Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88159
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor周承復zh_TW
dc.contributor.advisorCheng-Fu Chouen
dc.contributor.author陳冠頴zh_TW
dc.contributor.authorGuan-Ying Chenen
dc.date.accessioned2023-08-08T16:33:58Z-
dc.date.available2023-11-09-
dc.date.copyright2023-08-08-
dc.date.issued2023-
dc.date.submitted2023-07-14-
dc.identifier.citationA. Zela, J. N. Siems, L. Zimmer, J. Lukasik, M. Keuper, and F. Hutter, "Surrogate NAS benchmarks: Going beyond the limited search spaces of tabular NAS benchmarks," in Tenth International Conference on Learning Representations, 2022: OpenReview. net, pp. 1-36.
W. Wen, H. Liu, Y. Chen, H. Li, G. Bender, and P.-J. Kindermans, "Neural predictor for neural architecture search," in Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XXIX, 2020: Springer, pp. 660-676.
J. Wu et al., "Stronger nas with weaker predictors," Advances in Neural Information Processing Systems, vol. 34, pp. 28904-28918, 2021.
S. Yan, Y. Zheng, W. Ao, X. Zeng, and M. Zhang, "Does unsupervised architecture representation learning help neural architecture search?," Advances in Neural Information Processing Systems, vol. 33, pp. 12486-12498, 2020.
Y. Tang et al., "A Semi-Supervised Assessor of Neural Architectures," in 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Los Alamitos, CA, USA, June 2020: IEEE Computer Society, pp. 1807-1816. [Online]. Available: https://doi.ieeecomputersociety.org/10.1109/CVPR42600.2020.00188. [Online]. Available: https://doi.ieeecomputersociety.org/10.1109/CVPR42600.2020.00188
J. Lukasik, D. Friede, A. Zela, F. Hutter, and M. Keuper, "Smooth Variational Graph Embeddings for Efficient Neural Architecture Search," in International Joint Conference on Neural Networks, {IJCNN} 2021, Shenzhen, China, July 18-22, 2021, 2021.
X. Rao, B. Zhao, X. Yi, and D. Liu, "CR-LSO: Convex Neural Architecture Optimization in the Latent Space of Graph Variational Autoencoder with Input Convex Neural Networks," arXiv preprint arXiv:2211.05950, 2022.
S. S. C. Rezaei et al., "Generative adversarial neural architecture search," arXiv preprint arXiv:2105.09356, 2021.
J. Lukasik, S. Jung, and M. Keuper, "Learning Where To Look–Generative NAS is Surprisingly Efficient," in Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXIII, 2022: Springer, pp. 257-273.
L. Ardizzone et al., "Analyzing Inverse Problems with Invertible Neural Networks," p. arXiv:1808.04730doi: 10.48550/arXiv.1808.04730.
C. White, W. Neiswanger, and Y. Savani, "Bananas: Bayesian optimization with neural architectures for neural architecture search," in Proceedings of the AAAI Conference on Artificial Intelligence, 2021, vol. 35, no. 12, pp. 10293-10301.
C. Ying, A. Klein, E. Christiansen, E. Real, K. Murphy, and F. Hutter, "Nas-bench-101: Towards reproducible neural architecture search," in International Conference on Machine Learning, 2019: PMLR, pp. 7105-7114.
X. Dong and Y. Yang, "NAS-Bench-201: Extending the Scope of Reproducible Neural Architecture Search," in International Conference on Learning Representations (ICLR), 2020. [Online]. Available: https://openreview.net/forum?id=HJxyZkBKDr. [Online]. Available: https://openreview.net/forum?id=HJxyZkBKDr
H. Liu, K. Simonyan, and Y. Yang, "Darts: Differentiable architecture search," arXiv preprint arXiv:1806.09055, 2018.
C. Liu et al., "Progressive neural architecture search," in Proceedings of the European conference on computer vision (ECCV), 2018, pp. 19-34.
B. Deng, J. Yan, and D. Lin, "Peephole: Predicting network performance before training," arXiv preprint arXiv:1712.03351, 2017.
K. Xu, W. Hu, J. Leskovec, and S. Jegelka, "How Powerful are Graph Neural Networks?," p. arXiv:1810.00826doi: 10.48550/arXiv.1810.00826.
S. Yan, K. Song, F. Liu, and M. Zhang, "CATE: Computation-aware Neural Architecture Encoding with Transformers," p. arXiv:2102.07108doi: 10.48550/arXiv.2102.07108.
