Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電子工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88131
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉致為zh_TW
dc.contributor.advisorChee Wee Liuen
dc.contributor.author邢軼凡zh_TW
dc.contributor.authorYifan Xingen
dc.date.accessioned2023-08-08T16:26:12Z-
dc.date.available2023-11-09-
dc.date.copyright2023-08-08-
dc.date.issued2023-
dc.date.submitted2023-07-19-
dc.identifier.citation[1] P. Cappelletti, "Non volatile memory evolution and revolution," in 2015 IEEE International Electron Devices Meeting (IEDM), 2015: IEEE, pp. 10.1. 1-10.1. 4.
[2] P. Jain, U. Arslan, M. Sekhar, B. C. Lin, L. Wei, T. Sahu, J. Alzate-Vinasco, A. Vangapaty, M. Meterelliyoz, and N. Strutt, "13.2 A 3.6 Mb 10.1 Mb/mm 2 embedded non-volatile ReRAM macro in 22nm FinFET technology with adaptive forming/set/reset schemes yielding down to 0.5 V with sensing time of 5ns at 0.7 V," in 2019 IEEE International Solid-State Circuits Conference-(ISSCC),2019: IEEE, pp. 212-214.
[3] J. Wu, Y. Chen, W. Khwa, S. Yu, T. Wang, J. Tseng, Y. Chih, and C. H. Diaz, "A 40nm low-power logic compatible phase change memory technology," in 2018 IEEE International Electron Devices Meeting (IEDM), 2018: IEEE, pp. 27.6. 1-27.6. 4.
[4] Y.-D. Chih, Y.-C. Shih, C.-F. Lee, Y.-A. Chang, P.-H. Lee, H.-J. Lin, Y.-L. Chen, C.-P. Lo, M.-C. Shih, and K.-H. Shen, "13.3 a 22nm 32mb embedded stt-mram with 10ns read speed, 1m cycle write endurance, 10 years retention at 150 c and high immunity to magnetic field interference," in 2020 IEEE International Solid-State Circuits Conference-(ISSCC), 2020: IEEE, pp. 222-224.
[5] M. Trentzsch, S. Flachowsky, R. Richter, J. Paul, B. Reimer, D. Utess, S. Jansen, H. Mulaosmanovic, S. Müller, and S. Slesazeck, "A 28nm HKMG super low power embedded NVM technology based on ferroelectric FETs," in 2016 IEEE International Electron Devices Meeting (IEDM), 2016: IEEE, pp. 11.5. 1-11.5. 4.
[6] Y. Kwon and M. Rhu, "Beyond the memory wall: A case for memory-centric hpc system for deep learning," in 2018 51st Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), 2018: IEEE, pp. 148-161.
[7] K. Lee, J. J. Kan, and S. H. Kang, "Unified embedded non-volatile memory for emerging mobile markets," in Proceedings of the 2014 international symposium on Low power electronics and design, 2014, pp. 131-136.
[8] Q. Luo, T. Gong, Y. Cheng, Q. Zhang, H. Yu, J. Yu, H. Ma, X. Xu, K. Huang, and X. Zhu, "Hybrid 1T e-DRAM and e-NVM realized in one 10 nm node ferro FinFET device with charge trapping and domain switching effects," in 2018 IEEE International Electron Devices Meeting (IEDM), 2018: IEEE, pp. 2.6. 1-2.6. 4.
[9] S.-C. Chang, N. Haratipour, S. Shivaraman, C. Neumann, S. Atanasov, J. Peck, N. Kabir, I.-C. Tung, H. Liu, and B. Krist, "FeRAM using anti-ferroelectric capacitors for high-speed and high-density embedded memory," in 2021 IEEE International Electron Devices Meeting (IEDM), 2021: IEEE, pp. 33.2. 1-33.2. 4.
[10] J.-Y. Lee, F.-S. Chang, K.-Y. Hsiang, P.-H. Chen, Z.-F. Luo, Z.-X. Li, J.-H. Tsai, C. W. Liu, and M. H. Lee, "3D Stackable Vertical Ferroelectric Tunneling Junction (V-FTJ) with on/off Ratio 1500x, Applicable Cell Current, Self-Rectifying Ratio 1000x, Robust Endurance of 109 Cycles, Multilevel and Demonstrated Macro Operation Toward High-Density BEOL NVMs," in 2023 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits), 2023.
