Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88148
Title: 基於圖像級標籤的類增量持續學習運用於實例分割
Image-Level Labels Based Class Incremental Continual Learning for Instance Segmentation
Authors: 謝宇星
Yu-Hsing Hsieh
Advisor: 陳祝嵩
Chu-Song Chen
Keyword: 深度學習,持續學習,弱監督學習,圖像級標籤,實例分割,
Deep Learning,Continual Learning,Weakly-Supervised Learning,Image-Level Labels,Instance Segmentation,
Publication Year : 2023
Degree: 碩士
Abstract: 以往的實例分割任務需要對圖像中復雜的物體輪廓進行複雜的標註以進行訓練。實際上,標籤也能以逐步的方式提供,以在不同時間步驟中平衡所需的人力資源。然而,目前在實例分割任務上,僅使用弱標籤的增量學習研究仍較沒受到討論。因此在本文中,我們提出了一個持續學習方法,利用圖像級別標籤來分割出物體實例。與大多數依賴傳統方法提供物件候選框的弱監督實例分割不同,我們將弱監督語義分割中的語義知識轉移到弱監督實例分割中生成實例線索。為了解決持續學習中的背景偏移問題,我們利用由過去模型生成的舊類別分割結果來提供更可靠的語義、實例和峰值假設。據我們所知,這是首篇使用圖像標籤的弱監督持續學習實例分割的工作。實驗結果顯示,在不同的增量設置下,我們的方法在Pascal VOC和COCO資料集上都可以達到更好的表現。
Instance segmentation in computer vision requires time-consuming manual labeling of complex object contours in images for training. To alleviate the labor-intensive nature of this process, incremental labeling techniques have been explored to distribute human effort across different time steps. However, the field of incremental learning for instance segmentation with weak labels remains underdeveloped. In this study, we propose a novel method for continual learning that enables object instance segmentation using only image-level labels. In contrast to existing weakly-supervised instance segmentation (WSIS) methods that heavily rely on traditional object proposals, we leverage the knowledge gained from weakly-supervised semantic segmentation (WSSS) to generate valuable instance cues. To address the challenge of background shift in continual learning for segmentation, we incorporate the results of previously trained models for old classes. This integration provides more reliable semantic, instance and peak hypotheses during the learning process. To the best of our knowledge, this work is the first to explore weakly-supervised continual learning for instance segmentation in images. Through extensive experiments conducted on the Pascal VOC and COCO datasets, we demonstrate that our proposed method can achieve better performance under various incremental learning settings.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88148
DOI: 10.6342/NTU202301024
Fulltext Rights: 同意授權(限校園內公開)
Appears in Collections:資訊工程學系

Files in This Item:
File SizeFormat 
ntu-111-2.pdf
Access limited in NTU ip range
10.72 MBAdobe PDF
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved