請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88170完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 崔茂培 | zh_TW |
| dc.contributor.advisor | Mao-Pei Tsui | en |
| dc.contributor.author | 陳威嘉 | zh_TW |
| dc.contributor.author | Wei-Chia Chen | en |
| dc.date.accessioned | 2023-08-08T16:36:58Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-08-08 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-07-19 | - |
| dc.identifier.citation | G. Aalipour, A. Abiad, Z. Berikkyzy, J. Cummings, J. De Silva, W. Gao, K. Heysse, L. Hogben, F. H. J. Kenter, J. C. H. Lin, and M. Tait. On the distance spectra of graphs, 2015.
J. Azarija. A short note on a short remark of graham and lovász. Discrete Mathematics, 315-316:65–68, 2014. R. B. Bapat. Distance Matrix of a Tree, pages 95–109. Springer London, London, 2010. O. A. Camarena. Math 340: Linear programming. https://www.matem.unam. mx/~omar/math340/math340notes.pdf, September 2018. [Online; accessed 6-February-2023]. M. Chithra and A. Vijayakumar. The diameter variability of the cartesian product of graphs. Discrete Mathematics, Algorithms and Applications, 06, 02 2014. F. Chung and C. B. of the Mathematical Sciences. Spectral Graph Theory, pages 1–6. Conference Board of Mathematical Sciences. American Mathematical Society, 1997. K. Costello, T. Tao, and V. Vu. Random symmetric matrices are almost surely non-singular, 2005. D.Cushing, S.Kamtue, J.Koolen, S.Liu, F.Münch, and N.Peyerimhoff. Rigidity of the bonnet-myers inequality for graphs with respect to ollivier ricci curvature, 2018. N. Denny. Bounds on the largest eigenvalue of the distance matrix of connected graphs. Master thesis project., Portland State University, 2020. R. Diestel. Graph Theory. Springer Publishing Company, Incorporated, 5th edition, 2017. G.Frobenius.ÜberMatrizenausnichtnegativenElementen.PreussischeAkademie der Wissenschaften Berlin: Sitzungsberichte der Preußischen Akademie der Wissenschaften zu Berlin. Reichsdr., 1912. D. Gagliardi, M. Gargano, and L. Quintas. Neighborhood regular graphs. Congressus Numerantium, page 3, Jan 2007. R. L. Graham and H. O. Pollak. On the addressing problem for loop switching. The Bell System Technical Journal, 50(8):2495–2519, 1971. M. Hall. Game theory and von neumann's minimax theorem. Honors student work. 5., Bethel University, 2011. R. Hammack, W. Imrich, and S. Klavzar. Handbook of Product Graphs, Second Edition, pages 49–51. CRC Press, Inc., USA, 2nd edition, 2011. R. Horn and C. Johnson. Matrix Analysis. Cambridge University Press, 2012. S. C. (https://math.stackexchange.com/users/180309/samuel coskey). What is the smallest example of a connected regular graph which is not vertex-transitive? Mathematics Stack Exchange. URL:https://math.stackexchange.com/q/2126259 (version: 2017-04-13). J. Koolen, V. Moulton, and D. Stevanović. The structure of spherical graphs. European Journal of Combinatorics, 25(2):299–310, 2004. In memory of Jaap Seidel. Y. Lin, L. Lu, and S.-T. Yau. Ricci curvature of graphs. Tohoku Mathematical Journal, 63(4):605 – 627, 2011. J. Matousek and B. Gärtner. Understanding and Using Linear Programming, pages 80–104. Universitext. Springer Berlin Heidelberg, 2006. F. Ninio. A simple proof of the perron-frobenius theorem for positive symmetric matrices. Journal of Physics A: Mathematical and General, 9(8):1281, Aug 1976. Y. Ollivier. A survey of ricci curvature for metric spaces and markov chains. 2010. O. Perron. Zur theorie der matrices. Mathematische Annalen, 64(2):248–263, Jun 1907. S. N. Ruzieh and D. L. Powers. The distance spectrum of the path pn and the first distance eigenvector of connected graphs. Linear and multilinear algebra, 28(1-2):75–81, 1990. R. P. Sreejith, K. Mohanraj, J. Jost, E. Saucan, and A. Samal. Forman curvature for complex networks. Journal of Statistical Mechanics: Theory and Experiment, 2016(6):063206, Jun 2016. S. Steinerberger. The first eigenvector of a distance matrix is nearly constant, 2022. S. Steinerberger. Curvature on graphs via equilibrium measures. Journal of Graph Theory, 103(3):415–436, 2023. D. Stevanović. Antipodal graphs of small diameter. Filomat, 15:79–83, 2001. J. von Neumann. Zur theorie der gesellschaftsspiele. Mathematische Annalen, 100:295–320, 1928. V. Vu. Recent progress in combinatorial random matrix theory, 2020. D. West. Introduction to Graph Theory. Featured Titles for Graph Theory. Prentice Hall, 2001. Y. Yu, T. Wang, and R. J. Samworth. A useful variant of the davis–kahan theorem for statisticians, 2014. B. Zhou and N. Trinajstić. On the largest eigenvalue of the distance matrix of a connected graph. Chemical Physics Letters, 447(4):384–387, 2007. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88170 | - |
| dc.description.abstract | 2022年,Steinerberger在圖上定義了一個曲率的概念,這個定義和圖的距離矩陣有關。在這篇論文,我們介紹Steinerberger曲率[27]、探討另一個他的相關研究[26],並提供新的結果。我們刻畫在經過圖操作後的距離矩陣,這些操作包括在兩個圖加入一條邊連接、在兩個圖在一個點合併,和在一個圖移除一個橋。我們證明了如果一個圖有正曲率,在這些操作下,新的圖除了至多兩個點外會有正曲率。若D是圖的距離矩陣,我們提供了一個方法來建構圖使得Dx = 1無解。最後,若v是一個樹的距離矩陣最大特徵值的特徵向量,且其元都為正,我們提供了一個和葉子個數有關的⟨v, 1⟩的下界估計。 | zh_TW |
| dc.description.abstract | In 2022, Steinerberger proposed a notion of curvature on graphs involving the graph distance matrix. In this thesis, we give a survey of his works [26, 27] and extend further results. We characterize the distance matrices when certain graph operations are applied, such as adding an edge between two graphs, merging two graphs at a vertex, or removing a bridge from a graph. We show that positive curvatures are preserved except for one or two vertices under these graph operations. Let D be the distance matrix of a graph. We provide a method to construct graphs with the property that Dx = 1 has no solution. Finally, let v be the first eigenvector of the distance matrix of a tree with positive entries, as guaranteed by the Perron-Frobienius theorem. We provide a lower bound of ⟨v, 1⟩ involving the number of leaves. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-08T16:36:58Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-08-08T16:36:58Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Acknowledgements i
中文摘要 ii Abstract iii Contents iv List of Figures vi Chapter 1 Introduction 1 Chapter 2 Background 3 2.1 Graph Theory 3 2.2 Operations on Graphs 6 2.3 Duality Theorems 8 2.4 Von Neumann’s Minimax Theorem 11 Chapter 3 Curvature on Graphs 15 3.1 Definition and Examples 15 3.2 Properties of Curvature 18 3.3 Geometric Implications 23 3.4 Existence of Curvature: A Sufficient Condition 30 Chapter 4 Behavior of Curvature under Graph Operations 34 4.1 Bridging, Merging and Cutting Graphs 34 4.2 The Null Space of Graph Distance Matrix 43 4.3 New Proof of Invariance of Total Curvature 46 4.4 Nonexistence of Curvature 46 4.5 Further Remarks 48 Chapter 5 The Perron Eigenvector of Graph Distance Matrix 50 5.1 Background: The Perron-Frobenius Theorem 50 5.2 The Perron Eigenvector and the Constant Vector 53 5.3 Special Cases: Trees and Antipodal Graphs 55 5.4 Minimum Entries of the Perron eigenvector 59 5.5 Further Remarks 60 References 62 | - |
| dc.language.iso | en | - |
| dc.subject | 曲率 | zh_TW |
| dc.subject | Perron-Frobenius | zh_TW |
| dc.subject | 距離矩陣 | zh_TW |
| dc.subject | 圖 | zh_TW |
| dc.subject | Graph | en |
| dc.subject | Distance Matrix | en |
| dc.subject | Perron-Frobenius | en |
| dc.subject | Curvature | en |
| dc.title | 圖上的曲率及相關問題 | zh_TW |
| dc.title | On Curvature of Graphs and Related Problems | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 沈俊嚴;戴尚年;陳志偉 | zh_TW |
| dc.contributor.oralexamcommittee | Chun-Yen Shen;Shagnik Das;Chih-Wei Chen | en |
| dc.subject.keyword | 距離矩陣,圖,Perron-Frobenius,曲率, | zh_TW |
| dc.subject.keyword | Distance Matrix,Graph,Perron-Frobenius,Curvature, | en |
| dc.relation.page | 64 | - |
| dc.identifier.doi | 10.6342/NTU202301030 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2023-07-19 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 應用數學科學研究所 | - |
| 顯示於系所單位: | 應用數學科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf | 1.14 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