K. Jing, J. Xu, and P. Li, "Graph Masked Autoencoder Enhanced Predictor for Neural Architecture Search," in Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, {IJCAI-22}, L. D. Raedt, Ed., July 2022: International Joint Conferences on Artificial Intelligence Organization, pp. 3114-3120. [Online]. Available: https://doi.org/10.24963/ijcai.2022/432. [Online]. Available: https://doi.org/10.24963/ijcai.2022/432
D. P. Kingma and M. Welling, "Auto-encoding variational bayes," arXiv preprint arXiv:1312.6114, 2013.
F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini, "The graph neural network model," IEEE transactions on neural networks, vol. 20, no. 1, pp. 61-80, 2008.
T. N. Kipf and M. Welling, "Semi-supervised classification with graph convolutional networks," arXiv preprint arXiv:1609.02907, 2016.
P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Bengio, "Graph attention networks," arXiv preprint arXiv:1710.10903, 2017.
A. Tripp, E. Daxberger, and J. M. Hernández-Lobato, "Sample-efficient optimization in the latent space of deep generative models via weighted retraining," Advances in Neural Information Processing Systems, vol. 33, pp. 11259-11272, 2020.
L. Li and A. Talwalkar, "Random search and reproducibility for neural architecture search," in Uncertainty in artificial intelligence, 2020: PMLR, pp. 367-377.
T. Den Ottelander, A. Dushatskiy, M. Virgolin, and P. A. Bosman, "Local search is a remarkably strong baseline for neural architecture search," in Evolutionary Multi-Criterion Optimization: 11th International Conference, EMO 2021, Shenzhen, China, March 28–31, 2021, Proceedings 11, 2021: Springer, pp. 465-479.
C. White, S. Nolen, and Y. Savani, "Exploring the loss landscape in neural architecture search," in Uncertainty in Artificial Intelligence, 2021: PMLR, pp. 654-664.
E. Real, A. Aggarwal, Y. Huang, and Q. V. Le, "Regularized evolution for image classifier architecture search," in Proceedings of the aaai conference on artificial intelligence, 2019, vol. 33, no. 01, pp. 4780-4789.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88159-
dc.description.abstract近年來,如何快速且自動化地找出預測準確度較佳的神經網路架構已備受重視。在實作上,要得到每個神經網路架構的真實預測表現是非常耗時且消耗運算資源的,因為需要在給定的資料集上實際訓練每個神經模型來取得。如何在有限的時間以及已標記好預測準確度的神經網路架構資料下,尋找出預測準確度較佳的神經網路架構是首要目標。為減少搜尋時間、運算資源,使用較少的已標記資料是優先考量的方法,因此,使用代理模型來預測每個神經網路架構準確度的方式逐漸受到採用,配合基因演算法或者最佳化演算法,例如:Local Search、Random Search、Bayesian Optimization,在預先定義好的架構搜尋空間中,搜尋出預測準確度較高的神經網路架構。然而,部分的做法只使用了已標記的訓練資料,忽略了整個搜尋空間中未標記準確度的神經網路架構資料也可以被有效利用。
本篇論文提出的方法基於可逆神經網路(invertible neural network)以及變分自編碼器(variational autoencoder),由給定的預測準確度來回推出可能的神經網路架構。此方法可有效利用整個搜尋空間中,未標記實際預測準確度的神經網路架構當作預訓練(pre-training)資料,利用自監督式學習(self-supervised learning)的技術來訓練變分自編碼器。接著,我們能利用變分自編碼器中的Encoder來將神經網路架構,由離散的空間轉換到連續的平坦空間,再使用可逆神經網路做回歸建模任務(regression)的訓練,利用神經網路模型架構的平坦空間表示(latent representation)預測出該模型架構的真實準確度。最後,利用可逆神經網路的特性,我們能夠逆推出表現較好的模型架構,並且搭配本方法也有代理模型的特性,可預測出神經網路架構的準確度,挑選出可能的候選架構,經過每一輪的逆推與再訓練疊代後,我們的模型最終能回推出表現較佳的神經網路架構,達到找尋出準確度較高的神經網路架構的目標。
在實驗中,我們將提出的方法做效能評估,利用Neural Architecture Search (NAS)領域常用來比較的公開的神經網路架構搜尋評估庫(benchmarks)與其他方法比較,這些公開的評估庫讓NAS的研究有一個可以公平比較的平台,包含:NAS-Bench-101、NAS-Bench-201,根據實驗結果,我們提出的做法可以在有限的已標記資料下達到很好的表現,能夠搜尋出表現較高的神經網路架構,在與相同領域論文的實驗結果比較後,展現出我們的方法與當今最先進的做法(state-of-the-art)是可以相比擬的。
zh_TW
dc.description.abstractIn recent years, there has been an increasing fascination with the efficient and automated discovery of high-performing neural architectures. However, evaluating performance of each architecture is time-consuming as it requires actual training on a prepared dataset. Therefore, the primary goal is to search for well-performing neural architectures within a limited set of architectures that have been evaluated. To reduce the need for actual training and labeled data, using surrogate models to predict the performance of neural architectures has become popular. This approach is often coupled with genetic algorithms or optimization algorithms such as Local Search (LS), Random Search (RS) and Bayesian Optimization (BO) to identify better neural architectures within the predefined search space. However, it has been observed that some methods only use labeled training data and do not make full use of available unlabeled data, i.e., all untrained architectures themselves in the search space.
Our method is based on Invertible Neural Network (INN) to inversely map the neural architecture from its performance. This method makes full use of the unlabeled data (untrained neural architectures) within the entire search space to train a variational autoencoder with a self-supervised learning mechanism. The variational autoencoder transforms the architecture into a latent space. Then, the invertible neural network performs as a regressor to convert the latent representation of the architecture into its performance. Finally, the invertible neural network can be used to infer the latent representation of best-performing architectures. Coupled with the surrogate model property of our method, it can predict the performance of candidate architectures and add them to training data. Our model can iteratively learn to infer and inverse to better-performing neural architectures.
Our method is evaluated on publicly widely used benchmarks for NAS which help us to compare our work with other approaches, including NAS-Bench-101, NAS-Bench-201. The results demonstrate that our method can search for better-performing neural architectures with limited evaluated architectures and comparable with the state-of-the-art approaches.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-08T16:33:58Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-08-08T16:33:58Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsAcknowledgements ii
摘要 iii
Abstract v
Chapter 1 Introduction 1
Chapter 2 Related Work 7
A. Neural Architecture Search 7
B. NAS Benchmarks 8
1. Introduction of NAS-Bench-101 9
2. Introduction of NAS-Bench-201 9
C. Performance Predictors 10
D. Variational Autoencoders 11
E. Graph Neural Networks 12
1. Graph Convolutional Networks 13
2. Graph Isomorphism Networks 14
F. Graph Variational Autoencoders 15
G. Invertible Neural Networks 15
Chapter 3 Method 19
A. Data Preprocessing 19
1. Architecture Encoding 19
2. NAS-Bench-101 20
3. NAS-Bench-201 21
B. Model Architecture 22
1. Encoder 22
2. Decoder 24
3. Invertible Neural Network 25
C. Training Method 27
1. Objective function 27
(a) Graph Variational Autoencoder 27
(b) Invertible Neural Network 28
2. Pre-train GVAE 29
3. Fine-tune INN 30
D. Retrain and Search 31
1. Algorithm 31
2. Rank-based Weighted Loss 33
Chapter 4 Experiments 37
A. Evaluation Metrics 37
1. Architecture Search 37
2. Regression 38
3. Inversion 38
B. NAS-Bench-101 39
1. Architecture Search 39
2. Regression 40
3. Inversion 40
C. NAS-Bench-201 43
1. Architecture Search 43
2. Regression 44
3. Inversion 45
Chapter 5 Ablation Studies 50
A. Choice of Candidates Generative Methods 50
B. Choice of Fine-tune Methods 50
C. Whether Using Rank-based Weighted Loss 52
Chapter 6 Conclusion 54
References 55
Appendices 58
A. NAS-Bench-201 58
1. Architecture Search 58
2. Regression 59
3. Inversion 62
B. Hyperparameters 65
-
dc.language.isoen-
dc.subject可逆神經網路zh_TW
dc.subject神經網路架構搜索zh_TW
dc.subject機器學習zh_TW
dc.subject圖神經網路zh_TW
dc.subject變分自編碼器zh_TW
dc.subject生程式模型zh_TW
dc.subjectVariational Autoencoderen
dc.subjectNeural Architecture Searchen
dc.subjectInvertible Neural Networken
dc.subjectGenerative Modelen
dc.subjectMachine Learningen
dc.subjectGraph Neural Networken
dc.title高效的模型架構生成基於可逆神經網路應用於神經網路架構搜索zh_TW
dc.titleEfficient Neural Architecture Generation with an Invertible Neural Network for Neural Architecture Searchen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee呂政修;廖婉君;黃志煒;吳曉光zh_TW
dc.contributor.oralexamcommitteeJenq-Shiou Leu;Wan-Jiun Liao;Chih-Wei Huang;Hsiao-Kuang Wuen
dc.subject.keyword神經網路架構搜索,機器學習,圖神經網路,變分自編碼器,生程式模型,可逆神經網路,zh_TW
dc.subject.keywordNeural Architecture Search,Machine Learning,Graph Neural Network,Variational Autoencoder,Generative Model,Invertible Neural Network,en
dc.relation.page67-
dc.identifier.doi10.6342/NTU202300924-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2023-07-17-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept資訊工程學系-
Appears in Collections:資訊工程學系

Files in This Item:
File SizeFormat 
ntu-111-2.pdf3.28 MBAdobe PDFView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved