
doi:10.6342/NTU202300924

國立臺灣大學電機資訊學院資訊工程學系

碩士論文

Department of Computer Science and Information Engineering

College of Electrical Engineering and Computer Science

National Taiwan University

Master Thesis

高效的模型架構生成基於可逆神經網路應用於神經網

路架構搜索

Efficient Neural Architecture Generation with an

Invertible Neural Network for

Neural Architecture Search

陳冠頴

Guan-Ying Chen

指導教授：周承復 博士

Advisor: Cheng-Fu Chou, Ph.D.

中華民國 112年 7月

July, 2023

doi:10.6342/NTU202300924

i

doi:10.6342/NTU202300924

ii

Acknowledgements

首先，我要感謝我的指導教授周承復老師。在我很晚才備取台大資工所之時，

他給予了我寶貴的求學建議，並且慷慨地接受我作為他的研究生。在過去的兩年碩

士學習期間，周老師給了我在研究上的許多重要指導與建議，使我能順利完成碩士

論文。同時，老師也教導我如何面對未知的問題，逐步分析和解決它們。

我還要感謝楊大煒學長。在我們一起進行專案的過程中，學長引導我尋找可能

的研究方向，在初期為我打下了這個研究領域的基礎。他常常抽出時間與我討論研

究上的困難，給予我許多幫助。學長對我完成碩士論文也功不可沒。

此外，我還要感謝我的同學們柯宏穎、吳添毅、廖盛弘、黃佳琪。無論是平時

一起討論研究問題，還是在口試期間互相幫忙聆聽彼此的報告內容並提供建議，甚

至在資料準備上給予幫助，你們都是我完成碩士學位考試的重要幫手。

最後，我要感謝我的家人們以及我的女友，一路上不論遇到何種挫折，他們始

終陪伴在我身邊，給予我信心和支持，讓我毫無後顧之憂地完成我的碩士學位。在

此，我向一路上幫助我和支持我的師長、親朋好友們致以最誠摯的謝意。

doi:10.6342/NTU202300924

iii

摘要

近年來，如何快速且自動化地找出預測準確度較佳的神經網路架構已備受重

視。在實作上，要得到每個神經網路架構的真實預測表現是非常耗時且消耗運算資

源的，因為需要在給定的資料集上實際訓練每個神經模型來取得。如何在有限的時

間以及已標記好預測準確度的神經網路架構資料下，尋找出預測準確度較佳的神

經網路架構是首要目標。為減少搜尋時間、運算資源，使用較少的已標記資料是優

先考量的方法，因此，使用代理模型來預測每個神經網路架構準確度的方式逐漸受

到採用，配合基因演算法或者最佳化演算法，例如：Local Search、Random Search、

Bayesian Optimization，在預先定義好的架構搜尋空間中，搜尋出預測準確度較高

的神經網路架構。然而，部分的做法只使用了已標記的訓練資料，忽略了整個搜尋

空間中未標記準確度的神經網路架構資料也可以被有效利用。

本篇論文提出的方法基於可逆神經網路（invertible neural network）以及變分

自編碼器（variational autoencoder），由給定的預測準確度來回推出可能的神經網路

架構。此方法可有效利用整個搜尋空間中，未標記實際預測準確度的神經網路架構

當作預訓練（pre-training）資料，利用自監督式學習（self-supervised learning）的

技術來訓練變分自編碼器。接著，我們能利用變分自編碼器中的 Encoder來將神經

網路架構，由離散的空間轉換到連續的平坦空間，再使用可逆神經網路做回歸建模

任務（ regression）的訓練，利用神經網路模型架構的平坦空間表示（ latent

representation）預測出該模型架構的真實準確度。最後，利用可逆神經網路的特性，

我們能夠逆推出表現較好的模型架構，並且搭配本方法也有代理模型的特性，可預

測出神經網路架構的準確度，挑選出可能的候選架構，經過每一輪的逆推與再訓練

疊代後，我們的模型最終能回推出表現較佳的神經網路架構，達到找尋出準確度較

高的神經網路架構的目標。

在實驗中，我們將提出的方法做效能評估，利用Neural Architecture Search (NAS)

doi:10.6342/NTU202300924

iv

領域常用來比較的公開的神經網路架構搜尋評估庫（benchmarks）與其他方法比較，

這些公開的評估庫讓 NAS的研究有一個可以公平比較的平台，包含：NAS-Bench-

101、NAS-Bench-201，根據實驗結果，我們提出的做法可以在有限的已標記資料

下達到很好的表現，能夠搜尋出表現較高的神經網路架構，在與相同領域論文的實

驗結果比較後，展現出我們的方法與當今最先進的做法（state-of-the-art）是可以相

比擬的。

關鍵詞：神經網路架構搜索、機器學習、圖神經網路、變分自編碼器、生成式模型、

可逆神經網路

doi:10.6342/NTU202300924

v

Abstract

In recent years, there has been an increasing fascination with the efficient and

automated discovery of high-performing neural architectures. However, evaluating

performance of each architecture is time-consuming as it requires actual training on a

prepared dataset. Therefore, the primary goal is to search for well-performing neural

architectures within a limited set of architectures that have been evaluated. To reduce the

need for actual training and labeled data, using surrogate models to predict the

performance of neural architectures has become popular. This approach is often coupled

with genetic algorithms or optimization algorithms such as Local Search (LS), Random

Search (RS) and Bayesian Optimization (BO) to identify better neural architectures

within the predefined search space. However, it has been observed that some methods

only use labeled training data and do not make full use of available unlabeled data, i.e.,

all untrained architectures themselves in the search space.

Our method is based on Invertible Neural Network (INN) to inversely map the neural

architecture from its performance. This method makes full use of the unlabeled data

(untrained neural architectures) within the entire search space to train a variational

autoencoder with a self-supervised learning mechanism. The variational autoencoder

transforms the architecture into a latent space. Then, the invertible neural network

doi:10.6342/NTU202300924

vi

performs as a regressor to convert the latent representation of the architecture into its

performance. Finally, the invertible neural network can be used to infer the latent

representation of best-performing architectures. Coupled with the surrogate model

property of our method, it can predict the performance of candidate architectures and add

them to training data. Our model can iteratively learn to infer and inverse to better-

performing neural architectures.

Our method is evaluated on publicly widely used benchmarks for NAS which help

us to compare our work with other approaches, including NAS-Bench-101, NAS-Bench-

201. The results demonstrate that our method can search for better-performing neural

architectures with limited evaluated architectures and comparable with the state-of-the-

art approaches.

Keywords: Neural Architecture Search, Machine Learning, Graph Neural Network,

Variational Autoencoder, Generative Model, Invertible Neural Network

doi:10.6342/NTU202300924

Contents

Acknowledgements ... ii

摘要 ... iii

Abstract ... v

Chapter 1 Introduction .. 1

Chapter 2 Related Work .. 7

A. Neural Architecture Search ... 7

B. NAS Benchmarks ... 8

1. Introduction of NAS-Bench-101 .. 9

2. Introduction of NAS-Bench-201 .. 9

C. Performance Predictors... 10

D. Variational Autoencoders ... 11

E. Graph Neural Networks .. 12

1. Graph Convolutional Networks .. 13

2. Graph Isomorphism Networks.. 14

F. Graph Variational Autoencoders ... 15

G. Invertible Neural Networks .. 15

Chapter 3 Method ... 19

A. Data Preprocessing ... 19

1. Architecture Encoding .. 19

2. NAS-Bench-101 ... 20

3. NAS-Bench-201 ... 21

B. Model Architecture ... 22

1. Encoder ... 22

2. Decoder ... 24

doi:10.6342/NTU202300924

3. Invertible Neural Network .. 25

C. Training Method ... 27

1. Objective function .. 27

(a) Graph Variational Autoencoder .. 27

(b) Invertible Neural Network .. 28

2. Pre-train GVAE ... 29

3. Fine-tune INN ... 30

D. Retrain and Search .. 31

1. Algorithm ... 31

2. Rank-based Weighted Loss ... 33

Chapter 4 Experiments .. 37

A. Evaluation Metrics .. 37

1. Architecture Search .. 37

2. Regression .. 38

3. Inversion ... 38

B. NAS-Bench-101 ... 39

1. Architecture Search .. 39

2. Regression .. 40

3. Inversion ... 40

C. NAS-Bench-201 ... 43

1. Architecture Search .. 43

2. Regression .. 44

3. Inversion ... 45

Chapter 5 Ablation Studies .. 50

A. Choice of Candidates Generative Methods .. 50

doi:10.6342/NTU202300924

B. Choice of Fine-tune Methods ... 50

C. Whether Using Rank-based Weighted Loss ... 52

Chapter 6 Conclusion ... 54

References .. 55

Appendices ... 58

A. NAS-Bench-201 ... 58

1. Architecture Search .. 58

2. Regression .. 59

3. Inversion ... 62

B. Hyperparameters ... 65

doi:10.6342/NTU202300924

List of Figures

Figure 1: Neural architecture representation of NAS-Bench-101. 20

Figure 2: Neural architecture representation of NAS-Bench-201. 21

Figure 3: The overview of proposed model. ... 22

Figure 4: The forward and inverse processes of INN. .. 26

Figure 5: GVAE .. 28

Figure 6: This visualization, created via t-SNE, demonstrates the retraining and searching

process for each iteration on CIFAR-10 of the NAS-Bench-201 search space. The

100 candidates, generated by inversely mapping 1.0, are color-coded, while the non-

selected neural architectures are displayed in grey. .. 33

Figure 7: Regression results on NAS-Bench-101. ... 41

Figure 8: Inversion results on NAS-Bench-101 ... 42

Figure 9: Inversion result over a range on NAS-Bench-101. ... 43

Figure 10: Inversion result over a range on CIFAR-10. ... 45

Figure 11: Regression results on CIFAR-10. .. 47

Figure 12: Inversion results on CIFAR-10. .. 48

Figure 13: The comparison of search curves for fine-tuning methods with rand-based

weighted loss on CIFAR-10 dataset of NAS-Bench-201. 52

Figure 14: Comparison of search curves with and without the use of rank-based weighted

loss on NAS-Bench-201. .. 53

Figure 15: Regression results on CIFAR-100 and ImageNet16-120. 61

Figure 16: Inversion results on CIFAR-100 and ImageNet16-120. 63

Figure 17: Inversion results over a range. .. 64

doi:10.6342/NTU202300924

List of Tables

Table 1: The comparison results on NAS-Bench-101. The means and standard deviations

are reported. .. 39

Table 2: The comparison results on NAS-Bench-201. The means are reported............. 44

Table 3: The comparision of the candidate generative methods on NAS-Bench-101. ... 50

Table 4: The comparision of the candidate generative methods on NAS-Bench-201. ... 50

Table 5: This table compares the two fine-tuning methods. The methods denoted with the

postfix 'R' utilize a rank-based weighted loss. .. 51

Table 6: A comparison of the use of rank-based weighted loss. Methods with a ‘R’ postfix

denote the utilization of rank-based weighted loss. .. 52

Table 7: The comparison results on NAS-Bench-201. The mean and standard deviation

are reported. .. 58

Table 8: Hyperparameters of the GIN encoder. .. 65

Table 9: Hyperparameters of the Transformer decoder. ... 65

Table 10: Hyperparamters of the pretraining. ... 65

Table 11: Hyperparameters of Invertible Neural Network. .. 65

Table 12: Hyperparameters of fine-tunning .. 65

Table 13: Hyperparameters of retraining .. 66

Table 14: Hyperparameters of searching .. 66

doi:10.6342/NTU202300924

1

Chapter 1 Introduction

In recent years, there has been an increasing fascination with Neural Architecture

Search (NAS) due to its ability to enables the automatic discovery of high-performing

neural architectures. This approach can save significant time and effort compared to

traditional manual design methods. The neural architecture search problem can be

transformed into a graph optimization problem, where the goal is to find the optimal

architecture represented as a directed acyclic graph (DAG). The graph's nodes symbolize

various operations, including convolution and pooling, while the edges illustrate the data

flow between these operations. The research on NAS aims to find the best neural

architecture that can achieve good performance on a given task while minimizing the

computational cost.

The methods based on performance predictor has recently become mature, which

roughly includes [1-4]. This method combines performance predictors with search

algorithms such as Random Search (RS), Local Search (LS), Evolutionary Algorithm

(EA), Bayesian Optimization (BO), etc., to find the well-performing architectures. When

more standard-trained architectures are available as training data, the performance

predictor performs better. However, collecting labeled data means that we need to train

and evaluate the architecture, and this process is extremely time-consuming.

doi:10.6342/NTU202300924

2

Reducing the requirement for evaluated architectures, i.e., labeled architecture data,

is the key to predictor-based NAS methods. Research has been focusing on how to

achieve better results with reduced labeled data, including semi-supervised learning [5]

and ensemble learning [3], among others. Some works have been effective in make full

use of untrained architectures within the search space as training data via self-supervised

learning. This involves converting discrete architectures into a latent space, which further

reduces the need for labeled data. Recent research [4, 6, 7] not only utilize the entire

unlabeled data in the search space but has also focus on the latent space optimization

(LSO) to obtain robust and better results.

Generative models are currently very popular for computer vision (CV) and natural

language processing (NLP). Some studies in the field of NAS have also used generative

methods to generate high-performing neural architectures. For example, GA-NAS [8]

leveraged the concept of GANs and improved upon it, while AG-Net [9] utilized the

GNNs decoder from SVGe [6] and made certain modifications to use it as a standalone

generative model to iteratively generate better neural architectures. This type of approach

often makes full use of unlabeled architecture within the search space, resulting in better

performance.

In our approach, we proposed a method that combines a graph variational

autoencoder (GVAE) with an invertible neural networks (INNs) [10]. We utilized the

doi:10.6342/NTU202300924

3

entire set of unlabeled data in the search space to pretrain the GVAE. As the pretrain

process does not require accuracy label for architectures, it is efficient and does not

require any queries on tabular benchmarks. The encoder maps the architectures to the

latent space and we fine-tune the INNs with the latent representation and the accuracy of

each architecture as the objective. The INNs can be used to inverse the accuracy to the

latent representation, and then the decoder can be used to decode the latent representation

to obtain the corresponding neural architectures. We also can use whole model as a

performance predictor to select the top architectures. Inspired by AG-Net [9], where the

generator is iteratively retrained with successful architectures generated in previous

iterations to gradually move towards the high-performing region, we generate the

potential architectures by inverting the highest accuracy score (i.e., 1.0) and predict their

performance. We then select the top-performing architectures to evaluate their true

accuracy and add them to training set to retrain the model. This iterative process enables

our approach to continuously improve its performance by discovering well-performing

architectures and retraining the model accordingly. Our method does not rely on

traditional NAS algorithms such as LS, BO, or EA, which makes it more efficient

compared to those methods. Additionally, our approach generates architectures using a

reliable latent representation instead of random noise, which distinguishes it from AG-

Net [9], where the neural architecture is generated from a normal distribution.

doi:10.6342/NTU202300924

4

Extensive experiments have been conducted to evaluate the reproducibility and

stability of our proposed method with multiple independent runs, as well as its ability to

improve query efficiency and search results compared to baseline methods. We show that

our method is better than many existing NAS methods, including baseline methods such

as RS, LS, BO, EA. Additionally, our approach exhibits competitive performance

compared to state-of-the-art approaches such as BANANAS [11], AG-Net [9] and CR-

LSO [7] on representative NAS benchmark sets, including NAS-Bench-101 [12] and

NAS-Bench-201 [13]. We provide more detail about experiments in Chapter 4. Our

contributions can be summarized as follows.

1. We make full use of unlabeled architectures within the entire search space to pre-

train a graph variational autoencoder (GVAE) through self-supervised learning. This

process involves embedding the discrete architectures into the latent space. By doing

so, the graph encoder can extract the similarity of neural architectures and reduce

the required amount of labeled data.

2. Our approach generates neural architectures by inverting their performance into a

latent representation, and then employing a graph decoder to transform them into

discrete architectures. This invertible property enables us to not only generate the

best-performing neural architecture but also to discover one that is most proximate

to a predetermined performance goal.

doi:10.6342/NTU202300924

5

3. Experiment results on two NAS benchmarks, specifically NAS-Bench-101 and

NAS-Bench-201, demonstrate that our NAS method attains competitive outcomes

in comparison to other state-of-the-art NAS methods, in terms of both query

efficiency and model performance.

The remainder is organized as follows: Chapter 2 introduces the related works

relevant to this paper. Chapter 3 presents the proposed method in details, including the

data preprocessing, model architectures, and training pipelines. In Chapter 4,

experimental settings and results are reported. Chapter 5 features an ablation study

discussing the selection of fine-tuning methods, the utilization of rank-based weighted

loss, and the resulting impact on performance. Lastly, Chapter 6 summarize our work and

outlines directions for future research.

doi:10.6342/NTU202300924

6

doi:10.6342/NTU202300924

7

Chapter 2 Related Work

A. Neural Architecture Search

Essentially, Neural Architecture Search (NAS) can be transformed into a graph

optimization problem that aims to find the optimal configuration of operations for each

node, such as convolution, pooling, non-operation, and skip connection, within a discrete

search space. Typically, these architectures are represented as directed acyclic graphs

(DAGs), and we impose certain constraints to define the search space. The goal is to

efficiently explore this space to identify the optimal architecture that maximizes

performance while satisfying the given constraints.

The discrete nature of neural architectures poses a challenge for applying gradient-

based optimization methods. To overcome this problem, some NAS approaches utilize

discrete encoding schemes to representing search spaces, such as adjacency matrices and

one-hot vectors of operations as node features. Additionally, alternative optimization

algorithms, including Random Search (RS), Local Search (LS), Evolutionary Algorithm

(EA), Bayesian Optimization (BO) have been explored in previous studies.

Recently, some neural architecture search methods have moved away from

traditional discrete optimization methods and adopted faster weight-sharing approaches.

This trend has resulted in the adoption of differentiable optimization techniques. For

instance, DARTS (Differentiable Architecture Search) method [14] has introduced a

doi:10.6342/NTU202300924

8

differentiable approach to neural architecture search problems. It involves relaxing the

discrete architecture search space by modifying operator selection to differentiable

operations, enabling gradient-based NAS. Following this relaxation, the NAS task

evolves into the joint optimization of model architectures and weights.

Another approach is that map the discrete architecture space into a continuous latent

space, enabling the search for well-performing architectures within this continuous space.

In our approach, we also train a deep variational autoencoder to transform the search

space from discrete to continuous. In this case, the discrete neural architectures can be

searched from the continuous latent space.

B. NAS Benchmarks

To support benchmarking and evaluation for NAS works, several NAS benchmarks

and well-defined search spaces have been introduced. These include NAS-Bench-101 and

NAS-Bench-201, which are tabular benchmarks that enable direct querying of various

metrics, such as parameters, training time, and architecture performance. These

benchmarks play a crucial role in evaluating our method. Furthermore, there are surrogate

benchmarks like NAS-Bench-301 and NAS-Bench-x11, which employ surrogate models

to predict performance in the DARTS search space. Due to the high computational

complexity and the extensive number of architectures (10^18) in the DARTS search space,

it is infeasible to evaluate all the architectures directly. In our study, we will provide a

doi:10.6342/NTU202300924

9

comprehensive introduction to NAS-Bench-101 and NAS-Bench-201, which serve as the

evaluation frameworks for our method.

1. Introduction of NAS-Bench-101

NAS-Bench-101 is a comprehensive, publicly NAS benchmark containing the

performance metrics of over 423K unique convolutional neural network (CNN)

architectures. The dataset is generated by exhaustively training and evaluating these

neural architectures on the CIFAR-10 dataset. NAS-Bench-101 aims to provide a

standardized platform for researchers to conduct fair comparisons of different NAS

algorithms and understand their strengths and weaknesses. This benchmark employs an

operation-on-nodes mechanism. The space of a cell consists of all possible DAGs on V

nodes, where the first and last nodes are labeled as operation “INPUT” and “OUTPUT”

respectively, representing the input and output tensors of the cell. Each node has one of L

labels. The space of labeled DAGs will grow exponentially in both V and L. In order to

constraint the number of possible neural architectures within this search space, the

following constraints are imposed: there are three types of operations (1x1 convolution,

3x3 convolution, 3x3 max-pool), the number of nodes is at most seven, and the maximum

number of edges is nine.

2. Introduction of NAS-Bench-201

NAS-Bench-201 is a tabular NAS benchmark consists of 15,625 neural architectures.

doi:10.6342/NTU202300924

10

These neural architectures have been trained and evaluated using the same setup on three

diverse image classification tasks: CIFAR-10, CIFAR-100, and ImageNet-16-120. In

NAS-Bench-201, the architectures are represented using cells as the basic building blocks,

similar to NAS-Bench-101. By stacking these cells in a predefined order, various CNN

architectures can be generated. The key difference, however, is that NAS-Bench-201

utilizes an operation-on-edges mechanism. Each neural architecture cell is represented as

a directed acyclic graph (DAG), with four nodes and six edges. The predefined set

contains five operations, including 1x1 and 3x3 convolutions, 3x3 avg-pooling, zero

operation, and skip connections. Additionally, it provides training time and meta

information for each epoch of each architecture, which can be valuable for NAS

researchers. The authors also benchmarked ten NAS algorithms to analyze this search

space, establishing it as a baseline. Consequently, in our work, we make some adjustments

to transform the DAG into an operation-on-nodes representation for convenience.

C. Performance Predictors

An architecture performance predictor is employed to predict the performance of

architectures before actually training them. The predictor can be simply formulated as a

mapping function 𝑓: 𝑋 → 𝑃, where X represents a search space of architectures and P

denotes a set of performance metrics. This technique was first applied by PNAS [15] and

[16], which used a LSTM-based predictors as a surrogate model capable of handling

doi:10.6342/NTU202300924

11

variable-sized sequential architectures to predict the accuracy of these architectures.

WeakNAS [3] propose ensemble models consisting of multiple weak predictors, which

can be trained with fewer labeled architectures. As the nature of an architecture is a

computational graph, recent works [1, 2] predict the performance of architecture by graph

neural networks (GNNs) encoders to extract the features from graphs. Some works [4-6]

learn neural architecture representations through a variational graph autoencoder via self-

supervised learning. Notably, Arch2Vec [4] employs multiple Graph Isomorphism

Network (GIN) [17] layers as an encoder coupled with a simple multiplayer perceptron

as a graph decoder. Our work adapts the graph encoder from Arch2Vec. These GNN-

based models, which use the adjacency matrix and operation one-hot vector to represent

a graph as input data, improves upon previous approaches. The results show that the

highly informed latent representations are crucial for downstream performance prediction.

Consequently, studies [4, 6, 18, 19] are working to find a better latent space through self-

supervised approaches to enhance the NAS performances.

D. Variational Autoencoders

Variational Autoencoders (VAEs) have become a popular deep generative modeling

framework since their introduction by Kingma and Welling [20]. They consist of an

encoder 𝑝𝜃(𝑧|𝐷) that maps high-dimensional data 𝐷 (from a source domain of an

unknow distribution) to a latent variable 𝑧 from lower-dimensional continuous latent

doi:10.6342/NTU202300924

12

space, and a probabilistic decoder 𝑞𝜙(𝐷|𝑧) that reconstructs the original data from the

latent variable 𝑧 . The parameters 𝜃 and 𝜙 of this network are learned jointly by

optimizing the evidence lower bound (ELBO) on the data likelihood:

 𝐿(𝜃, 𝜙, 𝐷) = 𝔼𝑧~𝑝𝜃(𝑧|𝐷)[ln 𝑞𝜙(𝐷|𝑧)] − 𝐾𝐿(𝑝𝜃(𝑧|𝐷)||𝑞(𝑧)). (1)

Here, 𝔼𝑧~𝑝𝜃(𝑧|𝐷)[ln 𝑞𝜙(𝐷|𝑧)] represents the expected log-likelihood of the data 𝐷

given the latent variable 𝑧. On the other hand, it measures the reconstruction loss, which

aims to minimize the dissimilarity between the input data and the reconstructed data.

𝐾𝐿(𝑝𝜃(𝑧|𝐷)||𝑞(𝑧)) corresponds to the Kullback-Leibler (KL) divergence, a

regularization term that estimates the difference between two distributions and help to

regularize the latent space. VAEs have been applied to various domains, and are often

used for generation tasks by taking only the decoder part.

E. Graph Neural Networks

Graph Neural Networks (GNNs) have become as a powerful framework for

representation learning on graph-structured data, addressing the limitations of traditional

neural networks when dealing with irregular data. GNNs were first introduced by

Scarselli [21], and since then, a variety of GNN architectures have been proposed,

including Graph Convolutional Networks (GCNs) [22], Graph Attention Networks (GATs)

[23], and Graph Isomorphism Networks (GINs) [17].

The extraction of graph features in Graph Neural Networks (GNNs) typically

doi:10.6342/NTU202300924

13

involves two steps. Firstly, GNNs learn a representation for each node using message-

passing layers. These layers iteratively aggregate information from neighboring nodes,

allowing the nodes to exchange information and update their features. This process allows

information to propagate across the graph, enabling the GNN capture both local and

global graph features. After the message-passing phase, the GNN proceeds to the second

step, where a function is applied to summarize the node features. This step aims to obtain

graph-level features or maintain node-level features for downstream tasks, such as node

classification tasks and link prediction tasks.

For Neural Architecture Search (NAS) problems, GNNs have been utilized for

architecture performance prediction, leveraging the graph-structured nature of neural

architectures to enable efficient exploration of the search space..

1. Graph Convolutional Networks

Given a graph 𝐺 = (𝑉, 𝐸), for each node 𝑣𝑖 ∈ 𝑉 is associated with a feature 𝑥𝑖 ∈

ℝ𝐷. Here, 𝑉 denotes the set of nodes in 𝐺, and 𝐷 denotes the dimensionality of the

node features.

Graph Convolutional Networks (GCNs) can be formulated as follows:

 𝐻𝑙+1 = 𝑓(𝐻𝑙, 𝐴), (2)

where 𝐻0 = 𝑋 ∈ ℝ|𝑉|×𝐷 is the input for the first layer, and 𝐴 is the adjacency matrix.

In the formulation, 𝐻𝑙 represents the node features at the 𝑙-th layer, and the function 𝑓

doi:10.6342/NTU202300924

14

takes both the adjacency matrix and node features into account to update the node features

for the subsequent layer.

A specific example of the function 𝑓 is given by:

 𝐻𝑙+1 = 𝑓(𝐻𝑙, 𝐴) = 𝜎(𝐴𝐻𝑙𝑊𝑙). (3)

In this equation, 𝜎(⋅) represents a non-linear activation function, and 𝑊𝑙 denotes the

model weights of 𝑙-th layer.

2. Graph Isomorphism Networks

Graph Isomorphism Networks (GINs) are a type of Graph Convolutional Network

(GCN) introduced by [17] to address the issue of graph isomorphism, which is the

problem of determining whether two graphs have the same structure despite possible

differences in the labeling of nodes and edges. GIN is designed to be more powerful than

some existing GCN models when it comes to distinguishing non-isomorphic graphs.

The key feature of GIN is its aggregation function, which combines node features

and edge information in a manner that is sensitive to the graph structure. This allows GIN

to learn expressive node embeddings and capture complex graph structures more

effectively compared to some other GCN models.

In Neural Architecture Search (NAS) problems, the search space often contains

many isomorphic graph architectures. These isomorphic architectures should be mapped

to the same latent representation or yield identical performance. To address this challenge,

doi:10.6342/NTU202300924

15

we utilize GIN layers to construct our encoder model, ensuring that isomorphic

architectures are effectively handled and mapped to appropriate representations.

F. Graph Variational Autoencoders

Graph Variational Autoencoders (GVAEs) extend the VAE framework to handle

graph-structured data, making them particularly suitable for tasks involving networks,

molecular graphs, or other relational data. The GVAEs employ graph neural networks

(GNNs) as encoders, taking advantage of their ability to effectively capture both local and

global graph structures. GVAEs have been applied to several graph-level tasks, including

graph generation, graph clustering, edge prediction, and graph classification. In our work,

we use the asymmetric GVAE, where the encoder and the decoder in our GVAE model

are not identical. Specifically, we use a GNN encoder to extract the features of neural

architectures represented as graphs and utilize a non-GNN decoder to generate the

architectures by predicting the types of nodes and whether the edges exist using the latent

representation obtained from the invertible neural network.

G. Invertible Neural Networks

Invertible Neural Networks (INNs) possess a key property of bijectivity, implying

that the mapping from inputs to outputs is reversible. This property allows the output to

be inverted back to the input. The paper [10] significantly contributes to the understanding

and application of INNs, showcasing their effectiveness in solving inverse problems. The

doi:10.6342/NTU202300924

16

approach bears conceptual similarities to conditional variational autoencoders (cVAEs).

INNs learn a non-linear transformation that connects the data distribution to a simpler

prior distribution, such as Gaussian Distribution. The output data is used as the

conditioning variable in this transformation process. This setup enables the INN to

generate the original input data by using the output data as a condition, coupled with a

sampled prior distribution.

The training process of an INN involves learning two models: 𝑔(𝑧, 𝑦; 𝜃) represents

the inverse process, and 𝑓(𝑥; 𝜃), which approximating the known forward process 𝑠(𝑥).

These models are jointly trained with the objective of capturing the correlation between

the input data 𝑥 and the output data 𝑦 by optimizing the parameters 𝜃 . Once the

models are trained, the input data 𝑥 can be recovered by applying the inverse model

𝑔(𝑧, 𝑦; 𝜃) to a sample 𝑧 drawn from a standard normal distribution 𝒩(0, 𝐼𝑘), where 𝑘

is the dimensionality of the input space. In another representation, 𝑥 = 𝑔(𝑧, 𝑦; 𝜃), and

the pair [𝑧, 𝑦] is obtained by applying the forward model 𝑓(𝑥; 𝜃) to 𝑥 , such

that [𝑧, 𝑦] = 𝑓(𝑥; 𝜃) = [𝑓𝑧(𝑥; 𝜃), 𝑓𝑦(𝑥; 𝜃)] = 𝑔−1(𝑥; 𝜃) . Here, 𝑓𝑦(𝑥; 𝜃) approximates

𝑠(𝑥), the known forward process.

In our work, we train an INN-based performance predictor for neural architectures,

treating it as a regression task. By leveraging the invertible property of the INNs, we can

retrieve the latent representations of high-performing neural architectures by inversely

doi:10.6342/NTU202300924

17

mapping the highest accuracy, which is set to 1.0. These well-performing architectures

are obtained by decoding the latent representations using our Graph Variational

Autoencoder (GVAE) decoder.

doi:10.6342/NTU202300924

18

doi:10.6342/NTU202300924

19

Chapter 3 Method

In this chapter, we will present a comprehensive introduction to our method. We start

by discussing the preprocessing steps for the data. Next, we will delve into the

architecture of our model, which includes the encoder and decoder components of the

graph variational autoencoder (GVAE), as well as the setting of the invertible neural

network (INN). Finally, we will explain the objective function employed to train the

model and provide specific details regarding the training process.

A. Data Preprocessing

1. Architecture Encoding

Due to the nature of architectures being represented as graphs, we can utilize an

adjacency matrix to indicate the connections between nodes and use a one-hot vector to

represent the operation types on each node. As shown in Figure 1, (a) represents the

original architecture as a graph, (b) demonstrates how each operation can be encoded

using a one-hot representation, and (c) represents the adjacency matrix of the graph.

To fully leverage the features of graph convolutional networks, which aggregate the

node features of each node's neighbors, we modify the adjacency matrix by taking the

element-wise maximum (denoted by ⋁) of the original adjacency matrix 𝐴 and its

transpose 𝐴𝑇 . This operation creates an undirected graph, allowing for bidirectional

information flow during graph convolutional operations. By considering both the

doi:10.6342/NTU202300924

20

connections from node i to its neighbors and the connections from its neighbors back to

node i, we capture a more comprehensive understanding of the graph's local and global

structures. This modification enhances the effectiveness of graph convolutional networks

in capturing and propagating information across the graph.

(a) Architecture representation

(b) One-hot vector

(c) Adjacency matrix

Figure 1: Neural architecture representation of NAS-Bench-101.

2. NAS-Bench-101

In the NAS-Bench-101 search space, there are five types of operations: OUTPUT,

INPUT, 1× 1 convolution, 3 × 3 convolution, and 3 × 3 max-pool. The number of

nodes in this search space ranges from three to seven. To accommodate architectures with

fewer than seven nodes, we set the adjacency matrix 𝐴 as a 7 × 7 matrix and pad it

doi:10.6342/NTU202300924

21

with zeros if the architecture has fewer than seven nodes. Similarly, we pad the operation

one-hot vector with zeros to ensure consistency in dimensions.

3. NAS-Bench-201

In the NAS-Bench-201 search space, the architecture graphs have a fixed structure

with four nodes and six edges. Each edge represents a specific operation. There are seven

types of operations: OUTPUT, INPUT, 1 × 1 convolution, 3 × 3 convolution, 3 × 3

avg-pool, skip-connect, and zeroize (none). The original architecture representation is

depicted in Figure 2(a). To simplify the representation, we transform it into an operation-

on-node graph, as shown in Figure 2(b), resulting in a total of eight nodes and ten edges

in the graph. The skeleton of the NAS-Bench-201 search space is fixed, so our focus is

solely on the operations performed on the nodes.

(a)

(b)

Figure 2: Neural architecture representation of NAS-Bench-201.

doi:10.6342/NTU202300924

22

B. Model Architecture

We provide an overview of our model architecture in Figure 3. The encoder is

responsible for transforming the graph into the latent space, while the decoder is tasked

with reconstructing the graph. The INN is trained as a regression task, with the label being

the accuracy corresponding to the architecture graph.

Figure 3: The overview of proposed model.

1. Encoder

To address the presence of isomorphic graphs, which often arise in neural

architecture search problems, we utilize the Graph Isomorphism Networks (GINs) to

construct the encoder. The variational encoder model can be defined as follows:

doi:10.6342/NTU202300924

23

 𝑝(𝑍|𝑋, �̃�; 𝜃) = 𝜇(𝑋, �̃�; 𝜃) + 𝛼 × 𝜎(𝑋, �̃�; 𝜃)⨀𝜀, 𝜀~𝒩(0, 𝐼), (4)

where 𝑋, �̃� represent the matrix of node features and the augmented adjacency matrix,

respectively. 𝜇(𝑋, �̃�; 𝜃) and 𝜎(𝑋, �̃�; 𝜃) are the mean and standard deviation of the

latent variable 𝑍 obtained from the encoder 𝑝 with parameters 𝜃 . The symbol ⨀

denotes Hadamard product, and 𝜀 is a noise term sampled from a standard normal

distribution 𝒩(0, 𝐼). The parameter 𝛼 scales the strength of the noise. This formulation

captures the distribution of the latent variables conditioned on the input data 𝑋, �̃�.

We construct the GIN-based encoder with the same parameter as Arch2Vec [4],

which is a 5-layer GIN with hidden dimensions of 128, 128, 128, 128, 16. The L-layer

GIN is used to obtained the node feature map H and can be formulated as follows:

 𝐻𝑙 = 𝑀𝐿𝑃𝑙 ((1 + 𝑏(𝑙)) ⋅ 𝐻(𝑙−1) + �̃�𝐻(𝑙−1)) , 𝑙 = 1,2, … , 𝐿, (5)

where 𝐻0 = 𝑋 represents the input node features, 𝑏 is the bias term, and 𝑀𝐿𝑃 is a

multi-layer perceptron. Each MLP layer consists of a linear layer with batch

normalization, and in our apporach we use ReLU activation function. The node

embedding 𝐻𝐿 obtained from the last GIN layer is then converted to mean 𝜇 and

standard deviation 𝜎 of the posterior approximation 𝑝(𝑍|𝑋, �̃�; 𝜃) in Equation (4).

Throughout this process, the node representations are transformed into vectors with the

same number of channels as the hidden dimension of the last GIN layer. Therefore, the

dimension of the mean latent representation is (|𝑉|, 16) , where |𝑉| represents the

doi:10.6342/NTU202300924

24

number of vertices in the graph 𝐺 and 16 is the output channels of the GIN.

2. Decoder

Graph generation is a complex problem, requiring determination of the number of a

node's neighbors and the nodes it connects to, several works employ RNN methods to

generate graphs by iteratively generating nodes and edges. In our approach, we utilize a

multi-head transformer-based model with 3 transformer blocks. The embedded dimension

is 32, and we set the hidden dimension to 256 for the Feed Forward network (FFN) within

the transformer blocks, serving as our graph generator. We also incorporate positional

encoding to help the model grasp the positional information of each node. The

transformer model's self-attention mechanism allows it to consider node features across

all node embeddings from the graph encoder we introduced earlier. The transformer-based

graph decoder decodes the encoded latent representation into two sections: an operation

one-hot matrix and an adjacency matrix. Both sections are treated as classification tasks.

After passing through the transformer blocks, the input will be reshaped to

(|𝑉|, 𝑄𝑑𝑖𝑚), where we set 𝑄𝑑𝑖𝑚 = 32. Subsequently, it goes through a fully connected

layer followed by a softmax function that project it to a shape of (|𝑉|, |𝑂𝑃𝑆|) for the

operation part. For the adjacency matrix section, it will feed into two layers: one to project

it to (|𝑉|, |𝑉|) fit the adjacency matrix's shape, and the second is a linear layer followed

by a softmax activation to (|𝑉|, |𝑉|, 2) for classification. The operation part selects the

doi:10.6342/NTU202300924

25

operation type for each node, while the adjacency matrix part predicts the existence of an

edge.

Therefore, the tensor shape of operations is (|𝑉|, |𝑂𝑃𝑆|), where |𝑂𝑃𝑆| represents

the size of the candidate operation set. The tensor shape of the adjacency matrix is

(|𝑉|, |𝑉|, 2), which is view as a binary classification task. Given the latent representation

𝑍 obtained from the encoder with a shape of 𝑍 ∈ ℝ|𝑉|×16 , the decoder 𝑄 can be

formulated as follows:

 𝑄(𝑍) = [𝑁𝑜𝑑𝑒𝑠𝑂𝑃𝑆, 𝐴𝑑𝑗𝑀𝑎𝑡𝑟𝑖𝑥], (6)

 𝑁𝑜𝑑𝑒𝑠𝑂𝑃𝑆 = 𝐹𝐶𝑜𝑝𝑠(𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟𝑠(𝑍)), (7)

 𝐴𝑑𝑗𝑀𝑎𝑡𝑟𝑖𝑥 = 𝐹𝐶𝑎𝑑𝑗1 (𝐹𝐶𝑎𝑑𝑗0(𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟𝑠(𝑍))), (8)

here FC denotes the fully connected layers and Transformers refer to the transformer

blocks. Finally, we can obtain the model architecture from the reconstructed graphs.

3. Invertible Neural Network

An overview of the Invertible Neural Network (INN) can be seen in Figure 4. During

the training process, the latent representation 𝑥 is obtained from the graph encoder and

is flattened to have a dimension of |𝑉| ∙ 16. The input and output dimensions of the INN

must be the same. In our case, the output 𝑦 has a dimension of 1, representing the

architecture accuracy. The remaining dimensions of the output are |𝑉| ∙ 16 − 1 for 𝑧,

which is obtained from a normal distribution and is independent of 𝑦.

doi:10.6342/NTU202300924

26

We utilize the implementation of the INN introduced by [10] and adjusts certain

hyperparameters. In our work, we employ an INN with two-coupling layers and 4 hidden

layers, each with a hidden dimension of 128.

Figure 4: The forward and inverse processes of INN.

During training, the Invertible Neural Network (INN) is trained on both the forward

and inverse tasks. In the forward training process, the input data is denoted as 𝑥. The

objective is to minimize the regression loss, which quantifies the difference between the

predicted output y and the corresponding true label. Additionally, the distance between

𝑧|𝑦 and a normal distribution is minimized using a function that quantifies the

dissimilarity between two probability distributions.

The reason for concatenating 𝑧 with 𝑦 when calculating the gradient of 𝑧 is to

ensure that 𝑧 and 𝑦 are independent for convergence. This condition guarantees that

𝑝(𝑧|𝑦) is equal to the prior distribution 𝑝(𝑧). Consequently, during the inverse process,

𝑦 can be successfully inverted by sampling different 𝑧 values from the normal

distribution.

doi:10.6342/NTU202300924

27

During the training of the inverse process, the 𝑦 value is concatenated with a

randomly sampled normal distribution 𝑧 as input. The objective of the reverse loss is to

quantify the dissimilarity between the output data 𝑦 and the original input data 𝑥. It

serves as a measure of how well the INN model can reverse from output data to the input

data. By minimizing the reverse loss, the model aims to enhance its ability to accurately

reconstruct the original input from the obtained output.

C. Training Method

1. Objective function

(a) Graph Variational Autoencoder

The Graph Variational Autoencoder (GVAE) aims to reconstruct the input graph,

with regularization of the latent representation achieved through minimization of the KL-

divergence. The loss function for the GVAE is defined as:

 𝐿𝐺𝑉𝐴𝐸 = 𝛼𝐿𝑛𝑜𝑑𝑒𝑠 + 𝛽𝐿𝑒𝑑𝑔𝑒𝑠 + 𝛾𝐿𝐾𝐿 . (9)

The terms 𝐿𝑛𝑜𝑑𝑒𝑠 and 𝐿𝑒𝑑𝑔𝑒𝑠 terms, which measure the reconstruction loss for the

node features and adjacency matrix, respectively. In our implementation, we utilize cross-

entropy loss for both 𝐿𝑛𝑜𝑑𝑒𝑠 and 𝐿𝑒𝑑𝑔𝑒𝑠. The tradeoff weights 𝛼 and 𝛽 between these

terms are determined by hyperparameters, which in our case are set to 1.0 for both 𝐿𝑛𝑜𝑑𝑒𝑠

and 𝐿𝑒𝑑𝑔𝑒𝑠.

The 𝐿𝐾𝐿 term represents the KL-divergence between the learned latent distribution

doi:10.6342/NTU202300924

28

and the prior distribution, which serves as a regularization term. In our implementation,

the weight for this term, 𝛾, is set to 0.16.

By optimizing the 𝐿𝐺𝑉𝐴𝐸 objective function, the GVAE model is able to reconstruct

the input graph while ensuring a meaningful and regularized latent representation. The

architecture of the GVAE model is visualize in Figure 5.

Figure 5: GVAE

(b) Invertible Neural Network

In our implementation, the loss function for an invertible network consists of three

terms: 𝐿𝐼𝑁𝑁 = 𝐿𝑟𝑒𝑔 + 𝐿𝑟𝑒𝑣 + 𝐿𝑙𝑎𝑡𝑒𝑛𝑡. The first term, 𝐿𝑟𝑒𝑔, is supervised regression term.

The mean squared error (MSE) loss is used in our implementation to measure the

difference between the predicted accuracy and the true accuracy of the architectures. The

second term, 𝐿𝑟𝑒𝑣, is an unsupervised reverse loss. It measures the difference between

the inverse result and the input data. The final term, 𝐿𝑙𝑎𝑡𝑒𝑛𝑡, is an unsupervised latent

doi:10.6342/NTU202300924

29

loss. It ensures that the predicted latent variable 𝑧 follows a predefined normal

distribution. We use the Maximum Mean Discrepancy (MMD) function as the latent loss,

but other loss functions such as KL-divergence can also be used to measure the

distribution distance.

To balance the contribution of these terms, we set tradeoff weights. Specifically, we

assign weights of 5.0, 10.0, and 1.0 to 𝐿𝑟𝑒𝑔 , 𝐿𝑟𝑒𝑣 , and 𝐿𝑙𝑎𝑡𝑒𝑛𝑡 , respectively. These

weights determine the relative importance of each term in the overall loss function.

2. Pre-train GVAE

In our approach, we initially pretrain our Graph Variational Autoencoder (GVAE)

model with unlabeled architecture graph data from the search space. This pretraining step

enables the decoder to reconstruct the architecture graphs from the latent representations,

leveraging a large amount of unlabeled data available in the search space. This self-

supervised training mechanism is efficient since it does not require training actual

architecture which would require a time-consuming process. In scenarios where there is

no tabular benchmark available for querying architecture performance, training the actual

architectures would require significant time and resources. By pretraining the GVAE

model, the encoder can extract meaningful features from the unlabeled architectures,

which can be beneficial for downstream tasks. We partition the architecture datasets into

three subsets. 80% of the total data is allocated for training, 10% for validation, and the

doi:10.6342/NTU202300924

30

remaining 10% for testing. Subsequently, we train our GVAE model for 500 epochs. We

set the batch size to 64 and use the Adam optimizer. The learning rate is set to 1e-3,

adhering to the default setting for Tensorflow machine learning framework. We employ

the ReduceLROnPlateau learning rate scheduler which is provided by Tensorflow and we

set the factor to 0.1. This means the leaning rate multiplied by 0.1 when reduced. We set

the patience parameter to 50; thus, if there is no improvement in the validation loss for 50

consecutive epochs, the learning rate is subsequently reduced. We employing an early

stopping technique for 100 patience that monitors the validation loss. The training process

will be terminated if the validation loss does not show any improvement for 100

consecutive epochs. Additionally, we restore the weights corresponding to the best

validation loss achieved during training.

3. Fine-tune INN

Next, we have two options for the fine-tuning method. The first option is partial fine-

tuning, where we freeze the weights of the GVAE, and perform partial fine-tuning of the

INN's weights via gradient descent. The second option is end-to-end fine-tuning, where

both weights of GVAE and INN are fine-tuned using the gradient descent method.

Although the partial fine-tuning process is more efficient than the end-to-end fine-tuning

process, as it involves fewer number of weights requiring training, the end-to-end fine-

tuning approach performs well empirically. We will compare these two fine-tuning

doi:10.6342/NTU202300924

31

methods in our experiments.

For the initial training, we set it to 50 for training dataset and 50 for validation dataset.

This dataset size corresponds to 0.023% of the NAS-Bench-101 search space and 0.64%

of the NAS-Bench-201 search space. In the INN training pipeline, it is necessary to

predict the random variable z to match a predefined distribution, which is normal

distribution in our case. However, a training set of 50 data might too small for INN

converging, so we augment the training data during the fine-tuning process by simply

repeating the data by a factor. We set this factor to 20 in our approach, so the size of initial

training dataset becomes 50 × 20 = 1000 data in total.

D. Retrain and Search

1. Algorithm

In our approach, the retraining and searching procedures are performed iteratively.

We begin by performing a search for well-performing architectures by inversely mapping

the highest accuracy (1.0) to the corresponding architectures. These architectures are then

added to the training dataset for retraining. This iterative procedure continues until a

predefined query budget or maximum number of retraining runs is reached. The final

search results are reported by selecting the top-performing architecture from our records.

The details of this procedure can refer to Algorithm 1. In each search iteration, we

first generate 200 unseen neural architectures by inversely mapping (1.0) to the latent

doi:10.6342/NTU202300924

32

representation of corresponding architectures via invertible neural network. Subsequently,

the latent representation is decoded using the graph decoder, allowing us to obtain the

corresponding neural architectures. Now we have 200 candidates of neural architectures.

How do we select which of them to query the true accuracy from tabular benchmark and

add them to the training dataset? We use our graph encoder coupled with the INN to

predict the accuracy of these candidates. This step does not use the query budget until we

perform the query from the tabular benchmark. We then select top-𝑘 predicted accuracy

candidates to query the true accuracy of them from the tabular benchmark and include

them in the training dataset for retraining. In our approach, we select top-5 candidates in

each iteration.

Because the model gradually converges to a local or global optimal region, the

diversity of generated architectures from the decoder decreases. As a result, it becomes

challenging to find new candidates of neural architectures. To address this issue, if the

decoder fails to generate enough number of new architectures, we add some noise from a

normal distribution with a mean of 0 and a standard deviation of 𝛼 to the latent

representation of the neural architecture before feeding it into the decoder. The range of

𝛼 is 0.0 to 0.1, and we increase 𝛼 incrementally until we can collect 100 candidates in

each searching phase or reach the maximum generation budget. This approach helps to

maintain exploration and discover of new architecture candidates during the search

doi:10.6342/NTU202300924

33

process.

(a) 1st iteration

(b) 2nd iteration

(c) 3rd iteration

(d) Last iteration

Figure 6: This visualization, created via t-SNE, demonstrates the retraining and

searching process for each iteration on CIFAR-10 of the NAS-Bench-201 search space.

The 100 candidates, generated by inversely mapping 1.0, are color-coded, while the

non-selected neural architectures are displayed in grey.

2. Rank-based Weighted Loss

The rank-based weighted loss is inspired by the generative Latent Space

Optimization (LSO) technique used in AG-Net [9]. The main principle of this approach

is to pay more attention to higher accuracy data, and pay less attention to lower accuracy

data. We achieve this by multiplying a weight to the loss value of each data point based

on its rank of accuracy. The formula for the rank based weight is proposed by [24] and

we adapt it for our method. Our rank-based weight function can be defined as follows:

doi:10.6342/NTU202300924

34

 𝑤𝑖(𝑥𝑖 , 𝐵, 𝑘) =
1

𝑘|𝐵| + 𝑟𝑎𝑛𝑘(𝑥𝑖 , 𝐵)
, 𝑥𝑖 ∈ 𝐵, 𝑖 = 1, … , |𝐵|, (10)

 𝑟𝑎𝑛𝑘(𝑥𝑖 , 𝐵) = |{𝑥𝑗: 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝑥𝑗) > 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝑥𝑖), 𝑥𝑗 ∈ 𝐵}|, (11)

where 𝑥𝑖 is an architecture graph data within a mini-batch 𝐵 and 𝑘 is a

hyperparameter that controls the smoothness of the weights. We set 𝑘 to 1e-3 which is

similar to [9].

In this approach, the model incrementally trains on higher-accuracy data during the

iterative retraining and searching process. While high-accuracy data is more important

than low-accuracy data in NAS tasks, our model does not need to be capable of predicting

all of the data in the search space. Instead, it focuses on high-accuracy region. We will

assess the impact of this technique in the ablation studies section.

doi:10.6342/NTU202300924

35

Algorithm 1: Search and Retrain

 input: (i) Encoder 𝐸, Decoder 𝐷 and Invertible neural network 𝐼𝑁𝑁

 input: (ii) Query budget 𝑏 and Maximum runs 𝑟

 input: (iii) Retrain epochs 𝑒

 input: (iv) Training dataset 𝐷𝑇 and Validation dataset 𝐷𝑉

1 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 ← 0

2 while |𝐷𝑇 ∪ 𝐷𝑉 | < 𝑏 do

3 𝐺𝑐𝑎𝑛𝑑 ← {};

 /* Generate 100 candidates by inverse 1.0 */

4 while |𝐺𝑐𝑎𝑛𝑑| < 100 do

5 𝑧 ∼ 𝑁(0, 𝐼);

6 𝑔 ← 𝐷(inverse(𝐼𝑁𝑁, 1.0, 𝑧));

7 if 𝑔 ∉ 𝐷𝑇 ∪ 𝐺𝑐𝑎𝑛𝑑 then

8 𝐺𝑐𝑎𝑛𝑑 ← 𝐺𝑐𝑎𝑛𝑑 ∪ {𝑔};

9 end

 /* Predict accuracy of architectures in 𝐺𝑐𝑎𝑛𝑑 by using 𝐼𝑁𝑁, 𝐸 and

 then select top-𝑘 candidates */

10 𝐺𝑐𝑎𝑛𝑑 ← select (𝐺𝑐𝑎𝑛𝑑, 𝐸, 𝐼𝑁𝑁, 𝑘);

 /* Query the true label and add them to training set */

11 𝐷𝑇 ← 𝐷𝑇 ∪ eval(𝐺𝑐𝑎𝑛𝑑);

12 train(𝐸, 𝐷, 𝐼𝑁𝑁, 𝐷𝑇, 𝐷𝑉, 𝑒);

13 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 ← 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 + 1;

14 if 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 ≥ 𝑟 then

15 break;

16 end

doi:10.6342/NTU202300924

36

doi:10.6342/NTU202300924

37

Chapter 4 Experiments

We apply our neural architecture method on two tabular NAS benchmarks, including

NAS-Bench-101 [12] and the NAS-Bench-201 [13]. The experimental results show that

our method is comparable to other state-of-the-art NAS methods. The experiment is

divided into three parts. First, we introduce the metrics in our experiments, which include

the ability to conduct the architecture search, regression and inversion. Second, we

provide the neural architecture search results, regression results, and a visualization of

inversion ability on the NAS-Bench-101 benchmark. We compare the architecture search

results with those from other studies. Finally, we also present the results of the

aforementioned tasks on the NAS-Bench-201 benchmark. In the regression and inversion

experiments, to better illustrate our concept of using the Invertible Neural Network (INN)

to obtained neural architectures from their accuracy, we train a model using 350 training

data and 50 validation data for the regression and inversion experiments.

A. Evaluation Metrics

This section introduces the evaluations we conducted on both NAS benchmarks.

1. Architecture Search

The evaluation of architecture search is determined by how accurately (i.e., with

high accuracy) the neural architectures can be found given a certain query budget or wall

time. We use the same settings for both NAS benchmarks, including fine-tuning method

doi:10.6342/NTU202300924

38

and the use of rank-based weighted loss. The only adjustable setting is the query budget,

which we modify for comparisons with other works. We report the search results for ten

independent runs in our experiments, including the means and standard deviations.

2. Regression

In the evaluation of regression, we plot the graph of 𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡 against 𝑦𝑡𝑟𝑢𝑒 to

illustrate the correlation between predicted accuracy 𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡 and true accuracy 𝑦𝑡𝑟𝑢𝑒 of

the neural architectures. This demonstrates how well our model can handle the regression

task with unseen data from the testing dataset.

3. Inversion

We use the re-simulation concept in our inversion evaluations. The re-simulation

error measures the difference between the accuracy used as input for the Invertible Neural

Network (INN) and the true accuracy of the architecture, which is the inverted output

from the INN.

The inversion experiment is divided into two parts. First, we use the accuracy from

the datasets as input for inversion. Second, we use a range from 0.0 to 1.0, with a step of

0.005, as inversion input. For visualization this experiment, we use the accuracy 𝑦′ as

the input for our INN model and invert it to the latent representation. Subsequently, we

use the decoder to decode the latent representation and obtain the neural architecture 𝑥.

We query the true accuracy 𝑦 of 𝑥 from the tabular benchmark and plot the 𝑦′, 𝑦

doi:10.6342/NTU202300924

39

graph to measure the inversion capability of our model.

B. NAS-Bench-101

1. Architecture Search

We report the best accuracy of architectures we found under the query budget of 190,

300, 500 in Table 1. We compare our results to other methods, including Arch2Vec [4],

AG-Net [9], CR-LSO [7] and traditional genetic or optimization algorithms which served

as baseline methods. These include BANANAS [11], Random Search (RS) [25], Local

Search (LS) [26, 27], Regularized Evolution (RE) [28].

Our results outperform the baseline methods and CR-LSO, which is the state-of-the-

art method on the ImageNet16-120 dataset of NAS-Bench-201. However, the

performance of CR-LSO on NAS-Bench-101 is not as good as its performance on NAS-

Bench-201. Additionally, our results also comparable to the results of AG-Net.

Table 1: The comparison results on NAS-Bench-101. The means and standard

deviations are reported.

Method Val. Acc Val. StD Test Acc Test StD Queries

Optimal* 95.06 - 94.32 -

BANANAS 94.69 0.08 94.14 0.11 192

RS 94.19 0.50 93.47 0.47 192

LS 94.67 0.21 93.73 0.44 192

RE 94.22 0.27 93.63 0.35 192

AG-Net 94.90 0.22 94.18 0.10 192

Ours 94.62 0.22 94.02 0.14 190

BANANAS 94.76 0.13 94.16 0.11 300

AG-Net 94.96 - 94.20 - 300

doi:10.6342/NTU202300924

40

Ours 94.96 0.18 94.21 0.05 300

Arch2Vec-RL - - 94.10 - 400

CR-LSO - - 93.97 2e-3 500

BANANAS 94.79 0.13 94.16 0.11 500

AG-Net 94.97 0.16 94.20 0.07 500

Ours 95.03 0.10 94.22 0.04 500

2. Regression

In this experiment, we use 350 data points for the training set, 50 data points for the

validation set, and 10% of the entire search space data for the testing set. The visualization

results are provided on Figure 7. We can observe our proposed model architecture can fit

the regression tasks even on this large search space (423K), by using approximately 0.1%

of the data.

3. Inversion

We have two parts of inversion experiment. First is use the accuracy from the

datasets as input for inversion and second is use a range from 0.0 to 1.0, with a step of

0.005, as inversion input. The results of first part are provided on Figure 8, and the second

part is shown in Figure 9.

doi:10.6342/NTU202300924

41

(a) Training set

(b) Testing set

Figure 7: Regression results on NAS-Bench-101.

doi:10.6342/NTU202300924

42

(a) Training set

(b) Testing set

Figure 8: Inversion results on NAS-Bench-101

doi:10.6342/NTU202300924

43

Figure 9: Inversion result over a range on NAS-Bench-101.

C. NAS-Bench-201

1. Architecture Search

We present the accuracy of architectures we discovered under query budget of 190

and 400, on three datasets from NAS-Bench-201 benchmark, including CIFAR-10,

CIFAR-100 and ImageNet16-120. We compare our results to other state-of-the-art

methods, including AG-Net [9], CR-LSO [7] and traditional genetic or optimization

algorithms which served as baseline methods. These include BANANAS [11], Random

Search (RS) [25], Local Search (LS) [26, 27], Regularized Evolution (RE) [28].

In Table 2, we demonstrate our neural architecture search results alongside several

baseline methods on NAS-Bench-201 search space. With a query budget of 190, our

doi:10.6342/NTU202300924

44

approach is comparable to the AG-Net on three datasets, and outperforms AG-Net in

terms of test accuracy on the ImageNet16-120 dataset. Additionally, the cost of our

methods (measured in GPU hours) is only one-tenth of AG-Net. Our result on test

accuracy of ImageNet16-120 dataset is superior to CR-LSO, which is the state-of-the-art

method on this dataset, even though we use an extremely lower query budget (190 vs

500). Furthermore, we can identify the global optimal neural architectures on CIFAR-10

and CIFAR-100 datasets. For more details, we provide the means and standard deviations

of ten independent trials in Table 7 of Appendix A.

Table 2: The comparison results on NAS-Bench-201. The means are reported.

Method
CIFAR-10 CIFAR-100 ImageNet16-120

Queries
GPU

hours Val. Test Val. Test Val. Test

Optimal* 91.61 94.37 74.39 73.51 46.73 47.31

BANANAS 91.55 94.26 73.49* 73.51* 46.68 46.49 192 0.05

RS 91.27 94.02 72.12 72.31 45.67 46.08 192 0.01

LS 91.53 94.31 73.28 73.25 46.44 46.77 192 0.01

RE 91.48 94.94 72.86 72.98 46.04 46.43 192 0.01

AG-Net 91.60 94.37* 73.49* 73.51* 46.64 46.43 192 5

Ours 91.60 94.37 73.49* 73.51* 46.61 46.98 190 0.5

CR-LSO 91.54 94.35 73.44 73.47 46.51 46.98 500 0.13

AG-Net 91.61* 94.37* 73.49* 73.51* 46.73* 46.42 400 5.2

Ours 91.61* 94.37* 73.49* 73.51* 46.70 47.20 400 1.2

2. Regression

We provide the visualization results of CIFAR-10 on Figure 11. The results for the

remaining two datasets are provided on Figure 15 of Appendix A. We can see our model

doi:10.6342/NTU202300924

45

fits the regression tasks on these datasets well. In this experiment, we use 350 data points

for the training set, 50 data points for the validation set, and 10% of the entire search

space data for the testing set.

3. Inversion

We have two parts of inversion experiment. First is use the accuracy from the

datasets as input for inversion and second is use a range from 0.0 to 1.0, with a step of

0.005, as inversion input. The results of first part are provided on Figure 12, and the

second part is shown in Figure 10. For the results of remaining two datasets can refer to

Figure 16 and Figure 17 on Appendix A.

Figure 10: Inversion result over a range on CIFAR-10.

doi:10.6342/NTU202300924

46

doi:10.6342/NTU202300924

47

(a) Training set on CIFAR-10

(b) Testing set on CIFAR-10

Figure 11: Regression results on CIFAR-10.

doi:10.6342/NTU202300924

48

(a) Training set on CIFAR-10

(b) Testing set on CIFAR-10

Figure 12: Inversion results on CIFAR-10.

doi:10.6342/NTU202300924

49

doi:10.6342/NTU202300924

50

Chapter 5 Ablation Studies

A. Choice of Candidates Generative Methods

To demonstrate the effectiveness of our concept, which involves using an invertible

neural network to obtain high-performing neural architecture candidates by inversely

mapping 1.0, and thus enhancing the performance of NAS, we compare our approach

with an alternative method that replaces our candidate generation process with random

selection. In Table 3 and Table 4, the random selection method, used as a candidate

generative approach, performs significantly worse than our method.

Table 3: The comparision of the candidate generative methods on NAS-Bench-101.

Method Val. Acc Val. StD Test Acc Test StD Queries

Optimal* 95.06 - 94.32 -

Ours-Random 94.41 0.13 93.80 0.11 190

Ours 94.62 0.22 94.02 0.14 190

Ours-Random 94.54 0.09 93.96 0.09 300

Ours 94.96 0.18 94.21 0.05 300

Table 4: The comparision of the candidate generative methods on NAS-Bench-201.

Method
CIFAR-10 CIFAR-100 ImageNet16-120 Queries

Val. Test Val. Test Val. Test

Optimal* 91.61 94.37 74.39 73.51 46.73 47.31

Ours-Random 91.36 94.20 72.73 72.97 46.34 46.58 190

Ours 91.60 94.37 73.49* 73.51* 46.61 46.98 190

Ours-Random 91.52 94.33 73.09 73.40 46.55 47.00 400

Ours 91.61* 94.37* 73.49* 73.51* 46.70 47.20 400

B. Choice of Fine-tune Methods

In this section, we will compare the impacts of using the end-to-end fine-tuning and

doi:10.6342/NTU202300924

51

partial fine-tuning methods on the neural architecture search process. In Table 5, we report

the mean results of the neural architecture search for both fine-tuning methods on NAS-

Bench-201. We can observe the end-to-end fine-tuning method outperforms the partial

fine-tuning method in most cases, regardless of the use of rank-based weighted loss.

Table 5: This table compares the two fine-tuning methods. The methods denoted with

the postfix 'R' utilize a rank-based weighted loss.

Method
CIFAR-10 CIFAR-100 ImageNet16-120 Queries

Val. Test Val. Test Val. Test

Optimal* 91.61 94.37 74.39 73.51 46.73 47.31

Ours-Partial 91.57 94.36 73.40 73.44 46.60 46.83 200

Ours-E2E 91.58 94.34 73.46 73.48 46.54 46.78 200

Ours-Partial-R 91.60 94.37 73.49* 73.51* 46.64 46.98 200

Ours-E2E-R 91.61* 94.37* 73.49* 73.51* 46.62 47.01 200

In Figure 13, we compare the search curves of these two fine-tuning methods,

including the use of rank-based weighted loss, using the CIFAR-10 dataset of NAS-

Bench-201. We can observe that when employing the end-to-end fine-tuning method, the

optimal architecture was discovered with fewer queries.

doi:10.6342/NTU202300924

52

(a) Partial fine-tuning

(b) End-to-End fine-tuning

Figure 13: The comparison of search curves for fine-tuning methods with rand-based

weighted loss on CIFAR-10 dataset of NAS-Bench-201.

C. Whether Using Rank-based Weighted Loss

In Table 6, we compare the utilization of rank-based weighted loss. The model,

updated with a rank-based weighted loss, can converge to the region of well-performing

architectures. According to the results, the application of this technique outperforms all

results achieved without using it. Additionally, Figure 14 provides a comparison of the

search curves on NAS-Bench-201.

Table 6: A comparison of the use of rank-based weighted loss. Methods with a ‘R’

postfix denote the utilization of rank-based weighted loss.

Method
CIFAR-10 CIFAR-100 ImageNet16-120 Queries

Val. Test Val. Test Val. Test

Optimal* 91.61 94.37 74.39 73.51 46.73 47.31

Ours-Partial 91.57 94.36 73.40 73.44 46.60 46.83 200

Ours-Partial-R 91.60 94.37 73.49* 73.51* 46.64 46.98 200

Ours-E2E 91.58 94.34 73.46 73.48 46.54 46.78 200

Ours-E2E-R 91.61* 94.37* 73.49* 73.51* 46.62 47.01 200

doi:10.6342/NTU202300924

53

(a) CIFAR-10 w/o weighted loss

(b) CIFAR-10 with weighted loss

(c) CIFAR-100 w/o weighted loss

(d) CIFAR-100 with weighted loss

(e) ImageNet16-120 w/o weighted loss

(f) ImageNet16-120 with weighted loss

Figure 14: Comparison of search curves with and without the use of rank-based

weighted loss on NAS-Bench-201.

doi:10.6342/NTU202300924

54

Chapter 6 Conclusion

This paper proposes a novel concept to solve neural architecture search (NAS)

problems. We employ an invertible neural network (INN) coupled with a graph

variational autoencoder to identify the best-performing neural architecture in the latent

space by inversely mapping the upper-bound accuracy (1.0) to corresponding neural

architectures.

Drawing inspiration from state-of-the-art works, we implement rank-based weighted

loss to guide our model to focus on the region of high-performing neural architectures.

We then retraining our model iteratively, using an increasing number of high-performing

architectures. The experimental results show that our approach outperforms not only the

baseline but also some state-of-the-art results on NAS-Bench-101 and NAS-Bench-201

search spaces.

doi:10.6342/NTU202300924

55

References

[1] A. Zela, J. N. Siems, L. Zimmer, J. Lukasik, M. Keuper, and F. Hutter, "Surrogate

NAS benchmarks: Going beyond the limited search spaces of tabular NAS

benchmarks," in Tenth International Conference on Learning Representations,

2022: OpenReview. net, pp. 1-36.

[2] W. Wen, H. Liu, Y. Chen, H. Li, G. Bender, and P.-J. Kindermans, "Neural

predictor for neural architecture search," in Computer Vision–ECCV 2020: 16th

European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part

XXIX, 2020: Springer, pp. 660-676.

[3] J. Wu et al., "Stronger nas with weaker predictors," Advances in Neural

Information Processing Systems, vol. 34, pp. 28904-28918, 2021.

[4] S. Yan, Y. Zheng, W. Ao, X. Zeng, and M. Zhang, "Does unsupervised architecture

representation learning help neural architecture search?," Advances in Neural

Information Processing Systems, vol. 33, pp. 12486-12498, 2020.

[5] Y. Tang et al., "A Semi-Supervised Assessor of Neural Architectures," in 2020

IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Los

Alamitos, CA, USA, June 2020: IEEE Computer Society, pp. 1807-1816. [Online].

Available: https://doi.ieeecomputersociety.org/10.1109/CVPR42600.2020.00188.

[Online]. Available:

https://doi.ieeecomputersociety.org/10.1109/CVPR42600.2020.00188

[6] J. Lukasik, D. Friede, A. Zela, F. Hutter, and M. Keuper, "Smooth Variational

Graph Embeddings for Efficient Neural Architecture Search," in International

Joint Conference on Neural Networks, {IJCNN} 2021, Shenzhen, China, July 18-

22, 2021, 2021.

[7] X. Rao, B. Zhao, X. Yi, and D. Liu, "CR-LSO: Convex Neural Architecture

Optimization in the Latent Space of Graph Variational Autoencoder with Input

Convex Neural Networks," arXiv preprint arXiv:2211.05950, 2022.

[8] S. S. C. Rezaei et al., "Generative adversarial neural architecture search," arXiv

preprint arXiv:2105.09356, 2021.

[9] J. Lukasik, S. Jung, and M. Keuper, "Learning Where To Look–Generative NAS

is Surprisingly Efficient," in Computer Vision–ECCV 2022: 17th European

Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXIII, 2022:

Springer, pp. 257-273.

[10] L. Ardizzone et al., "Analyzing Inverse Problems with Invertible Neural

Networks," p. arXiv:1808.04730doi: 10.48550/arXiv.1808.04730.

[11] C. White, W. Neiswanger, and Y. Savani, "Bananas: Bayesian optimization with

https://doi.ieeecomputersociety.org/10.1109/CVPR42600.2020.00188
https://doi.ieeecomputersociety.org/10.1109/CVPR42600.2020.00188

doi:10.6342/NTU202300924

56

neural architectures for neural architecture search," in Proceedings of the AAAI

Conference on Artificial Intelligence, 2021, vol. 35, no. 12, pp. 10293-10301.

[12] C. Ying, A. Klein, E. Christiansen, E. Real, K. Murphy, and F. Hutter, "Nas-bench-

101: Towards reproducible neural architecture search," in International

Conference on Machine Learning, 2019: PMLR, pp. 7105-7114.

[13] X. Dong and Y. Yang, "NAS-Bench-201: Extending the Scope of Reproducible

Neural Architecture Search," in International Conference on Learning

Representations (ICLR), 2020. [Online]. Available:

https://openreview.net/forum?id=HJxyZkBKDr. [Online]. Available:

https://openreview.net/forum?id=HJxyZkBKDr

[14] H. Liu, K. Simonyan, and Y. Yang, "Darts: Differentiable architecture search,"

arXiv preprint arXiv:1806.09055, 2018.

[15] C. Liu et al., "Progressive neural architecture search," in Proceedings of the

European conference on computer vision (ECCV), 2018, pp. 19-34.

[16] B. Deng, J. Yan, and D. Lin, "Peephole: Predicting network performance before

training," arXiv preprint arXiv:1712.03351, 2017.

[17] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, "How Powerful are Graph Neural

Networks?," p. arXiv:1810.00826doi: 10.48550/arXiv.1810.00826.

[18] S. Yan, K. Song, F. Liu, and M. Zhang, "CATE: Computation-aware Neural

Architecture Encoding with Transformers," p. arXiv:2102.07108doi:

10.48550/arXiv.2102.07108.

[19] K. Jing, J. Xu, and P. Li, "Graph Masked Autoencoder Enhanced Predictor for

Neural Architecture Search," in Proceedings of the Thirty-First International

Joint Conference on Artificial Intelligence, {IJCAI-22}, L. D. Raedt, Ed., July

2022: International Joint Conferences on Artificial Intelligence Organization, pp.

3114-3120. [Online]. Available: https://doi.org/10.24963/ijcai.2022/432. [Online].

Available: https://doi.org/10.24963/ijcai.2022/432

[20] D. P. Kingma and M. Welling, "Auto-encoding variational bayes," arXiv preprint

arXiv:1312.6114, 2013.

[21] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini, "The

graph neural network model," IEEE transactions on neural networks, vol. 20, no.

1, pp. 61-80, 2008.

[22] T. N. Kipf and M. Welling, "Semi-supervised classification with graph

convolutional networks," arXiv preprint arXiv:1609.02907, 2016.

[23] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Bengio,

"Graph attention networks," arXiv preprint arXiv:1710.10903, 2017.

[24] A. Tripp, E. Daxberger, and J. M. Hernández-Lobato, "Sample-efficient

https://openreview.net/forum?id=HJxyZkBKDr
https://openreview.net/forum?id=HJxyZkBKDr
https://doi.org/10.24963/ijcai.2022/432
https://doi.org/10.24963/ijcai.2022/432

doi:10.6342/NTU202300924

57

optimization in the latent space of deep generative models via weighted

retraining," Advances in Neural Information Processing Systems, vol. 33, pp.

11259-11272, 2020.

[25] L. Li and A. Talwalkar, "Random search and reproducibility for neural

architecture search," in Uncertainty in artificial intelligence, 2020: PMLR, pp.

367-377.

[26] T. Den Ottelander, A. Dushatskiy, M. Virgolin, and P. A. Bosman, "Local search

is a remarkably strong baseline for neural architecture search," in Evolutionary

Multi-Criterion Optimization: 11th International Conference, EMO 2021,

Shenzhen, China, March 28–31, 2021, Proceedings 11, 2021: Springer, pp. 465-

479.

[27] C. White, S. Nolen, and Y. Savani, "Exploring the loss landscape in neural

architecture search," in Uncertainty in Artificial Intelligence, 2021: PMLR, pp.

654-664.

[28] E. Real, A. Aggarwal, Y. Huang, and Q. V. Le, "Regularized evolution for image

classifier architecture search," in Proceedings of the aaai conference on artificial

intelligence, 2019, vol. 33, no. 01, pp. 4780-4789.

doi:10.6342/NTU202300924

58

Appendices

A. NAS-Bench-201

1. Architecture Search

Table 7: The comparison results on NAS-Bench-201. The mean and standard deviation

are reported.

Method
CIFAR-10 CIFAR-100

ImageNet16-

120
Queries

Val. Test Val. Test Val. Test

Optimal* 91.61 94.37 74.39 73.51 46.73 47.31

BANANAS
Mean 91.55 94.26 73.49* 73.51* 46.68 46.49

192
StD 0.15 0.22 0.00 0.00 0.09 0.42

RS
Mean 91.27 94.02 72.12 72.31 45.67 46.08

192
StD 0.23 0.21 0.90 0.92 0.52 0.60

LS
Mean 91.53 94.31 73.28 73.25 46.44 46.77

192
StD 0.15 0.15 0.52 0.58 0.18 0.25

RE
Mean 91.48 94.94 72.86 72.98 46.04 46.43

192
StD 0.13 0.21 0.83 0.79 0.54 0.38

AG-Net
Mean 91.60 94.37* 73.49* 73.51* 46.64 46.43

192
StD 0.02 0.00 0.00 0.00 0.12 0.34

Ours
Mean 91.60 94.37 73.49* 73.51* 46.61 46.98

190
Std 0.02 0.01 0.00 0.00 0.16 0.34

CR-LSO
Mean 91.54 94.35 73.44 73.47 46.51 46.98

500
StD 0.05 0.05 0.17 0.14 0.05 0.35

AG-Net
Mean 91.61* 94.37* 73.49* 73.51* 46.73* 46.42

400
StD 0.00 0.00 0.00 0.00 0.00 0.00

Ours
Mean 91.61* 94.37* 73.49* 73.51* 46.70 47.20

400
Std 0.00 0.00 0.00 0.00 0.06 0.20

doi:10.6342/NTU202300924

59

2. Regression

(a) Training set on CIFAR-10

(b) Testing set on CIFAR-10

doi:10.6342/NTU202300924

60

(c) Training set on CIFAR-100

(d) Training set on CIFAR-100

doi:10.6342/NTU202300924

61

(e) Training set on ImageNet16-120

(f) Testing set on ImageNet16-120

Figure 15: Regression results on CIFAR-100 and ImageNet16-120.

doi:10.6342/NTU202300924

62

3. Inversion

(a) Training set on CIFAR-100

(b) Testing set on CIFAR-100

doi:10.6342/NTU202300924

63

(c) Training set on ImageNet16-120

(d) Testing set on ImageNet16-120

Figure 16: Inversion results on CIFAR-100 and ImageNet16-120.

doi:10.6342/NTU202300924

64

(a) Inversion result over a range on CIFAR-100.

(b) Inversion result over a range on ImageNet16-120.

Figure 17: Inversion results over a range.

doi:10.6342/NTU202300924

65

B. Hyperparameters

Table 8: Hyperparameters of the GIN encoder.

Hyperparameter Value

Latent Dimension 16

MLP Dimension 128, 128, 128, 128

MLP Activation ReLU

Table 9: Hyperparameters of the Transformer decoder.

Hyperparameter Value

Node Embedding (d_model) 32

Num Layer 3

Num Head 3

Feed Forward Dimension 256

Table 10: Hyperparamters of the pretraining.

Hyperparameter Value

Optimizer Adam

Learning Rate 1e-3

Batch Size 64

Epoch 500

Learning Rate Scheduler ReduceLROnPlateau

ReduceLROnPlateau

Factor 0.1

Patience 50

Min LR 1e-5

Early Stopping Patience 100

Table 11: Hyperparameters of Invertible Neural Network.

Hyperparameter Value

Couple Layer 4

Hidden Layer 4

Hidden Dimension 128

Table 12: Hyperparameters of fine-tunning

Hyperparameter Value

Optimizer Adam

doi:10.6342/NTU202300924

66

Learning Rate 1e-3

Batch Size 64

Epoch 500

Learning Rate Scheduler ReduceLROnPlateau

ReduceLROnPlateau

Factor 0.1

Patience 25

Min LR 1e-5

Early Stopping Patience 50

Table 13: Hyperparameters of retraining

Hyperparameter Value

Optimizer Adam

Learning Rate 1e-3

Batch Size 64

Epoch 50

Early Stopping Patience 10

Table 14: Hyperparameters of searching

Hyperparameter Value

Top-K 5

Max Round 100

doi:10.6342/NTU202300924

67

	Acknowledgements
	摘要
	Abstract
	Chapter 1 Introduction
	Chapter 2 Related Work
	A. Neural Architecture Search
	B. NAS Benchmarks
	1. Introduction of NAS-Bench-101
	2. Introduction of NAS-Bench-201

	C. Performance Predictors
	D. Variational Autoencoders
	E. Graph Neural Networks
	1. Graph Convolutional Networks
	2. Graph Isomorphism Networks

	F. Graph Variational Autoencoders
	G. Invertible Neural Networks

	Chapter 3 Method
	A. Data Preprocessing
	1. Architecture Encoding
	2. NAS-Bench-101
	3. NAS-Bench-201

	B. Model Architecture
	1. Encoder
	2. Decoder
	3. Invertible Neural Network

	C. Training Method
	1. Objective function
	(a) Graph Variational Autoencoder
	(b) Invertible Neural Network

	2. Pre-train GVAE
	3. Fine-tune INN

	D. Retrain and Search
	1. Algorithm
	2. Rank-based Weighted Loss

	Chapter 4 Experiments
	A. Evaluation Metrics
	1. Architecture Search
	2. Regression
	3. Inversion

	B. NAS-Bench-101
	1. Architecture Search
	2. Regression
	3. Inversion

	C. NAS-Bench-201
	1. Architecture Search
	2. Regression
	3. Inversion

	Chapter 5 Ablation Studies
	A. Choice of Candidates Generative Methods
	B. Choice of Fine-tune Methods
	C. Whether Using Rank-based Weighted Loss

	Chapter 6 Conclusion
	References
	Appendices
	A. NAS-Bench-201
	1. Architecture Search
	2. Regression
	3. Inversion

	B. Hyperparameters

