請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88203完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃育熙 | zh_TW |
| dc.contributor.advisor | Yu-Hsi Huang | en |
| dc.contributor.author | 簡揚開 | zh_TW |
| dc.contributor.author | Yang-Kai Jain | en |
| dc.date.accessioned | 2023-08-08T16:45:47Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-08-08 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-07-17 | - |
| dc.identifier.citation | [1] Martinez, J., J. Dieguez, E. Ares, A.Pereira, P. Hernandez, and J. Perez, Comparative between FEM models for FDM parts and their approach to a real mechanical behaviour. Procedia Engineering, 2013. 63: p. 878-884.
[2] Domingo-Espin, M., J.M. Puigoriol-Forcada, A.-A. Garcia-Granada, J. Luma, S. Borros, and G. Reyes, Mechanical property characterization and simulation of fused deposition modeling Polycarbonate parts. Materials & Design, 2015. 83: p. 670-677. [3] 黃榮泰,積層製造材料與噴頭壓電陶瓷之異向性力學材料常數量測。國立臺灣科技大學機械工程系碩士論文,104年6月。 [4] Yao, T., H. Ouyang, S. Dai, Z. Deng, and K. Zhang, Effects of manufacturing micro-structure on vibration of FFF 3D printing plates: material characterization, numerical analysis and experimental study. Composite Structures, 2021: p. 113970. [5] 林均憶,積層製造之材料量測應用於功能性梯度材料與埋入式感測。國立臺灣大學工學院機械工程所碩士論文,110年6月。 [6] Leissa A. W., Vibration of plates, NASA SP-160, 1969. [7] Leissa A. W., Thefree vibration of rectangular plates, Journal ofSound and Vibration, 31(3), pp. 257-293, 1973. [8] Gorman D. J., Free vibration analysis of cantilever plates by the method of superposition, Journal of Sound and Vibration, 49(4), pp. 453-467, 1976. [9] Dickinson, S. M., The buckling and frequency of flexural vibration of rectangular isotropic and orthotropic plates using Rayleigh’s method, Journal of Sound and Vibration, 61(1), pp. 1-8, 1978. [10] 吳亦莊,「理論解析與實驗量測壓電平板的面外振動及特性探討」,國立臺灣大學工學院機械工程所碩士論文,98年7月。 [11] C. C. Ma, et al., “Experimental and numerical investigations on resonant characteristics of a single-layer piezoceramic plate and a cross-ply piezolaminated composite plate.”, The Journal of the Acoustical Society of America, vol. 119(3), pp. 1476-1486, 2006. [12] 黃至偉,「壓電陶瓷雙晶片於雙邊固定邊界之能量擷取及雷射都卜勒自動化陣列式量測模組」,國立臺灣科技大學機械工程所碩士論文,2014。 [13] J. Butters, J. Leendertz, “Speckle pattern and holographic techniques in engineering metrology.”, Optics Laser Technology, vol. 3(1), pp. 26-30, 1971. [14] O. Lokberg, K. Hogmoen, “Use of modulated reference wave in electronic speckle pattern interferometry.”, Journal of Physics E: Scientific Instruments, vol. 9(10) pp. 847, 1976. [15] C. Wykes, “Use of electronic speckle pattern interferometry (ESPI) in the measurement of static and dynamic surface displacements.”, Optical Engineering, 21(3), pp. 213400, 1982. [16] W. C. Wang, C. H. Hwang, S. Y. Lin, “Vibration measurement by the time-averaged electronic speckle pattern interferometry methods.”, Applied optics, vol. 35(22), pp. 4502-4509. 1996. [17] 黃育熙,「壓電石英晶體之平板結構的動態特性研究」,國立台灣大學機械工程研究所博士論文,2013。 [18] Holland, J. H., Adaptation in natural and artificial systems: An introductory analysis with applications to biology, control, and artificial intelligence, U Michigan Press, Ann Arbor, 1975. [19] Holland, M.A., Liu, Z.K. (2001). Calibrating Spring Constants in Mechanical Tests via Genetic Algorithms. Acta Materialia, 49(10), 1867-1876. [20] Liu G. R., Ma X.B. and Haan X., An inverse procedure for determination of material constants of composite laminates using elastic waves, Computer Methods in Applied Mechanics and Engineering, 191(33), pp. 3543-3554, 2002. [21] Roseiro L. and Urbano R., Genetic algorithms and neural networks in optimal location of piezoelectric actuators and identification of mechanical properties, WSEAS Transactions on System, 5(12), pp. 2911-2916, 2006. [22] Panda, S., Sahoo, N.C., Biswal, B.B.. Estimation of Material Constants in Thermoelasticity using Genetic Algorithms. Journal of Thermoelasticity, 4(1), 1-8, 2016. [23] Gao, Y., Liu, Y., Zhang, Y.. Inverse Determination of Material Constants in Porous Materials using Genetic Algorithms. Materials & Design, 185, 108218, 2020. [24] Xue, D., et al. . Accelerated search for materials with targeted properties by adaptive design. Nature Communications, 7, 11241, 2016. [25] Liu, R., Jiang, C., et al.. A Deep Learning Approach for Detecting Unknown Materials through Optimal Spectrum Fitting. Scientific Reports, 8, 14542, 2018. [26] Roslyakova, I., et al.. Machine Learning Predicts the Functional Composition of the Protein Corona and the Cellular Recognition of Nanoparticles. ACS nano, 13(2), 2229-2237, 2019. [27] Zhang, Y., Ling, C., et al.. A Deep Learning Approach to Digitally Stain Optical Coherence Tomography Images of the Optic Nerve Head. Investigative Ophthalmology & Visual Science, 60(2), 524-533, 2019. [28] Rajan, A. C., et al.. Machine learning directed search for ultraincompressible, superhard materials. Journal of the American Chemical Society, 142(31), 13573-13581, 2020. [29] Jha, D., Varschney, A., Liang, T.. Deep Learning–Based Inverse Design Model for Intelligent Material Discovery. Advanced Intelligent Systems, 2(8), 2000079, 2020. [30] Mohamed, O.A., S.H. Masood, and J.L. Bhowmik, Optimization of fused deposition modeling process parameters: a review of current research and future prospects. Advances in Manufacturing, 2015. 3(1): p. 42-53. [31] Herbert Reismann and Peter S. Pawlik, Elasticity: Theory and Applications, John Wiley & Sons. [32] Ma, C. C., Y. H. Huang and S. Y. Pan, Investihation of the transient behavior of a cantilever beam using PVDF sensors. Sensors, 2012. 12(2): p. 2088-2117. [33] Kenneth A. DeJong, An Analysis of the Behavior of a Class of Genetic Adaptive Systems, 1975. [34] David E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning, 1989. [35] Eshelman, Caruana, & Schaffer (1989). Biases in the crossover landscape. [36] T. C. HUANG, The Effect of Rotatory Inertia and of Shear Deformation on the Frequency and Normal Mode Equations of Uniform Beams With Simple End Conditions, Journal of Applied Mechanics, p. 579-584, 1961. [37] S. P. Timoshenko, "Vibration Problems in Engineering," third edition, D. Van Nostrand Company, Inc., New York, N. Y., 1955, pp. 329-331. [38] S. P . Timoshenko , Strength of Materials—Part 1, second edition, D . Van Nostrand Company , Inc., New York , N . Y. , 1940, pp . 170-171. [39] L. E. Goodma n and J. G. Sutherland, discussion of paper , "Natural Frequencies of Continuous Beams of Uniform Span Length," by R . S. Ayre and L. S. Jacobsen, JOURNAL OF APPLIED MECHANICS , vol . 18, TRANS . ASME , vol . 73 , 1951 , pp . 217-218. [40] R . D . Mindlin and H . Deresiewicz , "Timoshenko' s Shear Coefficient for Flexural Vibrations of Beams," Technical Report No . 10, ON R Project NR064-388 , Department of Civil Engineering, Columbia University, New York , N . Y „ 1953. [41] G. R. COWPE R, The Shear Coefficient in Timoshenko's Beam Theory, Journal of Applied Mechanics, p.335-340, 1966. [42] Kaneko, T., 1975, ‘‘On Timoshenko’s Correction for Shear in Vibrating Beams,’’ J. Phys. D 8, pp. 1927–1936. [43] J. R. Hutchinson, Shear Coefficients for Timoshenko Beam Theory, Journal of Applied Mechanics, Vol. 68, p. 87-92, 2001. [44] Love, A. E. H., 1944, A Treatise on the Mathematical Theory of Elasticity, Dover, New York. [45] "N700 series Shinkansen." Wikipedia, The Free Encyclopedia. 24 May 2023. Accessed 13 June 2023. https://en.wikipedia.org/wiki/N700_Series_Shinkansen [46] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, Learning representations by back-propagating errors, Nature, 323: 6088, p. 533-536, 1986. [47] D. Arthur and S. Vassilvitskii, k-means++: The Advantages of Careful Seeding, ACM-SIAM, p.1027-1035, 2007. [48] Andrej Karpathy, The Unreasonable Effectiveness of Recurrent Neural Networks, 2015. [49] Paul Werbos, Backpropagation Through Time: What It Does and How to Do It, Proceedings of IEEE, 78(10): 1550-1560, 1990. [50] R. Pascanu, T. Mikolov, Y. Bengio, On the difficulty of training recurrent neural networks, 2012. [51] S. Hochreiter and J. Schmidhuber, ‘‘Long Short-Term Memory,’’ Neural Computation, 9(8): 1735-1780, 1997. [52] Junyoung Chung, ‘‘Expirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling,’’, 2014. [53] F. Gers, J. Schmidhuber and F. Cummins, ‘‘Learning to Forget: Continual Prediction with LSTM,’’ Neural Computation, 12: 2451-2471, 2000. [54] Allen Tzeng. (2019). Adagrad、RMSprop、Momentum and Adam-特殊的學習率調整方式. https://hackmd.io/@allen108108/H1l4zqtp4 [55] Diederik P. Kingma, and Jimmy Lei Ba, Adam: A Method for Stochastic Optimization, 2014. [56] Xavier Glorot and Yoshua Benghio, Understanding the difficulty of deep feedforward neural networks, 2010. [57] Andrew Lavin, and Scott Gray, Fast Algorithms for Convolutional Neural Networks, 2015. [58] N. Srivastava, G. Hinton, A. Krizhevsky, I Sutskever, and R. Salakhutdinov, Dropout: a simple way to prevent neural networks from overfitting, Journal of Machine Learning Researh 15.1, p. 1929-1958, 2014. [59] D.H. Wolpert, The Lack of A Priori Distinctions Between Learning Algorithms, 1996. [60] D.H. Wolpert and W.G. Macready, No Free Lunch Theorems for Optimization, 1997. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88203 | - |
| dc.description.abstract | 本研究首先透過熱熔堆疊(FDM)的3D列印機列印出不同堆疊方向的試片,進行共振頻率的量測,藉由歐拉-伯努力梁理論(Euler-Bernoulli Beam Theory),反算3個方向的材料常數。接著利用3D列印容易改變尺寸的特性,改變試片的寬厚比、長厚比與長寬比,比對實驗與理論以及模擬與理論之間的誤差,探討原理論尺寸比例的適用範圍。
在長厚梁的情況下導入鐵木辛柯梁理論(Timoshenko-Ehrenfest Beam Theory),並利用有限元素軟體比較模擬與理論之間共振頻率的對應性,選用梁理論中的切變係數(Shear Coefficient, ),由於此梁理論不易直接反算求得材料參數,因此導入基因遺傳演算法(Genetic Algorithm, GA)搭配梁理論,以共振頻率的實驗反算6個方向試片的材料常數。而在薄板的結構則利用疊加法(Superposition Method)的方式求得正交性平板的共振頻率,將其結合於基因遺傳演算法中,實驗上除了量測共振頻率之外,亦透過黏貼壓電纖維於試片的方式量測模態形狀,反算3個方向的材料常數,並比對模態的一致性。 最後透過機器學習(Machine Learning, ML)與深度學習(Deep Learning, DL)方法,以有限元素軟體生成隨機材料常數的共振頻率,先進行特徵選擇(Feature Selection)篩選出特定方向可以進行反算的材料參數,接著利用集群演算法自分群並標注模態類別,將模態資訊與共振頻率輸入至遞迴神經網路(Recurrent Neural Networks, RNN),建立高度擬合之正交性材料常數反算模型,以利用共振頻率預測材料參數。最後透過卷積神經網路(Convolutional Neural Networks, CNN),結合有限元素軟體生成的模態圖與集群演算法所標注之類別,建立以模態影像進行模態分類的模型。 | zh_TW |
| dc.description.abstract | This study fabricated specimens with different stacking orientations using a 3D printer through fused deposition modeling (FDM), measured the resonance frequency, and calculated the material constants in orthogonal directions using the Euler-Bernoulli beam theory. Taking advantage of the easy dimensional variation characteristic of 3D printing, the aspect ratios of the specimens, including width-thickness ratio, length-thickness ratio, and length-width ratio, are modified to compare discrepancies between the experimental and theoretical values, and to explore the suitable range for size ratios in theory.
For the cases of length-thickness beams, the Timoshenko-Ehrenfest Beam theory is introduced, and a shear coefficient in beam theory is considered. The correspondence of resonant frequency in the theoretical analysis is compared through the finite element method. Since the beam theory is hard to calculate inversely material constants, a genetic algorithm (GA) is proposed, in conjunction with beam theory, to obtain the material constants of test pieces in 6 directions by using an experimental resonant frequency. For the orthotropic structure of thin plates, the resonant frequency is calculated using the superposition method and integrated into the genetic algorithm. In addition to measuring resonant frequency, the mode shape is excited by mounting piezoelectric fibers to the specimen. The experimental results are also verified in the consistency of the results in the numerical calculation, which used material constants in orthogonal directions by inverse calculation. In the final part, machine learning (ML) and deep learning (DL) methods are developed to generate the orthotropic material constants once time. That finite element method inputs optional material constants calculate the resonant frequency. Feature selection is initially performed to filter out the material constants that can be inversely calculated in a specific direction. Then, a clustering algorithm is used to self-cluster and label types by mode shape. The mode shape and resonant frequency are input into a Recurrent Neural Network (RNN) to establish a highly fitting inverse calculation model of orthotropic material constants. Finally, a Convolutional Neural Network (CNN) is used, combining images from the mode shape generated by the finite element method and categories labeled by the clustering algorithm to establish a model for mode types classification. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-08T16:45:47Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-08-08T16:45:47Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 論文口試委員審定書 I
致謝 II 中文摘要 IV ABSTRACT V 目錄 VII 圖目錄 X 表目錄 XV 第一章 緒論 1 1.1 研究背景、動機與目的 1 1.2 文獻回顧 3 1.3 內容介紹 7 第二章 實驗儀器、原理與架設 9 2.1 3D列印機 9 2.2 雷射都卜勒振動儀 11 2.3 全域振動量測系統 14 2.4 電子斑點干涉術 18 第三章 材料常數量測 22 3.1 彈性力學理論 22 3.1.1 異向性材料 22 3.1.2 正交性材料 23 3.1.3 等向性材料 25 3.2 懸臂梁振動理論 28 3.2.1 彎曲模態 28 3.2.2 扭轉模態 30 3.3 鋼珠落擊實驗 32 3.3.1 實驗說明 32 3.3.2 量測結果 34 3.4 尺寸比例適用範圍 41 3.4.1 寬厚比 41 3.4.2 長厚比 47 3.4.3 長寬比 48 3.5 小結 53 第四章 基因遺傳演算法 54 4.1 簡介 54 4.2 演算法機制 56 4.2.1 選擇 57 4.2.2 交叉 59 4.2.3 突變 61 4.3 長厚梁結構材料常數反算 63 4.3.1 鐵木辛柯梁理論 63 4.3.2 切變係數 64 4.3.3 演算法參數選用 70 4.3.4 實驗流程與結果 73 4.4 正交性矩形板振動分析 81 4.4.1 薄板理論假設 81 4.4.2 統御方程式與邊界條件 82 4.4.3 懸臂板面外振動位移解析 83 4.4.4 理論分析與有限元素結果比較 99 4.5 薄板結構材料常數反算 104 4.5.1 演算法參數選用 104 4.5.2 實驗說明 106 4.5.3 實驗流程與結果 107 4.6 小結 120 第五章 機器學習與深度學習 121 5.1 簡介 121 5.2 資料蒐集 126 5.2.1 生成共振頻率 126 5.2.2 模態分群 126 5.3 資料預處理 131 5.3.1 特徵選擇 131 5.3.2 獨熱編碼與特徵縮放 138 5.3.3 數據分割 140 5.4 學習演算法 142 5.4.1 遞迴神經網路 142 5.4.2 訓練、驗證與測試結果 146 5.5 模態辨識 157 5.5.1 資料蒐集 157 5.5.2 卷積神經網路架構 157 5.5.3 訓練、驗證與測試結果 160 5.6 小結 165 5.7 與基因遺傳演算法之比較 166 第六章 結論與未來展望 168 6.1 本文成果 168 6.2 未來展望 171 參考文獻 172 附錄 178 A. 3D列印機詳細規格 178 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 遞迴神經網路 | zh_TW |
| dc.subject | 集群演算法 | zh_TW |
| dc.subject | 機器學習 | zh_TW |
| dc.subject | 疊加法 | zh_TW |
| dc.subject | 基因遺傳演算法 | zh_TW |
| dc.subject | 正交性材料 | zh_TW |
| dc.subject | 積層製造 | zh_TW |
| dc.subject | 特徵選擇 | zh_TW |
| dc.subject | 卷積神經網路 | zh_TW |
| dc.subject | 深度學習 | zh_TW |
| dc.subject | Convolutional Neural Networks | en |
| dc.subject | Additive Manufacturing | en |
| dc.subject | Orthotropic Materials | en |
| dc.subject | Genetic Algorithm | en |
| dc.subject | Superposition Method | en |
| dc.subject | Machine Learning | en |
| dc.subject | Deep Learning | en |
| dc.subject | Feature Selection | en |
| dc.subject | Clustering Algorithm | en |
| dc.subject | Recurrent Neural Networks | en |
| dc.title | 利用板殼振動理論搭配機器學習與遺傳演算法反算積層製造結構之正交性彈性常數 | zh_TW |
| dc.title | Inverse Calculation for Orthotropic Material Constants of Additive Manufacturing Structure Based on Timoshenko Beam and Kirchhoff Plate in Superposition Method by Using Genetic Algorithm and Machine Learning | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 王怡仁;王建凱 | zh_TW |
| dc.contributor.oralexamcommittee | Yi-Ren Wang;Chien-Kai Wang | en |
| dc.subject.keyword | 積層製造,正交性材料,基因遺傳演算法,疊加法,機器學習,深度學習,特徵選擇,集群演算法,遞迴神經網路,卷積神經網路, | zh_TW |
| dc.subject.keyword | Additive Manufacturing,Orthotropic Materials,Genetic Algorithm,Superposition Method,Machine Learning,Deep Learning,Feature Selection,Clustering Algorithm,Recurrent Neural Networks,Convolutional Neural Networks, | en |
| dc.relation.page | 178 | - |
| dc.identifier.doi | 10.6342/NTU202301603 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2023-07-18 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 機械工程學系 | - |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf | 13.26 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