[11] Y.-R. Chen, Y.-C. Liu, Z. Zhao, W.-H. Hsieh, J.-Y. Lee, C.-T. Tu, B.-W. Huang, J.-F. Wang, S.-J. Chueh, Y. Xing, G.-H. Chen, H.-C. Chou, D. S. Woo, M. H. Lee, and C. Liu, "First Stacked Nanosheet FeFET Featuring Memory Window of 1.8V at Record Low Write Voltage of 2V and Endurance >1E11 Cycles," in 2023 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits), 2023.
[12] J. Muller, T. S. Boscke, U. Schroder, S. Mueller, D. Brauhaus, U. Bottger, L. Frey, and T. Mikolajick, "Ferroelectricity in simple binary ZrO2 and HfO2," Nano letters, vol. 12, no. 8, pp. 4318-4323, 2012.
[13] T. Francois, L. Grenouillet, J. Coignus, P. Blaise, C. Carabasse, N. Vaxelaire, T. Magis, F. Aussenac, V. Loup, and C. Pellissier, "Demonstration of BEOL-compatible ferroelectric Hf0.5 Zr0.5 O2 scaled FeRAM co-integrated with 130nm CMOS for embedded NVM applications," in 2019 IEEE International Electron Devices Meeting (IEDM), 2019: IEEE, pp. 15.7. 1-15.7. 4.
[14] Y. Goh and S. Jeon, "The effect of the bottom electrode on ferroelectric tunnel junctions based on CMOS-compatible HfO2," Nanotechnology, vol. 29, no. 33, p. 335201, 2018.
[15] S.-H. Kuk, S.-M. Han, B.-H. Kim, S.-H. Baek, J.-H. Han, and S.-h. Kim, "Comprehensive understanding of the HZO-based n/pFeFET operation and device performance enhancement strategy," in 2021 IEEE International Electron Devices Meeting (IEDM), 2021: IEEE, pp. 33.6. 1-33.6. 4.
[16] Q. Luo, Y. Cheng, J. Yang, R. Cao, H. Ma, Y. Yang, R. Huang, W. Wei, Y. Zheng, and T. Gong, "A highly CMOS compatible hafnia-based ferroelectric diode," Nature communications, vol. 11, no. 1, p. 1391, 2020.
[17] J. Hur, Y.-C. Luo, Z. Wang, S. Lombardo, A. I. Khan, and S. Yu, "Characterizing ferroelectric properties of Hf0.5 Zr0.5 O2 from deep-cryogenic temperature (4 K) to 400 k," IEEE Journal on Exploratory Solid-State Computational Devices and Circuits, vol. 7, no. 2, pp. 168-174, 2021.
[18] Y.-R. Chen, Z. Zhao, C.-T. Tu, Y.-C. Liu, B.-W. Huang, Y. Xing, G.-H. Chen, and C. Liu, "I ON Enhancement of Ge0.98 Si0.02 Nanowire nFETs by High-κ Dielectrics," IEEE Electron Device Letters, vol. 43, no. 10, pp. 1601-1604, 2022.
[19] T. Mimura, T. Shimizu, O. Sakata, and H. Funakubo, "Large thermal hysteresis of ferroelectric transition in HfO2-based ferroelectric films," Applied Physics Letters, vol. 118, no. 11, p. 112903, 2021.
[20] M. H. Park, Y. H. Lee, T. Mikolajick, U. Schroeder, and C. S. Hwang, "Thermodynamic and kinetic origins of ferroelectricity in fluorite structure oxides," Advanced Electronic Materials, vol. 5, no. 3, p. 1800522, 2019.
[21] T. Xin, Y. Zheng, Y. Cheng, K. Du, Y. Wang, Z. Gao, D. Su, Y. Zheng, Q. Zhong, and C. Liu, "Atomic visualization of the emergence of orthorhombic phase in Hf0.5Zr0.5 O2 ferroelectric film with in-situ rapid thermal annealing," in 2022 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits), 2022: IEEE, pp. 343-344.
[22] K. Ni, A. Saha, W. Chakraborty, H. Ye, B. Grisafe, J. Smith, G. B. Rayner, S. Gupta, and S. Datta, "Equivalent oxide thickness (EOT) scaling with hafnium zirconium oxide high-κ dielectric near morphotropic phase boundary," in 2019 IEEE international electron devices meeting (IEDM), 2019: IEEE, pp. 7.4. 1-7.4. 4.
[23] R. Materlik, C. Künneth, and A. Kersch, "The origin of ferroelectricity in Hf1− xZrxO2: A computational investigation and a surface energy model," Journal of Applied Physics, vol. 117, no. 13, p. 134109, 2015.
[24] Z. Zhao, Y.-R. Chen, J.-F. Wang, Y.-W. Chen, J.-R. Zou, Y. Lin, Y. Xing, C. Liu, and C. Hu, "Engineering Hf0.5Zr0.5O2 ferroelectric/anti-ferroelectric phases with oxygen vacancy and interface energy achieving high remanent polarization and dielectric constants," IEEE Electron Device Letters, vol. 43, no. 4, pp. 553-556, 2022.
[25] D. Gupta, V. Chauhan, and R. Kumar, "A comprehensive review on synthesis and applications of molybdenum disulfide (MoS2) material: Past and recent developments," Inorganic Chemistry Communications, vol. 121, p. 108200, 2020.
[26] Y.-K. Liang, J.-S. Wu, C.-Y. Teng, H.-L. Ko, Q.-H. Luc, C.-J. Su, E.-Y. Chang, and C.-H. Lin, "Demonstration of Highly Robust 5 nm Hf0.5Zr0.5O₂ Ultra-Thin Ferroelectric Capacitor by Improving Interface Quality," IEEE Electron Device Letters, vol. 42, no. 9, pp. 1299-1302, 2021.
[27] L. Baumgarten, T. Szyjka, T. Mittmann, M. Materano, Y. Matveyev, C. Schlueter, T. Mikolajick, U. Schroeder, and M. Müller, "Impact of vacancies and impurities on ferroelectricity in PVD-and ALD-grown HfO2 films," Applied Physics Letters, vol. 118, no. 3, p. 032903, 2021.
[28] M. Martínez-Puente, P. Horley, F. Aguirre-Tostado, J. López-Medina, H. Borbón-Nuñez, H. Tiznado, A. Susarrey-Arce, and E. Martínez-Guerra, "ALD and PEALD deposition of HfO2 and its effects on the nature of oxygen vacancies," Materials Science and Engineering: B, vol. 285, p. 115964, 2022.
[29] Y.-J. Lin, C.-Y. Teng, C. Hu, C.-J. Su, and Y.-C. Tseng, "Impacts of surface nitridation on crystalline ferroelectric phase of Hf1-xZrxO2 and ferroelectric FET performance," Applied Physics Letters, vol. 119, no. 19, p. 192102, 2021.
[30] M. Hyuk Park, H. Joon Kim, Y. Jin Kim, W. Lee, H. Kyeom Kim, and C. Seong Hwang, "Effect of forming gas annealing on the ferroelectric properties of Hf0. 5Zr0. 5O2 thin films with and without Pt electrodes," Applied Physics Letters, vol. 102, no. 11, p. 112914, 2013.
[31] S. J. Kim, J. Mohan, H. S. Kim, J. Lee, S. M. Hwang, D. Narayan, J.-G. Lee, C. D. Young, L. Colombo, and G. Goodman, "Effect of hydrogen derived from oxygen source on low-temperature ferroelectric TiN/Hf0.5Zr0.5O2/TiN capacitors," Applied Physics Letters, vol. 115, no. 18, p. 182901, 2019.
[32] A. Rosenauer and M. Schowalter, "STEMSIM-a new software tool for simulation of STEM HAADF Z-contrast imaging," Springer Proceedings in Physics, vol. 120, pp. 169-172, 2008.
[33] X. Zhao and D. Vanderbilt, "First-principles study of structural, vibrational, and lattice dielectric properties of hafnium oxide," Physical Review B, vol. 65, no. 23, p. 233106, 2002.
[34] D. Vanderbilt, X. Zhao, and D. Ceresoli, "Structural and dielectric properties of crystalline and amorphous ZrO2," Thin Solid Films, vol. 486, no. 1-2, pp. 125-128, 2005.
[35] C. Künneth, R. Materlik, and A. Kersch, "Modeling ferroelectric film properties and size effects from tetragonal interlayer in Hf1–xZrxO2 grains," Journal of Applied Physics, vol. 121, no. 20, p. 205304, 2017.
[36] S. S. Cheema, N. Shanker, L.-C. Wang, C.-H. Hsu, S.-L. Hsu, Y.-H. Liao, M. San Jose, J. Gomez, W. Chakraborty, and W. Li, "Ultrathin ferroic HfO2–ZrO2 superlattice gate stack for advanced transistors," Nature, vol. 604, no. 7904, pp. 65-71, 2022.
[37] U. Schroeder, T. Mittmann, M. Materano, P. D. Lomenzo, P. Edgington, Y. H. Lee, M. Alotaibi, A. R. West, T. Mikolajick, and A. Kersch, "Temperature‐Dependent Phase Transitions in HfxZr1‐xO2 Mixed Oxides: Indications of a Proper Ferroelectric Material," Advanced Electronic Materials, vol. 8, no. 9, p. 2200265, 2022.
[38] Y. Zhang, Z. Fan, D. Wang, J. Wang, Z. Zou, Y. Li, Q. Li, R. Tao, D. Chen, and M. Zeng, "Enhanced Ferroelectric Properties and Insulator–Metal Transition-Induced Shift of Polarization-Voltage Hysteresis Loop in VO x-Capped Hf0.5Zr0.5O2 Thin Films," ACS Applied Materials & Interfaces, vol. 12, no. 36, pp. 40510-40517, 2020.
[39] C. Gastaldi, M. Cavalieri, A. Saeidi, E. O'Connor, S. Kamaei, T. Rosca, I. Stolichnov, and A. M. Ionescu, "Intrinsic switching in Si-doped HfO2: A study of Curie–Weiss law and its implications for negative capacitance field-effect transistor," Applied Physics Letters, vol. 118, no. 19, p. 192904, 2021.
[40] P. D. Lomenzo, S. Jachalke, H. Stoecker, E. Mehner, C. Richter, T. Mikolajick, and U. Schroeder, "Universal Curie constant and pyroelectricity in doped ferroelectric HfO2 thin films," Nano Energy, vol. 74, p. 104733, 2020.
[41] T. Shimizu, K. Katayama, T. Kiguchi, A. Akama, T. J. Konno, O. Sakata, and H. Funakubo, "The demonstration of significant ferroelectricity in epitaxial Y-doped HfO2 film," Scientific reports, vol. 6, no. 1, p. 32931, 2016.
[42] H. Chen, L. Tang, L. Liu, Y. Chen, H. Luo, X. Yuan, and D. Zhang, "Temperature dependent polarization-switching behavior in Hf0. 5Zr0. 5O2 ferroelectric film," Materialia, vol. 14, p. 100919, 2020.
[43] T. Mittmann, M. Materano, S.-C. Chang, I. Karpov, T. Mikolajick, and U. Schroeder, "Impact of oxygen vacancy content in ferroelectric HZO films on the device performance," in 2020 IEEE International Electron Devices Meeting (IEDM), 2020: IEEE, pp. 18.4. 1-18.4. 4.
[44] Z. Fan, J. Chen, and J. Wang, "Ferroelectric HfO2-based materials for next-generation ferroelectric memories," Journal of Advanced Dielectrics, vol. 6, no. 02, p. 1630003, 2016.
[45] H. Mulaosmanovic, E. T. Breyer, T. Mikolajick, and S. Slesazeck, "Ferroelectric FETs with 20-nm-thick HfO2 layer for large memory window and high performance," IEEE Transactions on Electron Devices, vol. 66, no. 9, pp. 3828-3833, 2019.
[46] Y.-T. Tang, C.-J. Su, Y.-S. Wang, K.-H. Kao, T.-L. Wu, P.-J. Sung, F.-J. Hou, C.-J. Wang, M.-S. Yeh, and Y.-J. Lee, "A comprehensive study of polymorphic phase distribution of ferroelectric-dielectrics and interfacial layer effects on negative capacitance FETs for sub-5 nm node," in 2018 IEEE Symposium on VLSI Technology, 2018: IEEE, pp. 45-46.
[47] Y.-W. Chen and C. Liu, "Boost of orthorhombic population with amorphous SiO2 interfacial layer—a DFT study," Semiconductor Science and Technology, vol. 37, no. 5, p. 05LT01, 2022.
[48] H. J. Kim, M. H. Park, Y. J. Kim, Y. H. Lee, W. Jeon, T. Gwon, T. Moon, K. D. Kim, and C. S. Hwang, "Grain size engineering for ferroelectric Hf0. 5Zr0. 5O2 films by an insertion of Al2O3 interlayer," Applied Physics Letters, vol. 105, no. 19, p. 192903, 2014.
[49] J. Wu, F. Mo, T. Saraya, T. Hiramoto, and M. Kobayashi, "A first-principles study on ferroelectric phase formation of Si-doped HfO2 through nucleation and phase transition in thermal process," Applied Physics Letters, vol. 117, no. 25, p. 252904, 2020.
[50] B. M. Hudak, S. W. Depner, G. R. Waetzig, A. Talapatra, R. Arroyave, S. Banerjee, and B. S. Guiton, "Real-time atomistic observation of structural phase transformations in individual hafnia nanorods," Nature communications, vol. 8, no. 1, p. 15316, 2017.
[51] A. Toriumi, Y. Nakajima, and K. Kita, "Opportunity for Phase-Controlled Higher-k HfO2," ECS Transactions, vol. 41, no. 7, p. 125, 2011.
[52] Y. H. Lee, S. D. Hyun, H. J. Kim, J. S. Kim, C. Yoo, T. Moon, K. D. Kim, H. W. Park, Y. B. Lee, and B. S. Kim, "Nucleation‐limited ferroelectric orthorhombic phase formation in Hf0. 5Zr0. 5O2 thin films," Advanced Electronic Materials, vol. 5, no. 2, p. 1800436, 2019.
[53] A. Kashir, H. Kim, S. Oh, and H. Hwang, "Large remnant polarization in a wake-up free Hf0. 5Zr0. 5O2 ferroelectric film through bulk and interface engineering," ACS Applied Electronic Materials, vol. 3, no. 2, pp. 629-638, 2021.
[54] S. E. Reyes-Lillo, K. F. Garrity, and K. M. Rabe, "Antiferroelectricity in thin-film ZrO2 from first principles," Physical Review B, vol. 90, no. 14, p. 140103, 2014.
[55] T. D. Huan, V. Sharma, G. A. Rossetti Jr, and R. Ramprasad, "Pathways towards ferroelectricity in hafnia," Physical Review B, vol. 90, no. 6, p. 064111, 2014.
[56] S.-J. Chang, C.-Y. Teng, Y.-J. Lin, T.-M. Wu, M.-H. Lee, B.-H. Lin, M.-T. Tang, T.-S. Wu, C. Hu, and E. Y.-T. Tang, "Visualizing Ferroelectric Uniformity of Hf1–x Zr x O2 Films Using X-ray Mapping," ACS Applied Materials & Interfaces, vol. 13, no. 24, pp. 29212-29221, 2021.
[57] J. Adkins, I. Fina, F. Sánchez, S. Bakaul, and J. Abiade, "Thermal evolution of ferroelectric behavior in epitaxial Hf0. 5Zr0. 5O2," Applied Physics Letters, vol. 117, no. 14, p. 142902, 2020.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88131-
dc.description.abstract本篇論文討論基於氧化鉿鋯之鐵電薄膜,用於新型非揮發性記憶體。我們採用電漿輔助原子層沉積方法沉積HfO2-ZrO2混合物,並沉積TiN上下電極形成金屬-鐵電氧化物-金屬電容結構。電漿輔助原子層薄膜沉積的優勢在本文中討論,包括沉積溫度,前驅物,反應氣體等,以達到低缺陷沉積Hf0.5Zr0.5O2的目的。通過透射電子顯微鏡和高角度暗場技術來支援材料分析,以區分超晶格和合金結構。通過電性分析,低氧空缺含量有利於鐵電正交晶系的生成以及高氧空缺含量有利於反鐵電四方晶系的生成,本文闡明了Hf0.5Zr0.5O2的氧空缺效應。實驗介電常數是通過非滯後電容-電壓測量來提取的,以分辨晶系的含量。
從亞穩的四方晶系向正交晶系的低溫相變在增強所需鐵電特性中起著關鍵作用。在此研究中,我們在Hf0.5Zr0.5O2合金中實驗性地研究了低溫相變,觀察到電特性中從反鐵電向鐵電的可逆相變。我們還分析了穩定的正交晶系的形成,在超晶格Hf0.5Zr0.5O2中,77K時具有顯著的23%剩餘極化增加。為了驗證關於低溫下相變現象的理論,我們採用了Landau-Ginzburg-Devonshire理論和第一原理計算的分析組合。詳細的計算揭示了隨著溫度降低,四方晶系相對自由能增加有助於降低能量屏障,促進從亞穩的四方晶系向正交晶系的相變。這項工作提出了一個綜合的低溫相變模型,涉及Hf0.5Zr0.5O2中的四方晶系和正交晶系,為基於氧化鉿的新型低溫原件中增強鐵電性能提供了新的方法。
此外,通過降低Hf0.5Zr0.5O2的厚度,改善了讀出電流較低的問題。4nm Hf0.5Zr0.5O2的電流數量級比6.7nm的大1000倍,直流開/關比超過10。在1E-2秒脈衝寬度下,4nm的Hf0.5Zr0.5O2的交流開/關比為2.1,並在1E-3秒脈衝寬度時達到飽和。
zh_TW
dc.description.abstractThis dissertation investigates the HfO2-ZrO2-based ferroelectric thin film for novel non-volatile memory. The HfO2-ZrO2 mixture is deposited by plasma enhanced atomic layer deposition (PEALD) and sandwiched by in-situ TiN electrodes, forming the MFM capacitor structure. The advantages of PEALD thin film deposition are studied to optimize the quality of Hf0.5Zr0.5O2. The transmission electron microscope and high-angle annular dark-field support material analysis to distinguish the superlattices and alloys. The oxygen vacancy effect of Hf0.5Zr0.5O2 is clarified by electrical characteristics in low oxygen vacancy favoring ferroelectric orthorhombic phase and high oxygen vacancy favoring anti-ferroelectric tetragonal phase. The experimental dielectric constant is extracted from non-hysteretic capacitance-voltage measurement.
The cryogenic transition from the metastable tetragonal phase to the orthorhombic phase is crucial in achieving desired ferroelectric characteristics. In this study, we experimentally investigate the cryogenic phase transition in Hf0.5Zr0.5O2 alloys, observing the reversible change from antiferroelectricity to ferroelectricity in electrical properties. We also analyze the formation of stabilized o-phase, which exhibits a significant 23% increase in remanent polarization at 77K in superlattice Hf0.5Zr0.5O2. To provide theoretical insights into the phase transition phenomenon at lower temperatures, we employ a combination of Landau-Ginzburg-Devonshire theory and first-principle calculations. The detailed calculations reveal that the increasing relative free energy of the t-phase contributes to lowering the energy barrier as the temperature decreases, facilitating the transition from the metastable tetragonal phase to the orthorhombic phase. This research presents a comprehensive cryogenic phase transition model involving tetragonal and orthorhombic phases in Hf0.5Zr0.5O2, offering a promising approach to enhance ferroelectricity in emerging cryo-devices based on HfO2.
Moreover, the issue of low read-out current is ameliorated by reducing the thickness of Hf0.5Zr0.5O2. The current magnitude of 4nm Hf0.5Zr0.5O2 is 1000 times more than 6.7nm with a DC swept on/off ratio of more than 10. The AC on/off ratio of 4nm Hf0.5Zr0.5O2 is 2.1 at pulse width 1E-2 second and saturates at pulse width 1E-3 second.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-08T16:26:12Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-08-08T16:26:12Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsRelated Publications (相關論文發表) i
致謝 iii
摘要 iv
Abstract v
Table of Contents vii
List of Figures ix
List of Tables xii
Chapter 1 - Introduction 1
1.1 Background and Motivation 1
1.2 Thesis Organization 4
Chapter 2 - Device Fabrication and Electrical Properties of Alloy and Superlattice Hf0.5Zr0.5O2 6
2.1 Introduction 6
2.2 Plasma Enhanced Atomic Layer Deposition (PEALD) 7
2.3 MFM Capacitor Fabrication 9
2.4 Material Analysis of Alloy and Superlattice Hf0.5Zr0.5O2 11
2.5 Electrical Characteristics of Alloy and Superlattice Hf0.5Zr0.5O2 13
2.6 Dielectric Constant of Hf0.5Zr0.5O2 with Different O2 Exposure Time 16
2.7 Summary 17
Chapter 3 - Cryogenic Phase Transition 18
3.1 Introduction 18
3.2 Cryogenic Measurement of Alloy Hf0.5Zr0.5O2 18
3.3 Cryogenic Measurement of Superlattice Hf0.5Zr0.5O2 21
3.4 Landau-Ginzburg-Devonshire (LGD) Theory 23
3.5 First-principle Calculation 29
3.6 Summary 33
Chapter 4 - Thickness Effect in Ferroelectric Film 34
4.1 Introduction 34
4.2 DC and AC on/off Ratio of 6.7nm Superlattices 35
4.2.1 DC Measurement of 6.7nm Superlattices 36
4.2.2 AC Measurement of 6.7nm Superlattices 37
4.3 DC and AC on/off Ratio of 4nm Superlattices 38
4.3.1 DC Measurement of 4nm Superlattices 40
4.3.2 AC Measurement of 4nm Superlattices 41
4.4 Summary 42
Chapter 5 - Summary and Future Work 44
5.1 Summary 44
5.2 Future Work 45
5.3 Reference 45
-
dc.language.isoen-
dc.subject鐵電zh_TW
dc.subject鐵電穿隧結zh_TW
dc.subject反鐵電zh_TW
dc.subject氧空缺zh_TW
dc.subject超晶格zh_TW
dc.subject低溫相變zh_TW
dc.subject鐵電隨機存取記憶體zh_TW
dc.subject鐵電場效電晶體zh_TW
dc.subjectFeFETen
dc.subjectferroelectric (FE)en
dc.subjectanti-ferroelectric (AFE)en
dc.subjectoxygen vacancyen
dc.subjectsuperlatticesen
dc.subjectcryogenic phase transitionen
dc.subjectFeRAMen
dc.subjectFTJen
dc.title鐵電薄膜低溫相變及厚度效應之電性分析zh_TW
dc.titleElectrical Analysis of Cryogenic Phase Transition and Thickness Effect in Ferroelectric Filmen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee李敏鴻;林中一;林楚軒;廖洺漢zh_TW
dc.contributor.oralexamcommitteeMin-Hung Lee;Chung-Yi Lin;Chu-Hsuan Lin;Ming-Han Liaoen
dc.subject.keyword鐵電,反鐵電,氧空缺,超晶格,低溫相變,鐵電隨機存取記憶體,鐵電穿隧結,鐵電場效電晶體,zh_TW
dc.subject.keywordferroelectric (FE),anti-ferroelectric (AFE),oxygen vacancy,superlattices,cryogenic phase transition,FeRAM,FTJ,FeFET,en
dc.relation.page53-
dc.identifier.doi10.6342/NTU202301680-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2023-07-19-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept電子工程學研究所-
顯示於系所單位:電子工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf3.56 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved