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Abstract

In recent years, there has been an increasing fascination with the efficient and
automated discovery of high-performing neural architectures. However, evaluating
performance of each architecture is time-consuming as it requires actual training on a
prepared dataset. Therefore, the primary goal is to search for well-performing neural
architectures within a limited set of architectures that have been evaluated. To reduce the
need for actual training and labeled data, using surrogate models to predict the
performance of neural architectures has become popular. This approach is often coupled
with genetic algorithms or optimization algorithms such as Local Search (LS), Random
Search (RS) and Bayesian Optimization (BO) to identify better neural architectures
within the predefined search space. However, it has been observed that some methods
only use labeled training data and do not make full use of available unlabeled data, i.e.,
all untrained architectures themselves in the search space.

Our method is based on Invertible Neural Network (INN) to inversely map the neural
architecture from its performance. This method makes full use of the unlabeled data
(untrained neural architectures) within the entire search space to train a variational
autoencoder with a self-supervised learning mechanism. The variational autoencoder

transforms the architecture into a latent space. Then, the invertible neural network

doi:10.6342/NTU202300924



performs as a regressor to convert the latent representation of the architecture into its

performance. Finally, the invertible neural network can be used to infer the latent

representation of best-performing architectures. Coupled with the surrogate model

property of our method, it can predict the performance of candidate architectures and add

them to training data. Our model can iteratively learn to infer and inverse to better-

performing neural architectures.

Our method is evaluated on publicly widely used benchmarks for NAS which help

us to compare our work with other approaches, including NAS-Bench-101, NAS-Bench-

201. The results demonstrate that our method can search for better-performing neural

architectures with limited evaluated architectures and comparable with the state-of-the-

art approaches.

Keywords: Neural Architecture Search, Machine Learning, Graph Neural Network,

Variational Autoencoder, Generative Model, Invertible Neural Network
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Chapter 1 Introduction

In recent years, there has been an increasing fascination with Neural Architecture
Search (NAS) due to its ability to enables the automatic discovery of high-performing
neural architectures. This approach can save significant time and effort compared to
traditional manual design methods. The neural architecture search problem can be
transformed into a graph optimization problem, where the goal is to find the optimal
architecture represented as a directed acyclic graph (DAG). The graph's nodes symbolize
various operations, including convolution and pooling, while the edges illustrate the data
flow between these operations. The research on NAS aims to find the best neural
architecture that can achieve good performance on a given task while minimizing the
computational cost.

The methods based on performance predictor has recently become mature, which
roughly includes [1-4]. This method combines performance predictors with search
algorithms such as Random Search (RS), Local Search (LS), Evolutionary Algorithm
(EA), Bayesian Optimization (BO), etc., to find the well-performing architectures. When
more standard-trained architectures are available as training data, the performance
predictor performs better. However, collecting labeled data means that we need to train

and evaluate the architecture, and this process is extremely time-consuming.
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Reducing the requirement for evaluated architectures, i.e., labeled architecture data,

is the key to predictor-based NAS methods. Research has been focusing on how to

achieve better results with reduced labeled data, including semi-supervised learning [5]

and ensemble learning [3], among others. Some works have been effective in make full

use of untrained architectures within the search space as training data via self-supervised

learning. This involves converting discrete architectures into a latent space, which further

reduces the need for labeled data. Recent research [4, 6, 7] not only utilize the entire

unlabeled data in the search space but has also focus on the latent space optimization

(LSO) to obtain robust and better results.

Generative models are currently very popular for computer vision (CV) and natural

language processing (NLP). Some studies in the field of NAS have also used generative

methods to generate high-performing neural architectures. For example, GA-NAS [8]

leveraged the concept of GANs and improved upon it, while AG-Net [9] utilized the

GNNs decoder from SVGe [6] and made certain modifications to use it as a standalone

generative model to iteratively generate better neural architectures. This type of approach

often makes full use of unlabeled architecture within the search space, resulting in better

performance.

In our approach, we proposed a method that combines a graph variational

autoencoder (GVAE) with an invertible neural networks (INNs) [10]. We utilized the
2
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entire set of unlabeled data in the search space to pretrain the GVAE. As the pretrain

process does not require accuracy label for architectures, it is efficient and does not

require any queries on tabular benchmarks. The encoder maps the architectures to the

latent space and we fine-tune the INNs with the latent representation and the accuracy of

each architecture as the objective. The INNs can be used to inverse the accuracy to the

latent representation, and then the decoder can be used to decode the latent representation

to obtain the corresponding neural architectures. We also can use whole model as a

performance predictor to select the top architectures. Inspired by AG-Net [9], where the

generator is iteratively retrained with successful architectures generated in previous

iterations to gradually move towards the high-performing region, we generate the

potential architectures by inverting the highest accuracy score (i.e., 1.0) and predict their

performance. We then select the top-performing architectures to evaluate their true

accuracy and add them to training set to retrain the model. This iterative process enables

our approach to continuously improve its performance by discovering well-performing

architectures and retraining the model accordingly. Our method does not rely on

traditional NAS algorithms such as LS, BO, or EA, which makes it more efficient

compared to those methods. Additionally, our approach generates architectures using a

reliable latent representation instead of random noise, which distinguishes it from AG-

Net [9], where the neural architecture is generated from a normal distribution.
3
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Extensive experiments have been conducted to evaluate the reproducibility and

stability of our proposed method with multiple independent runs, as well as its ability to

improve query efficiency and search results compared to baseline methods. We show that

our method is better than many existing NAS methods, including baseline methods such

as RS, LS, BO, EA. Additionally, our approach exhibits competitive performance

compared to state-of-the-art approaches such as BANANAS [11], AG-Net [9] and CR-

LSO [7] on representative NAS benchmark sets, including NAS-Bench-101 [12] and

NAS-Bench-201 [13]. We provide more detail about experiments in Chapter 4. Our

contributions can be summarized as follows.

1.  We make full use of unlabeled architectures within the entire search space to pre-

train a graph variational autoencoder (GVAE) through self-supervised learning. This

process involves embedding the discrete architectures into the latent space. By doing

so, the graph encoder can extract the similarity of neural architectures and reduce

the required amount of labeled data.

2. Our approach generates neural architectures by inverting their performance into a

latent representation, and then employing a graph decoder to transform them into

discrete architectures. This invertible property enables us to not only generate the

best-performing neural architecture but also to discover one that is most proximate

to a predetermined performance goal.
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3. Experiment results on two NAS benchmarks, specifically NAS-Bench-101 and

NAS-Bench-201, demonstrate that our NAS method attains competitive outcomes

in comparison to other state-of-the-art NAS methods, in terms of both query

efficiency and model performance.

The remainder is organized as follows: Chapter 2 introduces the related works

relevant to this paper. Chapter 3 presents the proposed method in details, including the

data preprocessing, model architectures, and training pipelines. In Chapter 4,

experimental settings and results are reported. Chapter 5 features an ablation study

discussing the selection of fine-tuning methods, the utilization of rank-based weighted

loss, and the resulting impact on performance. Lastly, Chapter 6 summarize our work and

outlines directions for future research.
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doi:10.6342/NTU202300924



Chapter 2 Related Work
A. Neural Architecture Search

Essentially, Neural Architecture Search (NAS) can be transformed into a graph
optimization problem that aims to find the optimal configuration of operations for each
node, such as convolution, pooling, non-operation, and skip connection, within a discrete
search space. Typically, these architectures are represented as directed acyclic graphs
(DAGs), and we impose certain constraints to define the search space. The goal is to
efficiently explore this space to identify the optimal architecture that maximizes
performance while satisfying the given constraints.

The discrete nature of neural architectures poses a challenge for applying gradient-
based optimization methods. To overcome this problem, some NAS approaches utilize
discrete encoding schemes to representing search spaces, such as adjacency matrices and
one-hot vectors of operations as node features. Additionally, alternative optimization
algorithms, including Random Search (RS), Local Search (LS), Evolutionary Algorithm
(EA), Bayesian Optimization (BO) have been explored in previous studies.

Recently, some neural architecture search methods have moved away from
traditional discrete optimization methods and adopted faster weight-sharing approaches.
This trend has resulted in the adoption of differentiable optimization techniques. For

instance, DARTS (Differentiable Architecture Search) method [14] has introduced a
7
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differentiable approach to neural architecture search problems. It involves relaxing the

discrete architecture search space by modifying operator selection to differentiable

operations, enabling gradient-based NAS. Following this relaxation, the NAS task

evolves into the joint optimization of model architectures and weights.

Another approach is that map the discrete architecture space into a continuous latent

space, enabling the search for well-performing architectures within this continuous space.

In our approach, we also train a deep variational autoencoder to transform the search

space from discrete to continuous. In this case, the discrete neural architectures can be

searched from the continuous latent space.

B. NAS Benchmarks

To support benchmarking and evaluation for NAS works, several NAS benchmarks

and well-defined search spaces have been introduced. These include NAS-Bench-101 and

NAS-Bench-201, which are tabular benchmarks that enable direct querying of various

metrics, such as parameters, training time, and architecture performance. These

benchmarks play a crucial role in evaluating our method. Furthermore, there are surrogate

benchmarks like NAS-Bench-301 and NAS-Bench-x11, which employ surrogate models

to predict performance in the DARTS search space. Due to the high computational

complexity and the extensive number of architectures (10"18) in the DARTS search space,

it is infeasible to evaluate all the architectures directly. In our study, we will provide a
8
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comprehensive introduction to NAS-Bench-101 and NAS-Bench-201, which serve as the

evaluation frameworks for our method.

1. Introduction of NAS-Bench-101

NAS-Bench-101 is a comprehensive, publicly NAS benchmark containing the

performance metrics of over 423K unique convolutional neural network (CNN)

architectures. The dataset is generated by exhaustively training and evaluating these

neural architectures on the CIFAR-10 dataset. NAS-Bench-101 aims to provide a

standardized platform for researchers to conduct fair comparisons of different NAS

algorithms and understand their strengths and weaknesses. This benchmark employs an

operation-on-nodes mechanism. The space of a cell consists of all possible DAGs on V'

nodes, where the first and last nodes are labeled as operation “INPUT” and “OUTPUT”

respectively, representing the input and output tensors of the cell. Each node has one of L

labels. The space of labeled DAGs will grow exponentially in both /" and L. In order to

constraint the number of possible neural architectures within this search space, the

following constraints are imposed: there are three types of operations (1x1 convolution,

3x3 convolution, 3x3 max-pool), the number of nodes is at most seven, and the maximum

number of edges is nine.

2. Introduction of NAS-Bench-201

NAS-Bench-201 is a tabular NAS benchmark consists of 15,625 neural architectures.
9
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These neural architectures have been trained and evaluated using the same setup on three

diverse image classification tasks: CIFAR-10, CIFAR-100, and ImageNet-16-120. In

NAS-Bench-201, the architectures are represented using cells as the basic building blocks,

similar to NAS-Bench-101. By stacking these cells in a predefined order, various CNN

architectures can be generated. The key difference, however, is that NAS-Bench-201

utilizes an operation-on-edges mechanism. Each neural architecture cell is represented as

a directed acyclic graph (DAG), with four nodes and six edges. The predefined set

contains five operations, including 1x1 and 3x3 convolutions, 3x3 avg-pooling, zero

operation, and skip connections. Additionally, it provides training time and meta

information for each epoch of each architecture, which can be valuable for NAS

researchers. The authors also benchmarked ten NAS algorithms to analyze this search

space, establishing it as a baseline. Consequently, in our work, we make some adjustments

to transform the DAG into an operation-on-nodes representation for convenience.

C. Performance Predictors

An architecture performance predictor is employed to predict the performance of

architectures before actually training them. The predictor can be simply formulated as a

mapping function f:X — P, where X represents a search space of architectures and P

denotes a set of performance metrics. This technique was first applied by PNAS [15] and

[16], which used a LSTM-based predictors as a surrogate model capable of handling
10
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variable-sized sequential architectures to predict the accuracy of these architectures.

WeakNAS [3] propose ensemble models consisting of multiple weak predictors, which

can be trained with fewer labeled architectures. As the nature of an architecture is a

computational graph, recent works [ 1, 2] predict the performance of architecture by graph

neural networks (GNNSs) encoders to extract the features from graphs. Some works [4-6]

learn neural architecture representations through a variational graph autoencoder via self-

supervised learning. Notably, Arch2Vec [4] employs multiple Graph Isomorphism

Network (GIN) [17] layers as an encoder coupled with a simple multiplayer perceptron

as a graph decoder. Our work adapts the graph encoder from Arch2Vec. These GNN-

based models, which use the adjacency matrix and operation one-hot vector to represent

a graph as input data, improves upon previous approaches. The results show that the

highly informed latent representations are crucial for downstream performance prediction.

Consequently, studies [4, 6, 18, 19] are working to find a better latent space through self-

supervised approaches to enhance the NAS performances.

D. Variational Autoencoders

Variational Autoencoders (VAEs) have become a popular deep generative modeling

framework since their introduction by Kingma and Welling [20]. They consist of an

encoder pg(z|D) that maps high-dimensional data D (from a source domain of an

unknow distribution) to a latent variable z from lower-dimensional continuous latent

11
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space, and a probabilistic decoder q4(D|z) that reconstructs the original data from the
latent variable z. The parameters 8 and ¢ of this network are learned jointly by
optimizing the evidence lower bound (ELBO) on the data likelihood:
L(8,9.D) = E,_p,(z|D)[In 45(D12)] = KL(pg (zID)119(2)). ()
Here, [Ez~p9(Z| D)[ln de (DIZ)] represents the expected log-likelihood of the data D
given the latent variable z. On the other hand, it measures the reconstruction loss, which
aims to minimize the dissimilarity between the input data and the reconstructed data.
KL(pg(z|D)||q(z)) corresponds to the Kullback-Leibler (KL) divergence, a
regularization term that estimates the difference between two distributions and help to
regularize the latent space. VAEs have been applied to various domains, and are often
used for generation tasks by taking only the decoder part.
E. Graph Neural Networks

Graph Neural Networks (GNNs) have become as a powerful framework for
representation learning on graph-structured data, addressing the limitations of traditional
neural networks when dealing with irregular data. GNNs were first introduced by
Scarselli [21], and since then, a variety of GNN architectures have been proposed,
including Graph Convolutional Networks (GCNs) [22], Graph Attention Networks (GATSs)
[23], and Graph Isomorphism Networks (GINs) [17].

The extraction of graph features in Graph Neural Networks (GNNs) typically
12
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involves two steps. Firstly, GNNs learn a representation for each node using message-
passing layers. These layers iteratively aggregate information from neighboring nodes,
allowing the nodes to exchange information and update their features. This process allows
information to propagate across the graph, enabling the GNN capture both local and
global graph features. After the message-passing phase, the GNN proceeds to the second
step, where a function is applied to summarize the node features. This step aims to obtain
graph-level features or maintain node-level features for downstream tasks, such as node
classification tasks and link prediction tasks.

For Neural Architecture Search (NAS) problems, GNNs have been utilized for
architecture performance prediction, leveraging the graph-structured nature of neural
architectures to enable efficient exploration of the search space..

1. Graph Convolutional Networks

Given a graph G = (V,E), for each node v; € V is associated with a feature x; €
RP. Here, V denotes the set of nodes in G, and D denotes the dimensionality of the
node features.

Graph Convolutional Networks (GCNs) can be formulated as follows:

H'** = f(H', 4), 2
where H® = X € RIVI*P is the input for the first layer, and A is the adjacency matrix.

In the formulation, H' represents the node features at the [-th layer, and the function f
13
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takes both the adjacency matrix and node features into account to update the node features
for the subsequent layer.

A specific example of the function f is given by:

HY = f(HL A) = o(AH'WY). 3)

In this equation, o(-) represents a non-linear activation function, and W' denotes the
model weights of [-th layer.

2. Graph Isomorphism Networks

Graph Isomorphism Networks (GINs) are a type of Graph Convolutional Network
(GCN) introduced by [17] to address the issue of graph isomorphism, which is the
problem of determining whether two graphs have the same structure despite possible
differences in the labeling of nodes and edges. GIN is designed to be more powerful than
some existing GCN models when it comes to distinguishing non-isomorphic graphs.

The key feature of GIN is its aggregation function, which combines node features
and edge information in a manner that is sensitive to the graph structure. This allows GIN
to learn expressive node embeddings and capture complex graph structures more
effectively compared to some other GCN models.

In Neural Architecture Search (NAS) problems, the search space often contains
many isomorphic graph architectures. These isomorphic architectures should be mapped

to the same latent representation or yield identical performance. To address this challenge,
14
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we utilize GIN layers to construct our encoder model, ensuring that isomorphic
architectures are effectively handled and mapped to appropriate representations.
F. Graph Variational Autoencoders
Graph Variational Autoencoders (GVAEs) extend the VAE framework to handle
graph-structured data, making them particularly suitable for tasks involving networks,
molecular graphs, or other relational data. The GVAEs employ graph neural networks
(GNNs) as encoders, taking advantage of their ability to effectively capture both local and
global graph structures. GVAEs have been applied to several graph-level tasks, including
graph generation, graph clustering, edge prediction, and graph classification. In our work,
we use the asymmetric GVAE, where the encoder and the decoder in our GVAE model
are not identical. Specifically, we use a GNN encoder to extract the features of neural
architectures represented as graphs and utilize a non-GNN decoder to generate the
architectures by predicting the types of nodes and whether the edges exist using the latent
representation obtained from the invertible neural network.
G. Invertible Neural Networks
Invertible Neural Networks (INNs) possess a key property of bijectivity, implying
that the mapping from inputs to outputs is reversible. This property allows the output to
be inverted back to the input. The paper [10] significantly contributes to the understanding

and application of INNs, showcasing their effectiveness in solving inverse problems. The
15
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approach bears conceptual similarities to conditional variational autoencoders (cVAEs).
INNSs learn a non-linear transformation that connects the data distribution to a simpler
prior distribution, such as Gaussian Distribution. The output data is used as the
conditioning variable in this transformation process. This setup enables the INN to
generate the original input data by using the output data as a condition, coupled with a
sampled prior distribution.

The training process of an INN involves learning two models: g(z,y; 8) represents
the inverse process, and f(x; 8), which approximating the known forward process s(x).
These models are jointly trained with the objective of capturing the correlation between
the input data x and the output data y by optimizing the parameters 6. Once the
models are trained, the input data x can be recovered by applying the inverse model
g(z,y;08) toasample z drawn from a standard normal distribution N'(0, I},), where k
is the dimensionality of the input space. In another representation, x = g(z,y; 6), and
the pair [z,y] is obtained by applying the forward model f(x;0) to x, such
that [z,y] = f(x; 0) = [f, (x; 0), f, (x; 8)] =971 (x; 0) . Here, fy(x; 8) approximates
s(x), the known forward process.

In our work, we train an INN-based performance predictor for neural architectures,
treating it as a regression task. By leveraging the invertible property of the INNs, we can

retrieve the latent representations of high-performing neural architectures by inversely
16
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mapping the highest accuracy, which is set to 1.0. These well-performing architectures

are obtained by decoding the latent representations using our Graph Variational

Autoencoder (GVAE) decoder.

17
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Chapter 3 Method

In this chapter, we will present a comprehensive introduction to our method. We start
by discussing the preprocessing steps for the data. Next, we will delve into the
architecture of our model, which includes the encoder and decoder components of the
graph variational autoencoder (GVAE), as well as the setting of the invertible neural
network (INN). Finally, we will explain the objective function employed to train the
model and provide specific details regarding the training process.

A. Data Preprocessing

1. Architecture Encoding

Due to the nature of architectures being represented as graphs, we can utilize an
adjacency matrix to indicate the connections between nodes and use a one-hot vector to
represent the operation types on each node. As shown in Figure 1, (a) represents the
original architecture as a graph, (b) demonstrates how each operation can be encoded
using a one-hot representation, and (c) represents the adjacency matrix of the graph.

To fully leverage the features of graph convolutional networks, which aggregate the
node features of each node's neighbors, we modify the adjacency matrix by taking the
element-wise maximum (denoted by V) of the original adjacency matrix A and its
transpose AT. This operation creates an undirected graph, allowing for bidirectional

information flow during graph convolutional operations. By considering both the
19
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connections from node i to its neighbors and the connections from its neighbors back to

node i, we capture a more comprehensive understanding of the graph's local and global

structures. This modification enhances the effectiveness of graph convolutional networks

in capturing and propagating information across the graph.

[1,0,0,0,0]
Output 5
> utpu <
) E,j
A
[0,0,0,1,0] [ [o0,0,1,0,0]

1

e N g Lo L]

A A

A A [0,0,0,0,1]

[ : } [ : ]
Max-pooTi ng} Convixl A A
[0,0/,1,0,0]

A A

- — (-}

&J [0,1,0,0,0]
(a) Architecture representation (b) One-hot vector
0,1, 1, 0, 0, 1
o0, 0, 0, 0, 0, 1
0, 0, 0, 1, 1, O
0, 0,0,0,0,1
0, 0, 0, 0, 0, 1
o, 0o, 0, 0, 0, O

(c) Adjacency matrix
Figure 1: Neural architecture representation of NAS-Bench-101.

2. NAS-Bench-101

In the NAS-Bench-101 search space, there are five types of operations: OUTPUT,

INPUT, 1x 1 convolution, 3 X 3 convolution, and 3 X 3 max-pool. The number of

nodes in this search space ranges from three to seven. To accommodate architectures with

fewer than seven nodes, we set the adjacency matrix A as a 7 X 7 matrix and pad it

20
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with zeros if the architecture has fewer than seven nodes. Similarly, we pad the operation
one-hot vector with zeros to ensure consistency in dimensions.

3. NAS-Bench-201

In the NAS-Bench-201 search space, the architecture graphs have a fixed structure
with four nodes and six edges. Each edge represents a specific operation. There are seven
types of operations: OUTPUT, INPUT, 1 X 1 convolution, 3 X 3 convolution, 3 X 3
avg-pool, skip-connect, and zeroize (none). The original architecture representation is
depicted in Figure 2(a). To simplify the representation, we transform it into an operation-
on-node graph, as shown in Figure 2(b), resulting in a total of eight nodes and ten edges
in the graph. The skeleton of the NAS-Bench-201 search space is fixed, so our focus is

solely on the operations performed on the nodes.

output

A

—Conv3x3 Conv3x3 [Avg-poo'l'ing] {sk'i p-connect]

A A

(:: Avg-pooling
A Convlxl

Convlx1l
Skip-connect

Ava-poolin zeroize Avg-pooling
zeroize i/il\\ g 7y Yy
(a)

(b)

Figure 2: Neural architecture representation of NAS-Bench-201.
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B. Model Architecture

We provide an overview of our model architecture in Figure 3. The encoder is

responsible for transforming the graph into the latent space, while the decoder is tasked

with reconstructing the graph. The INN is trained as a regression task, with the label being

the accuracy corresponding to the architecture graph.

cell DAG

Encoder
(GIN)

Latent Latent
variance vy vy mean
. Architecture
»| Invertible NN |—>»
« le—" accuracy
\ 4 A//////

Decoder
(Transformer)

v

Adjacency matrix

operations
one-hot vector

Figure 3: The overview of proposed model.

1. Encoder

To address the presence of isomorphic graphs, which often arise in neural

architecture search problems, we utilize the Graph Isomorphism Networks (GINs) to

construct the encoder. The variational encoder model can be defined as follows:
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p(Z|X,4;0) = u(X,4;0) + a x a(X,4;0)@¢,e~N (0, 1), (4)
where X, A represent the matrix of node features and the augmented adjacency matrix,
respectively. u(X,4;0) and o(X,4;0) are the mean and standard deviation of the
latent variable Z obtained from the encoder p with parameters 6. The symbol ©
denotes Hadamard product, and ¢ is a noise term sampled from a standard normal
distribution IV'(0,1). The parameter a scales the strength of the noise. This formulation
captures the distribution of the latent variables conditioned on the input data X, A.

We construct the GIN-based encoder with the same parameter as Arch2Vec [4],
which is a 5-layer GIN with hidden dimensions of 128, 128, 128, 128, 16. The L-layer
GIN is used to obtained the node feature map H and can be formulated as follows:

HE = MLP' (14 b©) - HO-D + AHOD) 1= 12,1, (5)
where H® = X represents the input node features, b is the bias term, and MLP is a
multi-layer perceptron. Each MLP layer consists of a linear layer with batch
normalization, and in our apporach we use ReLU activation function. The node
embedding H® obtained from the last GIN layer is then converted to mean pu and
standard deviation o of the posterior approximation p(Z |X,/I; 9) in Equation (4).
Throughout this process, the node representations are transformed into vectors with the
same number of channels as the hidden dimension of the last GIN layer. Therefore, the

dimension of the mean latent representation is (|V|,16), where |V| represents the
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number of vertices in the graph G and 16 is the output channels of the GIN.

2. Decoder

Graph generation is a complex problem, requiring determination of the number of a

node's neighbors and the nodes it connects to, several works employ RNN methods to

generate graphs by iteratively generating nodes and edges. In our approach, we utilize a

multi-head transformer-based model with 3 transformer blocks. The embedded dimension

is 32, and we set the hidden dimension to 256 for the Feed Forward network (FFN) within

the transformer blocks, serving as our graph generator. We also incorporate positional

encoding to help the model grasp the positional information of each node. The

transformer model's self-attention mechanism allows it to consider node features across

all node embeddings from the graph encoder we introduced earlier. The transformer-based

graph decoder decodes the encoded latent representation into two sections: an operation

one-hot matrix and an adjacency matrix. Both sections are treated as classification tasks.

After passing through the transformer blocks, the input will be reshaped to

(IV1], Qaim), where we set Qg;, = 32. Subsequently, it goes through a fully connected

layer followed by a softmax function that project it to a shape of (|V|,|OPS|) for the

operation part. For the adjacency matrix section, it will feed into two layers: one to project

itto ([VI,|V]) fitthe adjacency matrix's shape, and the second is a linear layer followed

by a softmax activation to (|V|,|V],2) for classification. The operation part selects the
24
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operation type for each node, while the adjacency matrix part predicts the existence of an
edge.

Therefore, the tensor shape of operations is (|V|,|OPS|), where |OPS| represents
the size of the candidate operation set. The tensor shape of the adjacency matrix is
(IV1,1V|, 2), which is view as a binary classification task. Given the latent representation
Z obtained from the encoder with a shape of Z € RIVIX1® the decoder Q can be

formulated as follows:

Q(Z) = [Nodesoyps, Adjyatrix], (6)
Nodesgps = FCyops(Transformers(Z)), (7)
Adjyatrix = FCaaj (FCadjO (Transformers(Z))), (8)

here FC denotes the fully connected layers and Transformers refer to the transformer

blocks. Finally, we can obtain the model architecture from the reconstructed graphs.

3. Invertible Neural Network

An overview of the Invertible Neural Network (INN) can be seen in Figure 4. During

the training process, the latent representation x is obtained from the graph encoder and

is flattened to have a dimension of |V - 16. The input and output dimensions of the INN

must be the same. In our case, the output y has a dimension of 1, representing the

architecture accuracy. The remaining dimensions of the output are |V|-16 — 1 for z,

which is obtained from a normal distribution and is independent of y.
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We utilize the implementation of the INN introduced by [10] and adjusts certain

hyperparameters. In our work, we employ an INN with two-coupling layers and 4 hidden

layers, each with a hidden dimension of 128.

Forward « | Invertible o Z z ~N(0,1)
- ” NN d
Inverse

< J— y —

Figure 4: The forward and inverse processes of INN.

During training, the Invertible Neural Network (INN) is trained on both the forward

and inverse tasks. In the forward training process, the input data is denoted as x. The

objective is to minimize the regression loss, which quantifies the difference between the

predicted output y and the corresponding true label. Additionally, the distance between

z|y and a normal distribution is minimized using a function that quantifies the

dissimilarity between two probability distributions.

The reason for concatenating z with y when calculating the gradient of z is to

ensure that z and y are independent for convergence. This condition guarantees that

p(z|y) is equal to the prior distribution p(z). Consequently, during the inverse process,

y can be successfully inverted by sampling different z values from the normal

distribution.
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During the training of the inverse process, the y value is concatenated with a
randomly sampled normal distribution z as input. The objective of the reverse loss is to
quantify the dissimilarity between the output data y and the original input data x. It
serves as a measure of how well the INN model can reverse from output data to the input
data. By minimizing the reverse loss, the model aims to enhance its ability to accurately
reconstruct the original input from the obtained output.

C. Training Method

1. Objective function

(a) Graph Variational Autoencoder

The Graph Variational Autoencoder (GVAE) aims to reconstruct the input graph,
with regularization of the latent representation achieved through minimization of the KL-
divergence. The loss function for the GVAE is defined as:

Leyag = aLnoges + BLedges + VLkL- )

The terms Ly oqes and Legges terms, which measure the reconstruction loss for the
node features and adjacency matrix, respectively. In our implementation, we utilize cross-
entropy loss for both Lyg4es and Legges. The tradeoff weights a and B between these
terms are determined by hyperparameters, which in our case are set to 1.0 for both Ly, 4es
and Legges-

The Lg; term represents the KL-divergence between the learned latent distribution
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and the prior distribution, which serves as a regularization term. In our implementation,

the weight for this term, y, is set to 0.16.

By optimizing the Lgy4r objective function, the GVAE model is able to reconstruct

the input graph while ensuring a meaningful and regularized latent representation. The

architecture of the GVAE model is visualize in Figure 5.

Input

X=X

Minimize KL(N (1, 02)||N'(0,1))

mean
u
Encoder
std
o Latent '
representation
random sample z=p+o@e
E~N(,D

€

Figure 5: GVAE

(b) Invertible Neural Network

Decoder

Reconstructed
Input

In our implementation, the loss function for an invertible network consists of three

terms: Liyy = Lyeg + Lyey + Ligtent- The first term, L,..4, is supervised regression term.

The mean squared error (MSE) loss is used in our implementation to measure the

difference between the predicted accuracy and the true accuracy of the architectures. The

second term, L,.,, 1S an unsupervised reverse loss. It measures the difference between

the inverse result and the input data. The final term, L;g¢ens, 1S an unsupervised latent
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loss. It ensures that the predicted latent variable z follows a predefined normal
distribution. We use the Maximum Mean Discrepancy (MMD) function as the latent loss,
but other loss functions such as KL-divergence can also be used to measure the
distribution distance.

To balance the contribution of these terms, we set tradeoff weights. Specifically, we
assign weights of 5.0, 10.0, and 1.0 to Lypg, Lyey, and Ligiene, respectively. These
weights determine the relative importance of each term in the overall loss function.

2. Pre-train GVAE

In our approach, we initially pretrain our Graph Variational Autoencoder (GVAE)
model with unlabeled architecture graph data from the search space. This pretraining step
enables the decoder to reconstruct the architecture graphs from the latent representations,
leveraging a large amount of unlabeled data available in the search space. This self-
supervised training mechanism is efficient since it does not require training actual
architecture which would require a time-consuming process. In scenarios where there is
no tabular benchmark available for querying architecture performance, training the actual
architectures would require significant time and resources. By pretraining the GVAE
model, the encoder can extract meaningful features from the unlabeled architectures,
which can be beneficial for downstream tasks. We partition the architecture datasets into

three subsets. 80% of the total data is allocated for training, 10% for validation, and the
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remaining 10% for testing. Subsequently, we train our GVAE model for 500 epochs. We

set the batch size to 64 and use the Adam optimizer. The learning rate is set to le-3,

adhering to the default setting for Tensorflow machine learning framework. We employ

the ReduceLROnPlateau learning rate scheduler which is provided by Tensorflow and we

set the factor to 0.1. This means the leaning rate multiplied by 0.1 when reduced. We set

the patience parameter to 50; thus, if there is no improvement in the validation loss for 50

consecutive epochs, the learning rate is subsequently reduced. We employing an early

stopping technique for 100 patience that monitors the validation loss. The training process

will be terminated if the validation loss does not show any improvement for 100

consecutive epochs. Additionally, we restore the weights corresponding to the best

validation loss achieved during training.

3. Fine-tune INN

Next, we have two options for the fine-tuning method. The first option is partial fine-

tuning, where we freeze the weights of the GVAE, and perform partial fine-tuning of the

INN's weights via gradient descent. The second option is end-to-end fine-tuning, where

both weights of GVAE and INN are fine-tuned using the gradient descent method.

Although the partial fine-tuning process is more efficient than the end-to-end fine-tuning

process, as it involves fewer number of weights requiring training, the end-to-end fine-

tuning approach performs well empirically. We will compare these two fine-tuning
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methods in our experiments.

For the initial training, we set it to 50 for training dataset and 50 for validation dataset.
This dataset size corresponds to 0.023% of the NAS-Bench-101 search space and 0.64%
of the NAS-Bench-201 search space. In the INN training pipeline, it is necessary to
predict the random variable z to match a predefined distribution, which is normal
distribution in our case. However, a training set of 50 data might too small for INN
converging, so we augment the training data during the fine-tuning process by simply
repeating the data by a factor. We set this factor to 20 in our approach, so the size of initial

training dataset becomes 50 X 20 = 1000 data in total.

D. Retrain and Search

1. Algorithm

In our approach, the retraining and searching procedures are performed iteratively.
We begin by performing a search for well-performing architectures by inversely mapping
the highest accuracy (1.0) to the corresponding architectures. These architectures are then
added to the training dataset for retraining. This iterative procedure continues until a
predefined query budget or maximum number of retraining runs is reached. The final
search results are reported by selecting the top-performing architecture from our records.

The details of this procedure can refer to Algorithm 1. In each search iteration, we

first generate 200 unseen neural architectures by inversely mapping (1.0) to the latent
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representation of corresponding architectures via invertible neural network. Subsequently,

the latent representation is decoded using the graph decoder, allowing us to obtain the

corresponding neural architectures. Now we have 200 candidates of neural architectures.

How do we select which of them to query the true accuracy from tabular benchmark and

add them to the training dataset? We use our graph encoder coupled with the INN to

predict the accuracy of these candidates. This step does not use the query budget until we

perform the query from the tabular benchmark. We then select top-k predicted accuracy

candidates to query the true accuracy of them from the tabular benchmark and include

them in the training dataset for retraining. In our approach, we select top-5 candidates in

each iteration.

Because the model gradually converges to a local or global optimal region, the

diversity of generated architectures from the decoder decreases. As a result, it becomes

challenging to find new candidates of neural architectures. To address this issue, if the

decoder fails to generate enough number of new architectures, we add some noise from a

normal distribution with a mean of 0 and a standard deviation of a to the latent

representation of the neural architecture before feeding it into the decoder. The range of

a 1s 0.0 to 0.1, and we increase a incrementally until we can collect 100 candidates in

each searching phase or reach the maximum generation budget. This approach helps to

maintain exploration and discover of new architecture candidates during the search
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process.
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Figure 6: This visualization, created via t-SNE, demonstrates the retraining and
searching process for each iteration on CIFAR-10 of the NAS-Bench-201 search space.
The 100 candidates, generated by inversely mapping 1.0, are color-coded, while the

non-selected neural architectures are displayed in grey.

2. Rank-based Weighted Loss

The rank-based weighted loss is inspired by the generative Latent Space
Optimization (LSO) technique used in AG-Net [9]. The main principle of this approach
is to pay more attention to higher accuracy data, and pay less attention to lower accuracy
data. We achieve this by multiplying a weight to the loss value of each data point based
on its rank of accuracy. The formula for the rank based weight is proposed by [24] and

we adapt it for our method. Our rank-based weight function can be defined as follows:
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1
k|B| + rank(x;, B)

w;(x;, B, k) = ,X; EB,i=1,..,|B|, (10)
rank(x;, B) = |{x;: accuracy(x;) > accuracy(x;), x; € B}|, (11)
where x; is an architecture graph data within a mini-batch B and k is a
hyperparameter that controls the smoothness of the weights. We set k to le-3 which is
similar to [9].
In this approach, the model incrementally trains on higher-accuracy data during the
iterative retraining and searching process. While high-accuracy data is more important
than low-accuracy data in NAS tasks, our model does not need to be capable of predicting

all of the data in the search space. Instead, it focuses on high-accuracy region. We will

assess the impact of this technique in the ablation studies section.
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Algorithm 1: Search and Retrain

10

11

12

13

14

15

16

input: (i) Encoder E, Decoder D and Invertible neural network INN

input: (ii) Query budget b and Maximum runs r

input: (iii) Retrain epochs e

input: (iv) Training dataset DT and Validation dataset DV

iteration « 0

while |[DT U DV | < b do

end

Geana < b
/* Generate 100 candidates by inverse 1.0 */

while |G.4nql < 100 do

z ~ N(O,I);

g < D(inverse(INN, 1.0, z));
if g € DT U G.gpnq then

Gcand < Gcand U {g};

end

/* Predict accuracy of architectures in G.q,q by using INN, E and
then select top-k candidates */

Geana < select (Gogna, E,INN, k);

/* Query the true label and add them to training set */

DT « DT Ueval(G.qna);

train(E,D,INN, DT, DV, e);

iteration « iteration + 1;

if iteration = r then

break;
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Chapter 4 Experiments

We apply our neural architecture method on two tabular NAS benchmarks, including
NAS-Bench-101 [12] and the NAS-Bench-201 [13]. The experimental results show that
our method is comparable to other state-of-the-art NAS methods. The experiment is
divided into three parts. First, we introduce the metrics in our experiments, which include
the ability to conduct the architecture search, regression and inversion. Second, we
provide the neural architecture search results, regression results, and a visualization of
inversion ability on the NAS-Bench-101 benchmark. We compare the architecture search
results with those from other studies. Finally, we also present the results of the
aforementioned tasks on the NAS-Bench-201 benchmark. In the regression and inversion
experiments, to better illustrate our concept of using the Invertible Neural Network (INN)
to obtained neural architectures from their accuracy, we train a model using 350 training

data and 50 validation data for the regression and inversion experiments.

A. Evaluation Metrics

This section introduces the evaluations we conducted on both NAS benchmarks.

1. Architecture Search
The evaluation of architecture search is determined by how accurately (i.e., with
high accuracy) the neural architectures can be found given a certain query budget or wall

time. We use the same settings for both NAS benchmarks, including fine-tuning method
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and the use of rank-based weighted loss. The only adjustable setting is the query budget,
which we modify for comparisons with other works. We report the search results for ten
independent runs in our experiments, including the means and standard deviations.

2. Regression

In the evaluation of regression, we plot the graph of yy,,eqic; against Yy to
illustrate the correlation between predicted accuracy Ypreqice and true accuracy Yipye Of
the neural architectures. This demonstrates how well our model can handle the regression
task with unseen data from the testing dataset.

3. Inversion

We use the re-simulation concept in our inversion evaluations. The re-simulation
error measures the difference between the accuracy used as input for the Invertible Neural
Network (INN) and the true accuracy of the architecture, which is the inverted output
from the INN.

The inversion experiment is divided into two parts. First, we use the accuracy from
the datasets as input for inversion. Second, we use a range from 0.0 to 1.0, with a step of
0.005, as inversion input. For visualization this experiment, we use the accuracy y' as
the input for our INN model and invert it to the latent representation. Subsequently, we
use the decoder to decode the latent representation and obtain the neural architecture x.

We query the true accuracy y of x from the tabular benchmark and plot the y’',y
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graph to measure the inversion capability of our model.

B. NAS-Bench-101

1. Architecture Search

We report the best accuracy of architectures we found under the query budget of 190,

300, 500 in Table 1. We compare our results to other methods, including Arch2Vec [4],

AG-Net [9], CR-LSO [7] and traditional genetic or optimization algorithms which served

as baseline methods. These include BANANAS [11], Random Search (RS) [25], Local

Search (LS) [26, 27], Regularized Evolution (RE) [28].

Our results outperform the baseline methods and CR-LSO, which is the state-of-the-

art method on the ImageNetl6-120 dataset of NAS-Bench-201. However, the

performance of CR-LSO on NAS-Bench-101 is not as good as its performance on NAS-

Bench-201. Additionally, our results also comparable to the results of AG-Net.

Table 1: The comparison results on NAS-Bench-101. The means and standard

deviations are reported.

Method Val. Acc Val. StD Test Acc Test StD Queries
Optimal* 95.06 - 94.32 -
BANANAS 94.69 0.08 94.14 0.11 192
RS 94.19 0.50 93.47 0.47 192
LS 94.67 0.21 93.73 0.44 192
RE 94.22 0.27 93.63 0.35 192
AG-Net 94.90 0.22 94.18 0.10 192
Ours 94.62 0.22 94.02 0.14 190
BANANAS 94.76 0.13 94.16 0.11 300
AG-Net 94.96 - 94.20 - 300
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Ours 94.96 0.18 94.21 0.05 300
Arch2Vec-RL - - 94.10 - 400
CR-LSO - - 93.97 2e-3 500
BANANAS 94.79 0.13 94.16 0.11 500
AG-Net 94.97 0.16 94.20 0.07 500
Ours 95.03 0.10 94.22 0.04 500

2. Regression

In this experiment, we use 350 data points for the training set, 50 data points for the

validation set, and 10% of the entire search space data for the testing set. The visualization

results are provided on Figure 7. We can observe our proposed model architecture can fit

the regression tasks even on this large search space (423K), by using approximately 0.1%

of the data.

3. Inversion

We have two parts of inversion experiment. First is use the accuracy from the

datasets as input for inversion and second is use a range from 0.0 to 1.0, with a step of

0.005, as inversion input. The results of first part are provided on Figure 8, and the second

part is shown in Figure 9.
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C. NAS-Bench-201

1. Architecture Search

We present the accuracy of architectures we discovered under query budget of 190

and 400, on three datasets from NAS-Bench-201 benchmark, including CIFAR-10,

CIFAR-100 and ImageNet16-120. We compare our results to other state-of-the-art

methods, including AG-Net [9], CR-LSO [7] and traditional genetic or optimization

algorithms which served as baseline methods. These include BANANAS [11], Random

Search (RS) [25], Local Search (LS) [26, 27], Regularized Evolution (RE) [28].

In Table 2, we demonstrate our neural architecture search results alongside several

baseline methods on NAS-Bench-201 search space. With a query budget of 190, our
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approach is comparable to the AG-Net on three datasets, and outperforms AG-Net in

terms of test accuracy on the ImageNet16-120 dataset. Additionally, the cost of our

methods (measured in GPU hours) is only one-tenth of AG-Net. Our result on test

accuracy of ImageNet16-120 dataset is superior to CR-LSO, which is the state-of-the-art

method on this dataset, even though we use an extremely lower query budget (190 vs

500). Furthermore, we can identify the global optimal neural architectures on CIFAR-10

and CIFAR-100 datasets. For more details, we provide the means and standard deviations

of ten independent trials in Table 7 of Appendix A.

Table 2: The comparison results on NAS-Bench-201. The means are reported.

CIFAR-10 CIFAR-100 ImageNet16-120 . GPU
Method Queries
Val. Test Val. Test Val. Test hours
Optimal* | 91.61 | 94.37 | 74.39 | 73.51 | 46.73 | 47.31

BANANAS | 91.55 | 94.26 | 73.49* | 73.51* | 46.68 | 46.49 192 0.05

RS 91.27 | 94.02 | 72.12 | 72.31 | 45.67 | 46.08 192 0.01
LS 91.53 | 94.31 | 73.28 | 73.25 | 46.44 | 46.77 192 0.01
RE 91.48 | 9494 | 72.86 | 72.98 | 46.04 | 46.43 192 0.01

AG-Net 91.60 | 94.37* | 73.49* | 73.51* | 46.64 | 46.43 192 5
Ours 91.60 | 94.37 | 73.49* | 73.51* | 46.61 46.98 190 0.5

CR-LSO 91.54 | 94.35 | 73.44 | 73.47 | 46.51 46.98 500 0.13

AG-Net | 91.61% | 94.37* | 73.49* | 73.51*% | 46.73* | 46.42 400 5.2
Ours 91.61* | 94.37* | 73.49* | 73.51% | 46.70 | 47.20 400 1.2

2. Regression
We provide the visualization results of CIFAR-10 on Figure 11. The results for the

remaining two datasets are provided on Figure 15 of Appendix A. We can see our model
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fits the regression tasks on these datasets well. In this experiment, we use 350 data points

for the training set, 50 data points for the validation set, and 10% of the entire search

space data for the testing set.

3. Inversion

We have two parts of inversion experiment. First is use the accuracy from the

datasets as input for inversion and second is use a range from 0.0 to 1.0, with a step of

0.005, as inversion input. The results of first part are provided on Figure 12, and the

second part is shown in Figure 10. For the results of remaining two datasets can refer to

Figure 16 and Figure 17 on Appendix A.
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Figure 10: Inversion result over a range on CIFAR-10.
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Chapter 5 Ablation Studies
A. Choice of Candidates Generative Methods

To demonstrate the effectiveness of our concept, which involves using an invertible
neural network to obtain high-performing neural architecture candidates by inversely
mapping 1.0, and thus enhancing the performance of NAS, we compare our approach
with an alternative method that replaces our candidate generation process with random
selection. In Table 3 and Table 4, the random selection method, used as a candidate

generative approach, performs significantly worse than our method.

Table 3: The comparision of the candidate generative methods on NAS-Bench-101.

Method Val. Acc Val. StD Test Acc Test StD Queries
Optimal* 95.06 - 94.32 -
Ours-Random 94.41 0.13 93.80 0.11 190
Ours 94.62 0.22 94.02 0.14 190
Ours-Random 94.54 0.09 93.96 0.09 300
Ours 94.96 0.18 94.21 0.05 300

Table 4: The comparision of the candidate generative methods on NAS-Bench-201.
CIFAR-10 CIFAR-100 ImageNet16-120 | Queries

Val. Test Val. Test Val. Test
Optimal* 91.61 | 9437 | 74.39 | 73.51 46.73 47.31

Ours-Random | 91.36 | 94.20 | 72.73 72.97 46.34 46.58 190

Method

Ours 91.60 | 94.37 | 73.49* | 73.51% | 46.61 46.98 190
Ours-Random | 91.52 | 9433 | 73.09 | 73.40 46.55 47.00 400
Ours 91.61* | 94.37* | 73.49* | 73.51* | 46.70 47.20 400

B. Choice of Fine-tune Methods

In this section, we will compare the impacts of using the end-to-end fine-tuning and
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partial fine-tuning methods on the neural architecture search process. In Table 5, we report
the mean results of the neural architecture search for both fine-tuning methods on NAS-
Bench-201. We can observe the end-to-end fine-tuning method outperforms the partial

fine-tuning method in most cases, regardless of the use of rank-based weighted loss.

Table 5: This table compares the two fine-tuning methods. The methods denoted with
the postfix 'R' utilize a rank-based weighted loss.
CIFAR-10 CIFAR-100 ImageNet16-120 | Queries
Val. Test Val. Test Val. Test
Optimal* 91.61 | 94.37 | 74.39 | 73.51 46.73 47.31
Ours-Partial | 91.57 | 9436 | 73.40 | 73.44 | 46.60 46.83 200
Ours-E2E 91.58 | 94.34 | 73.46 | 73.48 | 46.54 46.78 200
Ours-Partial-R | 91.60 | 94.37 | 73.49% | 73.51% | 46.64 46.98 200
Ours-E2E-R | 91.61% | 94.37* | 73.49*% | 73.51% | 46.62 47.01 200

Method

In Figure 13, we compare the search curves of these two fine-tuning methods,
including the use of rank-based weighted loss, using the CIFAR-10 dataset of NAS-
Bench-201. We can observe that when employing the end-to-end fine-tuning method, the

optimal architecture was discovered with fewer queries.
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Figure 13: The comparison of search curves for fine-tuning methods with rand-based
weighted loss on CIFAR-10 dataset of NAS-Bench-201.

C. Whether Using Rank-based Weighted Loss

In Table 6, we compare the utilization of rank-based weighted loss. The model,

updated with a rank-based weighted loss, can converge to the region of well-performing

architectures. According to the results, the application of this technique outperforms all

results achieved without using it. Additionally, Figure 14 provides a comparison of the

search curves on NAS-Bench-201.

Table 6: A comparison of the use of rank-based weighted loss. Methods with a ‘R’

postfix denote the utilization of rank-based weighted loss.

Method CIFAR-10 CIFAR-100 ImageNet16-120 | Queries
Val. Test Val. Test Val. Test
Optimal* 91.61 | 9437 | 74.39 | 73.51 46.73 47.31
Ours-Partial 91.57 | 9436 | 73.40 | 73.44 46.60 46.83 200
Ours-Partial-R | 91.60 | 94.37 | 73.49* | 73.51*% | 46.64 46.98 200
Ours-E2E 91.58 | 9434 | 73.46 | 73.48 46.54 46.78 200
Ours-E2E-R | 91.61% | 94.37* | 73.49% | 73.51* | 46.62 47.01 200
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Chapter 6 Conclusion

This paper proposes a novel concept to solve neural architecture search (NAS)
problems. We employ an invertible neural network (INN) coupled with a graph
variational autoencoder to identify the best-performing neural architecture in the latent
space by inversely mapping the upper-bound accuracy (1.0) to corresponding neural
architectures.

Drawing inspiration from state-of-the-art works, we implement rank-based weighted
loss to guide our model to focus on the region of high-performing neural architectures.
We then retraining our model iteratively, using an increasing number of high-performing
architectures. The experimental results show that our approach outperforms not only the
baseline but also some state-of-the-art results on NAS-Bench-101 and NAS-Bench-201

search spaces.
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Appendices

A. NAS-Bench-201

1. Architecture Search

Table 7: The comparison results on NAS-Bench-201. The mean and standard deviation

are reported.

ImageNet16- .
CIFAR-10 CIFAR-100 Queries
Method 120
Val. Test Val. Test Val. Test
Optimal* 91.61 94.37 | 74.39 | 73.51 | 46.73 | 47.31
Mean | 91.55 94.26 | 73.49*% | 73.51% | 46.68 | 46.49
BANANAS 192
StD 0.15 0.22 0.00 0.00 0.09 042

RS Mean | 91.27 | 94.02 | 72.12 | 72.31 | 45.67 | 46.08 192
StD 0.23 0.21 0.90 0.92 0.52 0.60

LS Mean | 91.53 | 94.31 | 73.28 | 73.25 | 46.44 | 46.77 102
StD 0.15 0.15 0.52 0.58 0.18 0.25

RE Mean | 91.48 | 9494 | 72.86 | 72.98 | 46.04 | 46.43 102
StD 0.13 0.21 0.83 0.79 0.54 0.38

Mean | 91.60 | 94.37* | 73.49* | 73.51* | 46.64 | 46.43
AG-Net 192
StD 0.02 0.00 0.00 0.00 0.12 0.34

Mean | 91.60 94.37 | 73.49* | 73.51* | 46.61 | 46.98
Ours 190
Std 0.02 0.01 0.00 0.00 0.16 0.34

Mean | 91.54 | 9435 | 73.44 | 73.47 | 46.51 | 46.98
CR-LSO 500
StD 0.05 0.05 0.17 0.14 0.05 0.35

Mean | 91.61* | 94.37* | 73.49* | 73.51* | 46.73* | 46.42
AG-Net 400
StD 0.00 0.00 0.00 0.00 0.00 0.00

Mean | 91.61% | 94.37* | 73.49* | 73.51* | 46.70 | 47.20
Ours 400
Std 0.00 0.00 0.00 0.00 0.06 0.20
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2. Regression
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Figure 15: Regression results on CIFAR-100 and ImageNet16-120.
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3.

Inversion
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Figure 16: Inversion results on CIFAR-100 and ImageNet16-120.

63

doi:10.6342/NTU202300924



1.0

0.8

o
)]
1

True Accuracy
o
=Y
1

0.2 4

0.0

0.4 0.6
Query Accuracy

(@) Inversion result over a range on CIFAR-100.

1.0

1.0

0.8

e
(o))
L

True Accuracy
o
=y
1

0.2 1

0.0
0.0

0.4 0.6
Query Accuracy

0.2

(b) Inversion result over a range on ImageNet16-120.

Figure 17: Inversion results over a range.
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B. Hyperparameters

Table 8: Hyperparameters of the GIN encoder.

Hyperparameter

Value

Latent Dimension

16

MLP Dimension

128, 128, 128, 128

MLP Activation

ReLLU

Table 9: Hyperparameters of the Transformer decoder.

Hyperparameter Value
Node Embedding (d_model) 32
Num Layer 3
Num Head 3
Feed Forward Dimension 256

Table 10: Hyperparamters of the pretraining.

Hyperparameter Value
Optimizer Adam
Learning Rate le-3
Batch Size 64
Epoch 500
Learning Rate Scheduler ReduceLROnPlateau
Factor 0.1
ReduceLROnPlateau Patience 50
Min LR le-5
Early Stopping Patience 100

Table 11: Hyperparameters of Invertible Neural Network.

Hyperparameter Value
Couple Layer 4
Hidden Layer 4

Hidden Dimension 128

Table 12: Hyperparameters of fine-tunning

Hyperparameter

Value

Optimizer

Adam
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Learning Rate le-3
Batch Size 64
Epoch 500
Learning Rate Scheduler ReduceLROnPlateau
Factor 0.1
ReduceLROnPlateau Patience 25
Min LR le-5
Early Stopping Patience 50

Table 13: Hyperparameters of retraining

Hyperparameter Value
Optimizer Adam
Learning Rate le-3
Batch Size 64
Epoch 50
Early Stopping Patience 10

Table 14: Hyperparameters of searching

Hyperparameter Value
Top-K 5
Max Round 100
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