

M one-loop
classical = c△I△ + c▽I▽ + c□I□ + c▷◁I▷◁ (4.37)
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where box and triangle integral are

I□ =

∫
ddℓ

(2π)d
1

ℓ2[(ℓ− p1)2 −m2
a](ℓ− q)2[(ℓ+ p2)2 −m2

b ]

I▷◁ =

∫
ddℓ

(2π)d
1

ℓ2[(ℓ+ p4)2 −m2
a](ℓ− q)2[(ℓ+ p2)2 −m2

b ]

I△ =

∫
ddℓ

(2π)d
1

ℓ2(ℓ− q)[(ℓ− p1)2 −m2
a]

I▽ =

∫
ddℓ

(2π)d
1

ℓ2(ℓ− q)2[(ℓ+ p2)2 −m2
b ]

(4.38)

we set the external momentum in center of momentum (COM) frame

p1 = (Ea, p⃗), p2 = (Eb,−p⃗), p3 = (Eb,−p⃗′), p4 = (Ea, p⃗′) (4.39)

where p⃗′ = p⃗− q⃗ and q⃗ is the momentum transfer between two particle. Expanding in |⃗q|

variable and taking classical limit [5, 13], we have

I▷◁

∣∣∣∣
classical

= − i

16π2 |⃗q|2

[
1

ϵ
− log |⃗q|2

] log
[
σ −

√
σ2 − 1

]
mamb

√
σ2 − 1

+
iπ

|p|
√
s


I□

∣∣∣∣
classical

=
i

16π2 |⃗q|2

[
1

ϵ
− log |⃗q|2

] log [σ −
√
σ2 − 1

]
mamb

√
σ2 − 1

I△,▽

∣∣∣∣
classical

= − 1

32ma,b

i

|⃗q|
(4.40)

We calculate the integral coefficient in (4.37) using the unitarity cut methods provided in

[4, 9]. The unitarity cut of the one-loop amplitude can be obtained by sewing together

three-point and four-point tree amplitudes. For example, the box coefficient and triangle

coefficient can be generated by the quadruple and triple cut,respectively. We perform the

2

1

4

3

2

1

4

3

Figure 4.2: quadruple cut and triangle cut

sewing of the double cut C2 with the Compton amplitudes [2] along with a phase rotation.
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(4.2)

M4(p1, k
+1
2 , k+1

3 , p4) = − m2[23]2

(s−m2)(u−m2)
e2iϕ

M4(p1, k
+1
2 , k−1

3 , p4) = − [2|p1|3⟩2

(s−m2)(u−m2)

M4(p1, k
−1
2 , k−1

3 , p4) = − m2⟨23⟩2

(s−m2)(u−m2)
e−2iϕ (4.41)

The quadruple and triple cut can be generated by the basis C2 in [9]

C2 =
∑

h0,h1=±1

M4(p1,−p4,−ℓh0 , ℓh11 )M4(p2,−p3, ℓh0 ,−ℓh11 ) (4.42)

Then triple cut C3,# can be extracted from C2

C3,△ = (−2ℓ · p1) C2

∣∣∣∣
ℓ·p1=0

, C3,▽ = (2ℓ · p2) C2

∣∣∣∣
ℓ·p2=0

, (4.43)

The cut condition for triangle diagram is

ℓ2 = (ℓ+ q)2 = (ℓ− p1)
2 −m2

a = 0 (4.44)

We adopt loop parametrization with one free variable as [4, 9]

ℓµ±(z) = αqµ + βpµ1 + zuµ± +
α2γ±
16z

vµ± (4.45)

where ± label the two solution of cut solution and

uµ± = ⟨Q♭
±|σµ|P ♭

±], vµ± = ⟨P ♭
±|σµ|Q♭

±], P ♭µ
± = pµ1 +

qµ

γ±
, Q♭µ

± = qµ +
q2

m2
aγ±

pµ1 ,

α =
2ma

4m2
a − q2

, β = − q2

4m2
a − q2

, γ± = −
q2 ±

√
q2(q2 − 4m2

a)

2m2
a

(4.46)

By substituting (4.45) into (4.43), we obtain the triple cut, and the corresponding triangle

coefficient can be generated as described in [14]

c△ =
1

2

 ∑
ℓ=ℓ±(z)

InfzC3,△(ℓ)

 (4.47)

Here, InfzC3,△(ℓ) represents the constant term in the Laurent expansion ofC3,△ at z = ∞.

Another coefficient, c▽, can be obtained by swappingma andmb. The triangle contribu-
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tion to the one-loop amplitude is

M△,▽ = c△I△ + c▽I▽ (4.48)

To extract the classical contribution, we need to restore factors of h̄ with the appropriate

scaling

ma/b → ma/b, p1/2 → p1/2, q → qℏ (4.49)

and only the terms of order O(h̄0) survive. In the classical limit, the triangle contribution

is

M△,▽ =
ma +mb

16|⃗q|
(4.50)

Since the classical contribution from same helicity Compton amplitude is zero, there is no

phase rotation in triangle coefficient.

The box and crossed box coefficients can also be extracted from C2 as

C4,□ = (−2ℓ · p1)(2ℓ · p2) C2

∣∣∣∣
ℓ·p1=ℓ·p2=0

, C4,▷◁ = (2ℓ · p4)(2ℓ · p2) C2

∣∣∣∣
ℓ·p4=ℓ·p2=0

(4.51)

The relation between box coefficient and crossed box coefficient is

c▷◁ = c□

∣∣∣∣
p1→−p4,p4→−p1

(4.52)

The cut condition is

ℓ2 = (ℓ+ q)2 = (ℓ− p1)
2 −m2

a = (ℓ+ p2)
2 −m2

b = 0 (4.53)

We adopt the four solutions in [4, 9]

ℓµ±,1 = − q2ηµ

2q · η±
,

ℓµ±,2 =
N1p

µ
1 +N2p

µ
2 +Nqq

µ

N
(4.54)
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where

N1 = 2mb(mb +maσ)q
2, N2 = −2ma(ma +mbσ)q

2

Nq = 4m2
am

2
b(σ

2 − 1), N = Nq +
N2 −N1

2

ηµ± = ⟨k1|σµ|k2]

kµ1,± = pµ1 +m2
ap
µ
2ζ±, kµ2,± = pµ2 +m2

bp
µ
1ζ±, ζ± =

−σ ±
√
σ2 − 1

mamb

(4.55)

By substituting the cut solution into C2, we can obtain the box coefficient as

c□ =
1

4

∑
i=±

∑
j=1,2

C4,□(ℓi,j) = 4m2
am

2
b(2σ

2 + cos 2ϕ− 1)

∣∣∣∣
ϕ=π

2

(4.56)

= 4m2
am

2
b(2σ

2 − 2) (4.57)

The contribution from box and cross box diagram is

M□+▷◁ = im2
am

2
b(2− 2σ2)

log q2

4q2
1

|⃗p|
√
s

(4.58)

The pre-eikonal phase from one-loop amplitude with coupling constant is

χ△+▽ = −e2g2 ma +mb

32π|⃗p|
√
sb

χ□+▷◁ =
ie2g2m2

am
2
b(1− σ2)

|⃗p|2s
log2 b
8π2

(4.59)

The result is inconsistent with the eikonal approximation

χ□,▷◁ ̸=
i

2
χ2
(0) (4.60)

To bridge the gap, we can select another tree amplitude to perform an on-shell phase ro-

tation using the Gram determinant

ϵ(η, p1, q, p2)
2 = m2

am
2
b(q · η)2(1− σ2), (4.61)

where p1 · q = p2 · q = q2 = η2 = 0

Then the tree amplitude, with the hotfix, is

M fix
tree = ±4eg

mamb

√
1− σ2

q2
(4.62)
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Then the eikonal phase is reduced to

χfix(0) = ∓egmamb

√
1− σ2

|⃗p|
√
s

log b
2π

(4.63)

which satisfies the exponentiation of the hotfix eikonal phase, and the contributions to the

impulse in O(1/h̄) cancel each other out.

−∂χ□+▷◁(b)

∂bµ
+ iχfix(0)(−b)

∂χfix(0)(b)

∂bµ
= 0 (4.64)

Therefore, the contribution of the impulse from the one-loop calculation only depends on

the triangle part

∆p = −∂χ△+▽

∂b⃗
= −e

2g2(ma +mb)

32π|p|
√
sb2

b̂

≈ − e2g2

32π|p|b2
b̂ (4.65)

This satisfies the classical result in impact parameter space (2.26) with the identification

L̃ ≡ |⃗p|b, and it is consistent with the electromagnetic case up to O(e4) [29]. In the last

equation, we make the approximations ma + mb ≈ ma and
√
s ≈ ma due to the heavy

mass of the monopole.

4.5 From eikonal phase to all order amplitude

In standard quantum field theory, Feynman rules play a vital role in calculating am-

plitudes order by order. As the order of the coupling constant increases, the complexity

of constructing the amplitude also increases. However, in the eikonal limit ( t
s
≪ 1) 1, we

can obtain this infinite series in a simple formula [20, 25]

M eik
4 (s, t) = 4

√
s |⃗p|

∫
d2b̂ e−ib·q(eiχ − 1) (4.66)

where χ is defined in (4.26), and p1 and p2 are in the center-of-momentum (COM) frame

(4.39). There are two different eikonal phases depending on whether strings are involved

or not. We will start with the string-dependent eikonal phase. In order to ensure the con-

vergence of the integral, we need to introduce a regulator to the eikonal phase. Naturally,

1Here, s and t are the Mandelstam variables, where s = (p1 + p2)
2 and t = (p1 − p3)

2
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we can compute the correction to the eikonal phase atO(ε) using a regularization scheme

(4.28).

χ(1) = − eg

4π
(nxby − nybx)

∫ ∞

0

ds

(
s

(b− sn)2
− s

(b+ sn)2

)
(4.67)

By changing variables according to (4.31), the equation becomes

χ(1) = − eg

4π
(nxby − nybx)

(∫ ∞

−n·b
dv

v + n · b
v2 + b2 − (n · b)2

−
∫ ∞

n·b
du

u− n · b
u2 + b2 − (n · b)2

)
(4.68)

We need to evaluate two integrals∫
u

u2 + c
=

1

2
ln (1 + u2)

∫
1

u2 + c
=

arctan
(

u√
c

)
√
c

(4.69)

Both the first and second terms exhibit logarithmic divergence, but they can cancel each

other out. This is precisely why we employ two different regularization schemes. By

utilizing the same polar parameterization in χ(0), the final result will be

χ(1) =− egb

4π
sin(ϕ− θ)

1

2
ln (b2 + u2 − b cos (ϕ− θ))

∣∣∣∣u=b cos(ϕ−θ)
u=−b cos (ϕ−θ)

−egb
4π

cos (ϕ− θ)

(
arctan

(
u

b sin (ϕ− θ)

)∣∣∣∣∞
n·b

+ arctan
(

u

b sin (ϕ− θ)

)∣∣∣∣∞
−n·b

)
=− egb

4π
π cos (ϕ− θ) (4.70)

Combining the above calculations, the eikonal phase up to O(ε) is

χ(b) = −2
eg

4π
(ϕ− θ − π

2
)− eg

4π
επb cos (ϕ− θ) +O

(
ε2
)

= 2
eg

4π
arctan (

n · b
ẑ · (b× n)

)− eg

4π
επ(b · n) +O

(
ε2
)

(4.71)

Since the integrand of -1 is just a two-fold delta function, the former term is our

target. We can substitute χ from (4.71) with polar parametrization up to O(ε) and q =
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q(cosψ, sinψ). Thus, we have

1

2π

∫ 2π

0

dϕ exp
(
i2
eg

4π
(
π

2
+ θ − ϕ)

)
∫ ∞

0

b db exp
(
−iqb cos (ψ − ϕ)− i

eg

4π
επb cos (ϕ− θ)

)
(4.72)

Here, we assume Im(ε) > 0 to ensure the convergence of the integral. After integrating

over the radial part, we obtain

1

2π

∫ 2π

0

dϕ
− exp

(
i2 eg

4π
(π
2
+ θ − ϕ)

)(
q cos (ψ − ϕ) + eg

4π
πε cos (ϕ− θ)

)2 (4.73)

To simplify integral, let y = ψ − ϕ,z = e−iy and µ ≡ eg/(4π)

⇒ 1

2πi
exp

(
i2µ(

π

2
+ θ − ψ)

)∮
C

dz
4z2µ+1

(q + αβ)2(z − γ+)2(z − γ−)2
(4.74)

where α ≡ µεπ, β ≡ ei(ψ−θ), and γ± are the two poles of the polynomial

γ± = ±i

√
α + βq

αβ2 + βq

The contour of the integral is the unit circle, but unfortunately, both γ± lie on the boundary.

Therefore, we evaluate this integral using its principal value. Due to Dirac quantization

(3.2), there are no branch cuts appearing in the integral region, and the contour is

C1

C2

C+

C−

Figure 4.3: Contour of the integral

C1,C2 are part of unit circle and C± are half circle where center is γ±. Principal value of
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the integral is

P.V.
∫

f(z) dz =

∫
C1+C2

f(z) dz, where f(z) ≡ z2µ+1

(z − γ+)2(z − γ−)2

Following the same technique as in the previous chapter, the principal value of the integral

is

P.V.
∫

f(z) dz = iπ
∑

Res(f, γk)

= iπ
∂[f(z) ∗ (z − γ+)

2]

∂z

∣∣∣∣
z=γ+

+ iπ
∂[f(z) ∗ (z − γ−)

2]

∂z

∣∣∣∣
z=γ−

= − iπβµ(αβ + q)

2(α + βq)

(− √
−α− βq√
β(αβ + q)

)2µ

+

( √
−α− βq√
β(αβ + q)

)2µ
 (4.75)

Restoring all the prefactors and omitting the delta function, the non-perturbative amplitude

is

M eik
4 = 4

√
s |⃗p|

−
βµ

((
−

√
−α−βq√
β(αβ+q)

)2µ

+

(
√
−α−βq√
β(αβ+q)

)2µ
)

(α + βq)(αβ + q)
ei2µ(

π
2
+θ−ψ)

 (4.76)

But this answer may not be accurate as we have only considered χ up to O(ε). Contri-

butions of O(ε2) can also affect M eik
4 . To account for the O(ε2) effects from χ, we can

perform a double Taylor expansion with respect to ε.

eiχ = ei(χ(0)+εχ(1)+ε
2χ(2)+··· )

= (1 + iχ(0) + · · · )(1 + iεχ(1) −
1

2
ε2χ2

(1) + · · · )(1 + iε2χ(2) −
1

2
ε4χ2

(2) + · · · )

(4.77)

We can immediately observe that (4.76) is valid up to O(ε). This is because part of the

O(ε2) contribution fromM eik
4 depends on χ(2). Performing a Taylor expansion of (4.76)

up to O(ε) yields

M eik
4 = 4

√
s |⃗p|

[−2µ(−1)µ

q2
+

2(−1)µ(µ)2επ(1− µ+ β2 + µβ2)

q3β

+O
(
ε2
)]
ei2µ(

π
2
+θ−ψ) (4.78)

If we take O(1) of amplitude to obtain differential cross section in COM (4.39), where
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q2 = t = 4p2c sin
2 φ

2

dσ

dΩ
=

1

16s

∣∣∣M eik(0)
4

∣∣∣2 = ∣∣∣∣ µ

2pc sin2 φ
2

∣∣∣∣2 ≈ 4µ2

p2cφ
4
(φ≪ 1) (4.79)

This approximation reproduces the result of quantum mechanics (3.33) and agrees with

the findings in [15, 34].

If we choose the string-independent eikonal phase given by equation (4.63) for ex-

ponentiation, the amplitude would recover as the Coulomb problem [20]. In this case, the

cross section of the hotfix approach coincides with the string-dependent one. Therefore,

there is no difference between the two eikonal phases for the cross section in the eikonal

approximation [27].
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Chapter 5 Conclusion

We have calculated the classical observables, such as the impulse and cross section,

using different approaches and have shown that their results are consistent with each other.

We summarize the results in Table (5.1) and Table (5.2). In this thesis, we have specifically

considered the case of phase rotation given by equation (4.2), where θ = π/2. For arbitrary

values of θ, the impulse obtained from the one-loop amplitude remains the same since there

is no phase factor in the triangle coefficient.Hence, the next leading order of the impulse

should also remain the same for arbitrary phase differences. We have already observed

the consequences for θ12 = 0,π/2. In the case of gravitational dyons, the impulse only

consists of the 1PM term and disagrees with the 2PM term for general θ [22].

When we extend the amplitude to include quantum corrections, the Dirac quantiza-

tion condition remains a significant challenge. In Zangwill’s formalism [37], fixed-order

calculations can be hindered by the presence of Dirac strings. In the on-shell method, there

are two different tree amplitudes that can be selected. Both of these amplitudes should be

taken into account in order to map the classical result and obtain the same cross section in

the eikonal limit. In the q2 → 0 limit, these two amplitudes are consistent with each other.

However, for general kinematics, their behavior is completely different and can affect the

quantum behavior of observables.

Recently, a new formalism [11] has been proposed to construct pairwise states that

carry the phase of the string [10]. The partial wave analysis using pairwise helicity can

be used to construct spin-weighted spherical harmonics [36]. However, the coefficients of

these spin-weighted spherical harmonics are still unconfirmed. Additionally, there is hope

that the pairwise formalism can provide insights into theMontonen-Olive conjecture. This

conjecture suggests that in the Bogomol’nyi limit, all particles from the spectrum of the

Georgi-Glashow model can be composed as
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particle mass charge (q,g) spin

Higgs 0 (0,0) 0

γ 0 (0,0) 1

A± ve (e,0) 1

g vg (0,g) 0

According to Dirac quantization, there exist two distinct coupling regimes for magnetic

monopoles. Therefore, verifying theMontonen-Olive conjecture requires non-perturbative

results, which present a challenge similar to the string issue.

In this thesis, we have focused on magnetic monopoles within the U(1) gauge group.

To satisfy the Gauss law for magnetic charge, the field strength must include a string

variable. However, there is another approach that involves the SU(2) gauge group and

spontaneous symmetry breaking. Monopoles in the SU(2) group, as proposed by ’t Hooft

and Polyakov [28, 32], allow for the existence of magnetic solutions and automatically

satisfy Dirac quantization. In the context of SU(2) symmetry, the singularity associated

with the string completely disappears. Instead, the magnetic charge is encoded in the

equation of motion as the winding number. The interaction between monopoles can be

described by geodesic motion on the moduli space [16]. In the future, we hope to establish

a connection between these results and the on-shell approach.

AmplitudeM Eikonal phase χ ≡
∫
dq2e−iqbM

Tree M(0) = 4eg ϵ(η,p1,q,p2)
q2

1
q·η χ(0) = 2 eg

4π
arctan ( n̂

ẑ·(b×n̂))

M fix
(0) = ±4egmamb

√
1−σ2

q2
χfix(0) = ∓ egmamb

√
1−σ2

|⃗p|
√
s

log b
2π

1-Loop M△+▽ = 4e2g2ma+mb

16|⃗q| χ△+▽ = −e2g2 ma+mb

32π|⃗p|
√
sb

M□+▷◁ = i4e2g2m2
am

2
b(2− 2σ2) log q

2

4q2
1

|⃗p|
√
s

χ□+▷◁ =
ie2g2m2

am
2
b(1−σ

2)

|⃗p|2s
log2 b
8π2

Table 5.1: Amplitude and Eikonal phase

Tree 1-Loop
Impulse ∆p ≡ −∂χ(b)

∂b + iχ∗(−b)∂χ(b)
∂b 2 eg

4πb
b̂⊥ − e2g2(ma+mb)

32π|p|
√
sb2

b̂

Table 5.2: Impulse of charge-monopole scattering
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Appendix A — Spinor Helicity
Formalism

A.1 Spinor Helicity Formalism

A.1.1 Contraction and the Levi-Civita Tensor

We choose the convention of contracting the dotted and undotted spinors into square

and angle brackets as :

⟨λµ⟩ ≡ λαµα = εαβλ
αµβ, [λµ] ≡ λ̃α̇µ̃

α̇ = εα̇β̇λ̃α̇µβ̇

Same for massive spinors that carry SU(2) indicies.Here the Levi Civita tensor in matrix

form is given by:

εαβ = εα̇β̇ = −εαβ = −εα̇β̇ =

 0 1

−1 0


such that

εαβεβγ = δαγ

A.1.2 Pauli matrices and Gamma matrices

Space-time metric is four-dimension,Minkowski flat

ηµν = gµν = Diag
(
+ 1,−1,−1,−1

)
43



doi:10.6342/NTU202301618

The Paulu matrices are given by

σ1 =

0 1

1 0

 , σ2 =

0 −i

i 0

 , σ3 =

1 0

0 −1


with

σµ = (1, σ⃗), σ̄ = (1,−σ⃗)

Satisfying the following identities

(σ̄µ)αα̇ = εαβεα̇β̇(σµ)ββ̇

(σµ)αα̇(σµ)ββ̇ = 2εαβεα̇β̇

(σµσ̄ν + σν σ̄µ) ba = 2ηµνδ ba

Tr(σµσ̄ν) = Tr(σν σ̄µ) = 2ηµν

The gammamatrices in theWeyl representation with the SL(2, C)indices shown explictly

are

γµ =

 0 (σµ)αα̇

(σ̇µ)α̇α 0

 , {γµγν} = 2ηµν

and γ5 which satisfy {γ5, γµ} = 0

γ5 ≡ iγ0γ1γ2γ3 =

−1 0

0 1


and the chiral projectors are

PL =
1− γ5

2
, PR =

1 + γ5

2

Some useful identities are

ηµνηµν = 4

γµγµ = 4I4

γµγνγµ = −2γν

γµγνγργµ = 4ηνρ

γµγνγργσγµ = −2γσγργν
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and trace identities

Tr[γ5] = Tr[γµ] = Tr[γµγαγν ] = Tr[odd # of γ-matrices] = 0

Tr[γµγν ] = 4ηµν

Tr[γαγµγβγν ] = 4(ηαµηβν − ηαβηµν + ηανηβµ)

Tr[γµγνγργσγ5] = −4iεµναβ

A.1.3 Massive Momentum and Massless Momentum

The momentum of a massless particle can be written as as product of two two-

component spnior

kαα̇ ≡ kµ(σ
µ)αα̇ = λαλ̃α̇ = |k

〉
α

[
k
∣∣
α̇

kαα̇ ≡ kµ(σ̄
µ)α̇α = λαλ̃α̇ = |k

]α̇〈
k
∣∣α

and a massive momentum can be written as a product of two 2-by-2 matrices

pαα̇ ≡ pµ(σ
µ)αα̇ = λIαλ̃Iα̇ =

∣∣λI〉
α

[
λI
∣∣
α̇

relation between spinor and gamma matrices

pµγ
µ =

 0 pµ(σ
µ)αα̇

pµ(σ̄
µ)α̇α 0

 =

 0 pαα̇

pα̇α 0



A.1.4 Vector Inner Product in Spinor Representation

We adopt convention that the inner product between two momentum to be:

• Massless-Massless

2ki · kj ≡ ⟨ij⟩[ji] = ⟨ji⟩[ij]

• Massless-Massive

2ki · pj ≡ ⟨iIj⟩[jiI ] = ⟨jiI⟩[iIj]
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• Massive-Massive

2pi · pj ≡ ⟨iIjJ⟩[jJ iI ] = ⟨jJ iI⟩[iIjJ ]

From above,we can see that for massless momentum k2i = ki · ki = 0

A.1.5 Determinant of Massive Spinor

The on-shell condition for massive momentum is given by

p2 =
1

2
⟨λIλJ⟩[λJλI ] = m2

Since εIJεJI = 2 ,we are free to chooese

⟨λIλJ⟩ = zmεIJ , [λJλI ] = z−1mεJI

On the other hand,the on-shell condition are given bt det(p) = det(λ)det(λ̃) = m2. We

choose det(λ) = m, which imply

det(λ)εαβ = εIJλ
I
α
J
β

⇒ − 2 det(λ) = εIJ⟨λJλI⟩

⇒⟨λIλJ⟩ = −mεIJ

This fix z = 1. Summing up we have

⟨λIλJ⟩ = −mεIJ , [λIλJ ] = −mεIJ

Other combinations of identical massive spinor are given by:

⟨λIλJ⟩ = +mεIJ , [λIλJ ] = +mεIJ

⟨λIλJ⟩ = +mδIJ , [λIλJ ] = −mδIJ

⟨λIλJ⟩ = −mδ JI , [λIλ
J ] = +mδ JI

⟨λIλI⟩ = +2m , [λIλI ] = −2m

⟨λIλI⟩ = −2m , [λIλ
I ] = +2m
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With these Conventions, we find that momentum contracting with the massive spinors are:

pαα̇λ̃
Iα̇ = +mλIα, pα̇αλIα = +mλ̃Iα̇

λIαpαα̇ = −mλ̃Iα̇, λ̃Iα̇p
αα̇ = −mλIα

In the bra-ket notation:

m|λI⟩ = +p|λI ], m|λI ] = +p|λI⟩

m⟨λI | = −[λI |p, m[λI | = −⟨λI |p

With SU(2) indices contracted:

εIJλ
I
αλ

J
β = +mεαβ, εIJλ

αIλβJ = −mεαβ

εIJ λ̃
I
α̇λ̃

J
β̇
= +mεα̇β̇, εIJλ

α̇Iλβ̇J = −mεα̇β̇

A.1.6 Identities in Massive Amplitudes

A.1.6.1 Two Massless One Massive

We choose all three momenta to be incoming,so

k1 + k2 + p3 = 0

3-pt kinematics give the condition:

⟨12⟩[21] = m2
3

A.1.6.2 Two Massive:Unequal Mass

We choose all three momentum to be incoming,so

p1 + p2 + k3 = 0

The basis of unequal 2-massive amplitude is

uα = λ3α, vα =
p1αα̇λ̃

α̇
3

m1
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Here are few useful spinor combinations:

⟨111u⟩ =⟨1113⟩, ⟨222u⟩ = ⟨2223⟩, ⟨111v⟩ = [3331], ⟨222v⟩ = m2

m1

[2223]

⟨121212⟩ = 1

m2
1 −m2

2

(m2[2223]⟨3111⟩+m1[1113]⟨3222⟩)

[121212] =
1

m2
2 −m2

1

(m2⟨2223⟩[3111] +m1⟨1113⟩[3222])

A.1.6.3 Two Massive:Equal Mass

Definition and convention of x-factor

We choose all three momenta to be incoming, so

p1 + p2 + k3 = 0

The momentum conservation and the on-shell condition yields:

2p2 · k3 = ⟨3|p1|3⟩ = λα3p1αα̇λ̃
α̇
3 = 0

so that λ3α is proportional to p1αα̇λ̃α̇.This allow us to define the x-factor

x1λ3α =
p1αα̇λ̃

α̇
3

m
,

λ̃α̇3
x1

=
pα̇α1 λ3α
m

The 1 in the subscript of x denote that we define the x-factor with respect to massive leg

1. Suppose we want to define the x-factor with respect to leg 2, then

x2λ3α =
p2αα̇λ̃

α̇
3

m
,

λ̃α̇3
x2

=
pα̇α2 λ3α
m

By momentum conservation, we find x1 = −x2. Also:

x1 =
⟨η|p1|3]
m⟨η3⟩

,
1

x1
=

⟨3|p1|η]
m[η3]

x2 =
⟨η|p2|3]
m⟨η3⟩

,
1

x2
=

⟨3|p2|η]
m[η3]

So,under complex conjugation, the x factor becomes

x̄1 = − 1

x1
, x̄2 = − 1

x2
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A.1.7 Explicit Kinematics

We can construct the corresponding spinors by finding the eigenvectors of pαα̇.

• For massless spinor

λα =
√
2E

 sin θ
2

− cos θ
2
eiϕ

 , λ̃α =
√
2E

 sin θ
2

− cos θ
2
e−iϕ


• For massive spinor

λIα =

 √
E + pc sin θ

2

√
E − pc cos θ2e

−iϕ

−
√
E + pc cos θ2e

iϕ
√
E − pc sin θ

2


λ̃α̇I =

 √
E + pc sin θ

2

√
E − pc cos θ2e

iϕ

−
√
E + pc cos θ2e

−iϕ √
E − pc sin θ

2


with E is COM energy and pc is COM momentum. Note that for massive spinors, both λ

and λ̃ have SL(2,C) indices in the front and SU(2) indices in the back.But SU(2) index

for λ is upstairs and SU(2) index for λ̃ is downstairs.
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Appendix B — ratio of x1
x2

In this appendix we derive the express the little group invariant the ratio of x1
x2

in

terms of momentum factors. From (A.1.6.3), we have

x1 =
⟨η|p1|q]
m1⟨ηq⟩

,
1

x2
=

⟨q|p2|η̃]
m2[η̃q]

(B.1)

where ⟨η| and [η| are some auxiliary spinors such that⟨ηq⟩ and [ηq] ̸= 0 and we choose

ηαα̇ = |η⟩[η̃|

x1
x2

= − 1

m1m2

⟨η|p1qp2|η̃]
⟨ηq⟩[qη̃]

(B.2)

With the relation between γ matrice and Pauli matrice in (A.1.2), ratio can be read as

x1
x2

= − 1

4m1m2

Tr[(1 + γ5)γµγνγαγβ]ηµp1νqαp2β
q · η

(B.3)

= −(η · p1)(q · p2)− (η · q)(p2 · p1) + (η · p2)(p1 · q)− iϵ(η, p1, q, p2)

m1m2(q · η)
(B.4)

=
(p2 · p1)
m1m2

+
iϵ(η, p1, q, p2)

m1m2(q · η)
(B.5)

In last equation we used the on shell kinematics (q · p1) = (q · p2) = 0
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Appendix C — The Generalized
Spherical Harmonics

In this appendix, we show the eigenfunction of the generalized momentum operator

L̃2Yµlm(θ, ϕ) = −

[
(1− x2)

∂2

∂x2
− 2x

∂

∂x
− 1

1− x2

(
i
∂

∂ϕ
+ µ(1− x)

)2

− µ2

]
Yµlm(θ, ϕ)

= λYµlm(θ, ϕ) (C.6)

where x ≡ cos θ. Then Separating the ϕ dependence from Yµlm

Yµlm(θ, ϕ) = P (cos θ)ei(µ+m)ϕ (C.7)

Then the remaining part is[
−(1− x2)

∂2

∂x2
− 2x

∂

∂x
+

(m+ µx)2

1− x2
− µ2

]
P (x) = λP (x) (C.8)

Following the standard procedure.Separating the singularity x = ±1, P (x) can be ex-

pressed as

P (x) = (1− x)−
µ+m

2 (1 + x)−
µ−m

2 F (x) (C.9)

Then F (x) satisfy differential equation

(1− x2)
d2F
dx2

+ 2[m+ (µ− 1)x]
dF
dx

+ (µ− µ2 + λ)F = 0 (C.10)

With the new variable z ≡ 1+x
2

z(1− z)F ′′ + (m− µ+ 1 + 2z(µ− 1))F ′ + (µ− µ2 + λ)F

⇒ z(1− z)F ′′ + (c− (a+ b+ 1)z)F ′ − abF = 0 (C.11)
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F (x) is just standard hypergeometric function 2F1(a, b, c, z),identify c = m−µ+1, ab =

µ2 − µ− λ and a+ b+ 1− 2− 2µ. And we fix a = −n, n ∈ Z, λ can be read as

λ = n(n+ 1)− 2µn+ µ(µ− 1) (C.12)

identify l = n− µ.Then the full solution is

Yµlm(θ, ϕ) = (1− x)−
µ+m

2 (1 + x)−
µ−m

2 2F1(−n, n+ 1− 2µ,m+ 1− µ; z)ei(µ+m)ϕ

There is more convenient to use another solution, which is related to Jacobi polynomial

P (α,β)
n (x) =

(−1)n

2nn!
(1− x)−α(1 + x)−β

dn

dxn
[
(1− x)α+n(1− x)β+n

]
Then the solution and be rewrite as

Yµlm(θ, ϕ) = N(1− x)
−µ−m

2 (1 + x)−
µ−m

2 P
(−µ−m,µ−m)
l+m (x)ei(µ+m)ϕ (C.13)

where

N ≡ 2m

√
(2l + 1)(l −m)!(l +m)!

4π(l − µ)!(l + µ)!
(C.14)

The relation between general spherical harmonics and Wigner D-matrix is

Dl
µ−m(−ϕ, θ, ϕ) = (−1)m+µ

√
4π

2l + 1
Yµlm(θ, ϕ) (C.15)

where Wigner D matrix and little d matrix are defined as

Dl
µm(α, β, γ) ≡ ⟨l, µ| e−iJzαe−iJyβe−iJzγ |l,m⟩

= e−i(µα+mγ) ⟨l, µ| e−iJy |l,m⟩

= e−i(µα+mγ) dlµm(β) (C.16)
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