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Abstract

This dissertation investigates the HfO»-ZrO»-based ferroelectric thin film for novel
non-volatile memory. The HfO»,-ZrO, mixture is deposited by plasma enhanced atomic
layer deposition (PEALD) and sandwiched by in-sifu TiN electrodes, forming the MFM
capacitor structure. The advantages of PEALD thin film deposition are studied to
optimize the quality of Hfo.sZro.502. The transmission electron microscope and high-angle
annular dark-field support material analysis to distinguish the superlattices and alloys.
The oxygen vacancy effect of Hfo.sZro.sO: is clarified by electrical characteristics in low
oxygen vacancy favoring ferroelectric orthorhombic phase and high oxygen vacancy
favoring anti-ferroelectric tetragonal phase. The experimental dielectric constant is
extracted from non-hysteretic capacitance-voltage measurement.

The cryogenic transition from the metastable tetragonal phase to the orthorhombic
phase is crucial in achieving desired ferroelectric characteristics. In this study, we
experimentally investigate the cryogenic phase transition in Hfo sZro 50> alloys, observing
the reversible change from antiferroelectricity to ferroelectricity in electrical properties.
We also analyze the formation of stabilized o-phase, which exhibits a significant 23%
increase in remanent polarization at 77K in superlattice Hfos5ZrosO,. To provide
theoretical insights into the phase transition phenomenon at lower temperatures, we
employ a combination of Landau-Ginzburg-Devonshire theory and first-principle
calculations. The detailed calculations reveal that the increasing relative free energy of
the t-phase contributes to lowering the energy barrier as the temperature decreases,
facilitating the transition from the metastable tetragonal phase to the orthorhombic phase.
This research presents a comprehensive cryogenic phase transition model involving

tetragonal and orthorhombic phases in Hfos5Zros02, offering a promising approach to
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enhance ferroelectricity in emerging cryo-devices based on HfO,.

Moreover, the issue of low read-out current is ameliorated by reducing the thickness
of Hfo.5Zro.50>. The current magnitude of 4nm Hfo 5Zr0 50> is 1000 times more than 6.7nm
with a DC swept on/off ratio of more than 10. The AC on/off ratio of 4nm Hfy 5Zr50; is

2.1 at pulse width 1E-2 second and saturates at pulse width 1E-3 second.

Keywords: ferroelectric (FE), anti-ferroelectric (AFE), oxygen vacancy,

superlattices, cryogenic phase transition, FERAM, FTJ, FeFET.
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Chapter 1 - Introduction

1.1 Background and Motivation

Non-volatile memory (NVM) has attracted the excellent research interest in recent
years due to its performance, scalability, density, and power efficiency[1]. The novel
NVMs such as resistive RAM (ReRAM)|[2], phase-change memory (PCM)[3], magnetic
RAM (MRAM)[4], ferroelectric FET (FeFET)[5], and other emerging memories
demonstrate excellent abilities which surpass that of the classic memories and are
available from various industrial platforms (Fig. 1.1-1). As data storage requirements
grow, the NVMs emphasize increasing memory density and scalability. Due to the ever-
increasing need for high-performance computing (HPC), the data must be accessed
quickly enough[6]. This leads to the shortened distance between memory and logic
transistors. The demands of embedded memory have become necessary and drive the
investigation of embedded non-volatile memory (eNVM)[7]. Taking advantage of low
cost, high density, good scalability, and endurance, ferroelectric (FE) based memory
becomes a big hit with the possibility of filling the gap between dynamic random-access
memory (DRAM) and NAND Flash in the memory hierarchy (Fig. 1.1-2).

Due to their low operating power requirements, ferroelectrics are an ideal material
choice for NVMs [8]. Within the realm of FE memory concepts, three distinct approaches
can be identified: FeRAM|[9] (Fig. 1.1-3 (a)), FTJ[10](Fig. 1.1-3 (b)), and FeFET[11](Fig.
1.1-3 (c)). FeRAM uses the direct measurement of the charge flowing during capacitor
switching for readout. FTJ, on the other hand, the direction of the FE polarization
modulates the tunneling current through either a thin FE layer or a FE layer in series with
a thin tunneling barrier. Lastly, FeFET involves coupling the polarization to the channel

of a FET, thereby altering the threshold voltage (V) of the transistor.
1
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Significant advancements in ferroelectricity have emerged from doped-HfO>
mixtures[12], opening up possibilities for emerging NVMs [13-15] that are compatible
with complementary metal-oxide-semiconductor (CMOS) technology[16]. With the
evolution towards cryo-CMOS and quantum systems, the demand for cryogenic NVMs
becomes apparent[17]. Our recent research highlighted the application of HfxZri«O: as a
high-k dielectric due to its anti-ferroelectric (AFE) property[18]. A substantial proportion
of the orthorhombic phase (o-phase) is required to obtain robust FE properties. Thermal
processing of HfxZr.xO; thin films has been reported to induce the formation of the o-
phase, resulting in ferroelectricity[19, 20]. The metastable o-phase has been observed
during the cooling stage, where the material is heated to a high crystallization temperature
and then cooled to room temperature[21]. The electrical characteristics of HfxZri«O are
influenced by the presence of crystalline phases such as the dielectric (DE) monoclinic
phase (m-phase), FE o-phase, and AFE tetragonal phase (t-phase)[22]. Consequently, a
high concentration of [Hf] promotes the o-phase, while a high concentration of [Zr] favors
the t-phase with AFE behavior. It has been demonstrated that the o-phase can be stabilized
at specific thicknesses by manipulating the surface energy effect[23]. Additionally, our
previous work has discussed the impact of oxygen vacancy concentration ([V,]) on phase
formation[24]. Control of [V,] allows us to tailor the FE and AFE characteristics of our
metal-ferroelectric-metal (MFM) and metal-insulator-metal (MIM) heterostructures at
room temperature. Higher [V,] leads to the formation of alloys, promoting AFE behavior,
whereas lower [Vo] results in superlattices favoring FE characteristics at room
temperature[24]. Furthermore, the use of superlattice structures in HfxZr.xO> has been
found to favor the o-phase, while alloys assist in forming the t-phase with a relatively

high dielectric constant[24].

doi:10.6342/NTU202301680



PLL, BIST, FUSE
I

(a)

s

ReRAM:

|

W

FeFET:

GlobalFoundries

Fig. 1.1-1 Emerging memories like (a) ReRAM [2], (b) PCM [3], (c) MRAM [4],
and (d) FeFET [5] are available from various industrial platforms.

HfO,-based
ferroelectric

memories SRAM
I I 1T1C FeRAM DRAM
NOR FLASH

NAND FLASH

l HDD

Fig. 1.1-2 Memory hierarchy.

3D FeFET

endurance
speed
cost per bit

d0i:10.6342/NTU202301680



Top
Electrode
TiN

HZO

Bottom
Electrode
TiN

FeFET

(C) Gate Gate metal

Stacked two channels
W¢,=170nm

Channel

Fig. 1.1-3 Main components of ferroelectric NVMs, (a) FeRAM [9], (b) FTJ
[10], and (c) FeFET [11].

1.2 Thesis Organization

The objections of this thesis are to investigate the material properties of Hfo.5sZro.502
heterostructures, [V,] effect resulting from plasma enhanced atomic layer deposition
(PEALD) O2 exposure time, and the cryogenic phase transition between FE o-phase and
AFE t-phase. The thickness effect of Hfy 5Zro 502 in an MFM capacitor is also studied by
measured DC/AC on/off ratio. The arrangement of this thesis is as follows.

Chapter 2 discusses the advancements in FE thin film deposition, particularly
focusing on Hfo5Zro 50> thin films deposited with TiN bottom and top electrodes. It

highlights the use of atomic layer deposition (ALD) for precise control of film growth
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and improved thin film quality. The limitations of conventional ALD and the development
of PEALD are also mentioned. Chapter 2 further describes the material analysis of
Hfo.5Zr0.50; films using transmission electron microscopy (TEM) and high-angle annular
dark-field (HAADF) imaging. It concludes with examining the electrical characteristics
and dielectric constant of Hfy 5Zro 50> with different O» exposure times.

In Chapter 3, cryogenic behavior and phase transitions of Hfo 5Zro 50> thin films with
different oxygen exposures are included. The analysis utilizes cryogenic measurements,
Landau-Ginzburg-Devonshire (LGD) theory, and first-principle calculations to
understand the phase transitions. The study demonstrates the reversible phase transitions
between AFE and FE in Hfy.5ZrosO; thin films at cryogenic temperatures. The findings
highlight the importance of temperature-dependent energy barriers and the role of
different phases in controlling the FE properties of the material. These insights contribute
to the understanding and potential optimization of Hfy.5Zro sO> for various applications in
FE devices.

Chapter 4 shows the DC and AC on/off ratio of Hfo.5Zros02 with 30s O, exposures.
In the DC measurement, positive and negative voltage sweeps are applied to set the
polarization direction, and the resulting on-current (Jon) and off-current (Jofr) are measured.
The AC measurements are performed with varying pulse widths, and the on/off ratio is
analyzed. To further improve the read-out current, the thickness of Hfo.5ZrosO: is
decreased. The electrical characteristics of Hfo5ZrosO> with different thicknesses are
studied and benchmarked.

Finally, chapter 5 summarizes this work's conclusions and recommends future work

prospects.
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Chapter 2 - Device Fabrication and Electrical

Properties of Alloy and Superlattice Hfy.5Zro50:

2.1 Introduction

FE thin film deposition has witnessed significant advancements in recent years,
enabling the development of new materials and devices with enhanced functionalities[25].
The HfiZr1xO> thin film deposited with TiN bottom and top electrodes can achieve
excellent FE properties due to the in-sifu environment during whole growth flow[26].
Benefiting from the precise control of film thickness, growth temperature, and reactant gas,
ALD is separately used in FE film deposition[27]. ALD offers improved reactivity of
precursor molecules to achieve atomic-level control of thin film growth and high-quality
thin films with reduced defect density. The MFM heterogenous is fabricated for material
and electrical characteristics analysis.

However, conventional ALD faces limitations regarding certain materials and high-
aspect-ratio structures. These challenges have led to the development of PEALD, which
enhances the capabilities of ALD through the incorporation of plasma[28]. To measure the
electrical characteristics, the bottom and top electrodes should be well defined by reactive
ion etching (RIE) on the MFM structure. Metal material and etching gas need to be
considered to obtain good etching selectivity. Etching time should also be well calculated
according to the oxide thickness. Duo to FE properties exist in crystallized phases, post-
metal annealing (PMA) or post-deposition annealing (PDA) with preferred temperature

need to be performed to crystallize the HfxZri-xO» thin film[29].
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2.2 Plasma Enhanced Atomic Layer Deposition (PEALD)

PEALD is a thin film deposition system that combines the principles of ALD with
the profit of plasma. By utilizing plasma in the specific film deposition, the reactivity of
precursor molecules is improved, leading to reliable thin film quality. Plasma can help
break down precursor molecules more efficiently, reducing defect density. Taking
advantage of film conformality, PEALD is widely applied to film formation on complex
structures. Compared with the Physical vapor deposition system, PEALD enhances the
diffusion of precursor molecules into narrow and high-aspect-ratio features, ensuring
uniform film coverage across the substrate, including sidewalls and cavities. PEALD
broadens the scope of materials that can be effectively deposited. This allows for greater
flexibility in selecting materials for specific applications. Otherwise, the profit of plasma
in PEALD offers the ability to tune and control the properties of the deposited films. By
adjusting the plasma conditions, such as power, gas composition, pressure, and exposure
time, it is possible to modify the film's crystallinity, defect density, and oxygen vacancy
concentration.

Fig. 2.2-1 demonstrates the schematic of the PEALD system. The manual and ALD
valves are used to control the switch and pulse precursor, respectively. Note that the heater
system surrounds the chamber to maintain the growth temperature. All the unreacted
precursor and by-product gas (e.g., H2O, CO») are taken away by Ar purge through the
pump. Besides, the dry pump system keeps the high vacuum level, benefiting the film
quality.

The process of single-layer growth in PEALD is shown in Fig. 2.2-2. The
relationship between pressure and time in one cycle film deposition is simplified to the
waveform in Fig. 2.2-2. The precursor is pulsed after flowing Ar carrier gas and Ar purge

gas, reacting with the substrate surface, which is fully covered with OH" groups in the

7
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chamber. To satisfy the formation of different films, plasma can be modified by changing

the category of reactant gas.

Ar (purge and plasma)
Ar carrier gas

ALD valve

Manual valve%

Chamber

Sample

Heh

Dry pump

Fig. 2.2-1 Schematic of PEALD.

Plasma coil
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Fig. 2.2-2 Operation mode of single layer growth in PEALD.

2.3 MFM Capacitor Fabrication

To character the electrical properties, MFM capacitors were fabricated on Si substrates
using the Pt/TiN/Hfo.5Zro.sO2/TiN/Pt configuration (Fig. 2.3-1Fig. 2.3-1). The bottom Pt
layer, deposited via sputtering, served as both an etch-stop layer and a probe layer[30, 31].
The PEALD process was carried out at a temperature of 250°C. The in-sifu TiN bottom and
top electrode deposition was achieved through PEALD using a forming gas mixture (50%
N2 + 50% Hb»). Different exposure times of O» were performed to form alloys and

superlattices[24]. The Hfo.sZro.50: films consisted of 5 cycles of ZrO; followed by 5 cycles
9
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of HfO», resulting in 50 cycles (Fig. 2.3-1). It is worth noting that using ZrO> as the first
layer allowed for a higher 2P, than using HfO» as the first layer[24]. Additionally, an in-situ
forming gas plasma treatment was conducted on the TiN bottom electrodes to form distinct
bottom-top interfaces. The precursor chemicals used were TDMAZr, TDMAHTf, and

TDMATi for ZrO», HfO, and TiN, respectively.

hTﬂp Electrode(TE)

Sputtering Pt BE

Sputter Pt PEALD TiN 250°C
PEALD TiN
~ PEALD HfO, 5 cvele N,+H, plasma treatment
PEALD Zr0O, 5cycle
PEALD HIO. 5 cucle PEALD HZO 250°C |
Hf, :Zr, 0, (controlling O, exposure time)
5 periods < In-situ PEALD TiN 250°C

PEALD HfO, 5 cycle .

PEALD ZrO, 5 cycle Lithography

PEALD HfO, Scycle  Bottom . o
N,+H, PEALD ZrO, 5cycle  [F5 ROEREN Sputtering Pt passivation TE

plasma PEALD TiN Patterning by lift-off process
Reactive ion etching (RIE)

Sputter Pt

- SiSubstrate rerming gas annealing

Fig. 2.3-1 Process flow of Pt/TiN/Hfo.5Zro.502/TiN/Pt capacitor.

Following the PEALD process of TiN/Hfo.sZrosO2/TiN/Pt (bottom), a top Pt
passivation layer was sputtered and deposited to prevent oxidation on the TiN surface.
This passivation layer was then patterned using the lift-off process. Subsequently, the
TiN/Hfo5Zr0502/TiN films were etched until reaching the bottom Pt layer through
reactive ion etching (RIE). After completing the device fabrication steps mentioned above,
a PMA process was conducted in a forming gas mixture of 90% N> and 10% H. This
annealing process aimed to crystallize the Hfo.sZrosO thin films. A PMA temperature of
450°C was applied for Hfo 5Zro.502 with a 5s Oz exposure, while a temperature of 400°C

was used for Hfy 5sZro 50> with a 10s O2 exposure.

10
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2.4 Material Analysis of Alloy and Superlattice Hfo.5sZr.502

TEM images illustrate the crystallinity and physical thickness of the FE layer. In
accordance with the fabrication process, the bottom and top PEALD TiN electrodes are
situated below and above the Hfy 5sZro.s0O; thin films, respectively. TEM images reveal a
distinct metal-oxide interface, allowing for the estimation of the crystal thickness of
Hfo.5Zr0.50,. The TEM image (Fig. 2.4-1(a)) demonstrates good crystallinity in the 6.3nm
Hfo.5Zr0.50; film with a 5s Oz exposure time. Conversely, the 6.7nm Hfy 5Zro 50> film
with a 10s Oz exposure time shown in Fig. 2.4-1(b) exhibits higher crystallinity and is
thicker compared to the film with a 5s O2 exposure time due to the increased oxygen
content in the PEALD process.

To seriously distinguish the alloy and superlattice structure, HAADF images are
applied in this analysis. HAADF imaging is a technique used in scanning transmission
electron microscopy (STEM) to provide atomic number contrast. It can distinguish
elements based on their atomic number (Z)[32]. The contrast in HAADF imaging arises
from the dependence of the scattering cross-section on the atomic number. Higher atomic
number elements have a larger scattering cross-section due to their increased number of
protons, resulting in stronger scattering and higher intensity in the HAADF image.
Therefore, regions in the sample with elements of higher atomic numbers appear brighter
in the image compared to areas with lower atomic numbers of elements. As a result,
hafnium (Z=72) images brighter than Zirconium (Z=40) in HAADF.

The Hfo.5Zr0.502 film with 5s Oz exposure is an alloy with the ZrO,-HfO- interfacial
mixture, as shown in the HAADF image (Fig. 2.4-2(a)). In contrast, Hfo 5Zro 50> with 10s
O: exposure shows clear ZrO,-HfO- interfaces and superlattices (Fig. 2.4-2(b)). The dark
layers (marked in dark blue) are ZrO> with PEALD 5 cycles in each layer, and the bright

layers (marked in bright blue) are HfO> with PEALD 5 cycles in each layer.
11
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(a) 0 exposure 5s (b) O2 exposure 10s

Ll
e Sy ¥
1. -.-v--‘- ‘ ,o,

Fig. 2.4-1 TEM images with O exposure time of (a) 5s and (b) 10s.

(a) O, exposure 5s (b) O, exposure 10s

Fig. 2.4-2 HAADF images with O exposure time of (a) 5s and (b) 10s.
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2.5 Electrical Characteristics of Alloy and Superlattice Hfy5Zr50:

Our previous research has extensively examined the effects of [V,][24]. In our MFM
heterostructures, we utilize [V,] to manipulate the FE and AFE properties at room
temperature. Higher [V,] results in the formation of alloys, promoting AFE behavior at
room temperature. Conversely, lower [V,] leads to the formation of superlattices, favoring
FE characteristics at room temperature. Furthermore, our findings suggest that
Hfo5Zro 502 with superlattice structures favors the formation of the o-phase, while
Hfo.5Zro50; alloys facilitate the creation of the t-phase with a relatively high dielectric
constant.

The Hfo.5Zr0502 with 5s O2 exposure exhibited an AFE polarization-voltage (P-V)
loop at 300K, as shown in Fig. 2.5-1. This observation suggests that the high [V,] and
alloys favored the formation of the t-phase. At 300K, the t-phase characteristics were
consistently observed with four peaks in both the forward and reverse capacitance-voltage
(C-V) sweeps, as shown in Fig. 2.5-2.

Due to o-phase favoring low [V,] and superlattices, the pristine P-V loop at 300K
shows FE characteristics with 2Pr = 44uC/cm? in Fig. 2.5-3. Meanwhile, the coercive
voltage (2V.) at 300K is 1.6V. Besides, the C-V hysteresis shows two peaks in the forward

and reverse C-V sweeps (Fig. 2.5-4), indicating FE o-phase dominance.

13
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Fig. 2.5-1 P-V loop of Hfo.5Zr0.502 alloys with O2 exposure 5s measured at
300K.
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Fig. 2.5-2 C-V curve of Hfy.5Zr050: alloys with Oz exposure 5s measured at
300K.
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Fig. 2.5-3 P-V loop of Hfo.5Zro.502 superlattices with Oz exposure 10s measured
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Fig. 2.5-4 C-V curve of Hfo sZro.s0: superlattices with O2 exposure 10s
measured at 300K.
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2.6 Dielectric Constant of Hfy.5Zro50: with Different O Exposure Time

The dielectric constant of HfxZri.xO> is primarily influenced by the presence of
different crystalline phases, including the monoclinic phase, FE o-phase, and AFE t-phase.
Generally, a lower [V,] in the material favors the formation of the FE o-phase, while a
higher [V,] promotes the AFE t-phase. These distinct crystalline phases contribute to the
overall dielectric constant of HfxZr.xOx.

Table 2-1 illustrates the x value of m-phase, o-phase, and t-phase in HfO» and ZrO»
[23, 33, 34]. Note that the t-phase has the highest theoretical x value among all three
phases, which is 70 of HfO> and 47 of ZrO,. Non-hysteretic C-V measurement at 100
kHz is used to extract the x value of Hfo 5sZro50:.

Fig. 2.6-1 shows non-hysteretic C-V curves of Hfo.sZro.s02 measured at low voltage
sweep C-V. The « value is 30, 36, 42, and 47 for O, exposure 15s, 10s, 5s, and 3s,
respectively. With O> exposure time decreasing and more [V,] existing, high-x t-phase

become more favoring, resulting in the increase of x value.

Table 2-1 Dielectric constant of m-, o-, and t-phase.

Dielectric | - w15noclinic Orthorhombic Tetragonal
constant
HfO, 16 [33] 27 [23] 70 [33]
Zr0, 20 [34] 31[23] 47 [34]
16

doi:10.6342/NTU202301680



—

0,3sk =47

O, 55242/

—

/H§n2L

q¥

O, 10s x = 36
0,15s ¥ = 30

N
)

tance

i
e
>

ac
&

Ca

[\
L'_@
&

1.0

D5y ot (v) 03

Fig. 2.6-1 Dielectric constant of Hf 5sZro 502 with various Oz exposure times.

2.7 Summary

The PEALD MFM capacitors with different O exposure times are fabricated to
investigate the [V,] effect on Hfos5ZrosO2. Low [V,] and superlattice structure are
concluded in FE o-phase favoring. In contrast, high [V,] and alloy structure are concluded
in AFE t-phase favoring by material and electrical characteristics analysis, respectively.
Besides, the dielectric constant of HfysZrosO> with different [V,] is extracted by non-
hysteretic C-V measurement to prove that increasing [ Vo] helps high-x t-phase formation

and contributes to the increase of x value.
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Chapter 3 - Cryogenic Phase Transition

3.1 Introduction

The identification of the o-phase and t-phase in Hfo 5Zr0 50 films can be challenging
due to the overlapping peak positions in grazing incident X-ray diffraction (GIXRD)
spectra. However, observing variations in the P; values can confirm the phase transition.
Additionally, in [35], density functional theory (DFT) models for interfacial energy
calculations have been reported.

This chapter proposes a cryogenic phase transition model to investigate the transition
from t-phase to o-phase during cooling temperatures. Experimental measurements
validate this model. The cryogenic phase transition occurs below the Curie temperature
(Tcurie) and can be fitted using the LDG theory. The phase transition kinetics are described
using predicted free energies of the m-phase, o-phase, and t-phase obtained from the DFT

study, as well as the barrier energies of the phase transition.

3.2 Cryogenic Measurement of Alloy Hfo.5Zro50:

The Hfo.5Zr0.50; thin film with a 5s O exposure exhibited an AFE P-V loop at 300K,
indicating a high [V,] and an alloy structure that favored the t-phase. As the temperature
is lowered, the free energy of the t-, m-, and o-phases becomes temperature-dependent,
leading to transformations in the electrical characteristics[36, 37].

At 220K, the P-V loop exhibits FE properties, as shown in Fig. 3.2-1. Further cooling
to 150K and 77K maintains the stability of the FE P-V loops, accompanied by an increase
in the 2Pr values. Upon heating back up to 300K, the P-V loop reverses from FE to AFE
(Fig. 3.2-2).

18
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To confirm the transition from AFE to FE during cooling, C-V sweeps are measured

at various temperatures: 300K, 220K, 150K, 77K, and 300K (heating up after cooling),

as depicted in Fig. 3.2-3 and Fig. 3.2-4. At 300K, consistent with previous observations,

the t-phase characteristics are evident, with four peaks in both the forward and reverse C-

V sweeps. A transition from AFE (four peaks) to FE (two peaks) in the C-V hysteresis is

observed during cooling, consistent with the findings from the P-V loops. Upon returning

to room temperature, the 5s exposure sample exhibits an AFE P-V loop with four peaks

in the C-V hysteresis. These reversible transitions from AFE to FE and back to AFE

confirm the feasibility of overcoming the energy barrier between the o-phase and t-phase

reversibly.

= N W A
o O O O O O

Polarization (uC/cm?)

- 300K Decreasing T

—_—220K *

p—T77K

[ Pristine

" Alloy AFE2>FE
-Hf, sZr( 50,

I 220K:2P,=292V =1.2}

I 77K:2P,=352V =1.4V

0
Voltage (V)

Fig. 3.2-1 P-V loops of Hfy 5Zr0.50; alloys with O exposure 5s measured at

300K, 220K, 150K, and 77K.
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Fig. 3.2-3 C-V curves of Hfy 5sZro.50; alloys with O, exposure 5s measured at

300K, 220K, 150K, and 77K.
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Fig. 3.2-4 C-V curves of Hfy 571050 alloys with O exposure 5s measured by
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3.3 Cryogenic Measurement of Superlattice Hfy.5Zr.50:

To further investigate the t- to o-phase transition and its impact on FE enhancement

at cryogenic temperatures, we fabricated an Hfo sZr.sO> thin film with a 10s Oz exposure.

The longer exposure time promotes the formation of the o-phase due to its preference for

low [V,] and superlattice structures. As a result, the pristine P-V loop at 300K exhibits

FE characteristics.

At 77K, the Hfo5ZrosO2 thin film demonstrates a stable FE P-V loop with an

improved 2P; value of 54 uC/cm?, indicating an enhanced amount of the o-phase resulting

from the transition from the t-phase (Fig. 3.3-1). This represents a 23% improvement

compared to the previous observation at room temperature. Additionally, the coercive

voltage (V.) increases as the temperature decreases, indicating a stronger resistance to

polarization switching[38].
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The C-V hysteresis exhibits consistent behavior with two peaks, suggesting the
dominance of the FE phase during the cooling process. This aligns with the observed
transition from AFE to FE properties in Fig. 3.2-1 and Fig. 3.2-3. Therefore, the cooling
process serves to diminish the t-phase and enhance the o-phase, leading to improved

ferroelectricity.

i Decreasing T
— 300K 2P, increases23%
—_—220K

NN
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o
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Superlattice
| HfysZr, 50,

= N W
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40} 77K:2P,=542V ~2.4V

-2 0 2
Voltage (V)

Fig. 3.3-1 P-V loops of Hfo.5Zr0.502 superlattices with O, exposure 10s
measured at 300K, 220K, 150K, and 77K.

22

doi:10.6342/NTU202301680



481 300K
46} —— 220K

44 |

77K
42 | Pristine
40 Superlattice
HfysZr, 50,
38}

36
34}
32 1 1 1 1 1

Voltage (V)

Capacitance (fF/pum?)

Fig. 3.3-2 C-V curves of Hfy.5Zro.50; superlattices with O2 exposure 10s
measured at 300K, 220K, 150K, and 77K.

3.4 Landau-Ginzburg-Devonshire (LGD) Theory

In the context of LGD theory, the temperature-dependent phase transition is
explained using the concept of intrinsic switching[39]. The thermodynamic free energy

(G) 1s expressed as a polynomial expansion of the polarization (P) up to the sixth order:

a(n)
2

B

G(T) = ==P*+ “P*+ LP® — PE. (3.4.1)

In this expansion, the coefficients o, B, and y are temperature-independent Landau
coefficients, and E represents the electric field. The reciprocal of the dielectric
susceptibility is denoted by a, which is linearly related to temperature.

The reversible phase transition between the o-phase and t-phase occurs below the
Teurie. Based on this premise, the energy polynomial expansion can be simplified and

truncated to the fourth order. The sign of a remains negative below Tcurie, and its

23

doi:10.6342/NTU202301680



magnitude decreases with decreasing temperature. The electric field across the FE
material at thermal equilibrium can be determined by differentiating the free energy
concerning polarization (0G / 0P = 0), as given by Eq. (3.4.1).

E = aP + BP? (3.4.2)

The LGD theory provides a simplified description of polarization hysteresis using
Eq. (3.4.2), which involves two crucial coefficients associated with phase transitions. For
the convenient calculation, vy is not been considered due to its small order of magnitude.
The intrinsic switching model can be formulated using the coefficients a and B by utilizing
experimental data on P; and V.. The remanent polarization value can be determined by

setting the electric field (E) to zero, yielding the relationship stated in Eq. (3.4.3).

p= |2 (3.4.3)

And, according to the free energy description, following with the Curie-Weiss
behavior, the coefficient a:

a = ag(T — Teyrie)- (3.44)

Where ay is a positive constant. To determinate the coercive field (Ec), the electric field

at local extremes need to be analyzed,

2 =ao(T=T curie)
Ec = igao(’r — Teurie) ° 38 (3.4.5)

By utilizing Equations (3.4.3) and (3.4.5), the coefficients ap and  can be extracted
from the experimental data of Hfo.5Zros0O>. In the analysis of HfosZrosO2 with 5s Oz
exposure, the gradual transition from AFE to FE spanned between 300K and 220K. As a
result, the AFE data are excluded from the analysis[40].

During the cooling process, there is a steady increase in P; value, leading to an
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enhancement of ferroelectricity as the t-phase transitions to the o-phase (as shown in Fig.
3.4-1). It should be noted that the Tcurie of Hfo.5Z10.502 with 5s Oz exposure is determined
to be 622K through the best fit of the LGD model using our experimental data.
Furthermore, the progressively enhanced ferroelectricity causes the average V. to

increase during the cooling process (as illustrated in Fig. 3.4-2).

2} - - -- Fitting
A = fitted T,,,;~622K ¢ Experiment
&
c Bl .
= TTTeeelll
R bl T
S 15} e
t:
S
.g 12
-—cn _ —, (T Tcurie)
i1 R B
50 100 150 200 250
Temperature (K)

Fig. 3.4-1 Fitting results using the LGD model from Hfo.5Zro.50> alloys with Oz

exposure 5s of remanent polarization vs. temperatures.
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Fig. 3.4-2 Fitting results using the LGD model from Hfy.5Zro.50; alloys with O>

exposure 5s of average V. vs. temperatures.

In order to further investigate the enhancement of ferroelectricity through the t- to

o-phase transition, Hfo 5Zro.sO, with 10s Oz exposure was studied. The Tcurie is determined

to be 732K through the best fit of the LGD model using the experimental data shown in

Fig. 3.4-3 and Fig. 3.4-4. This value aligns with the reported Tcurie for similar HfxZr.xO>

systems[37, 41-43].

e = 9F _ 1
T e o (Tcurie—T)+3BP?

(3.4.6)

Comparing the estimated ao (1.7E6 VmK™'C!) from the temperature-dependent

permittivity (&) in the Curie-Weiss law (Eq. (3.4.6)), the fitted ao (2.7E6 VmK''C™!) from

our data using the LGD theory is reasonably close. It should be noted that the dielectric

constant measurements are performed at low voltage without hysteresis due to the

presence of hysteresis in the C-V measurement.
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The Hfo5Zr050> film with 10s O exposure contains fewer [V,] than the film with
5s Oz exposure, which increases Tcure [37]. Additionally, the Pr value shows a 23%
improvement from 300K to 77K (Fig. 3.4-3). The transition from the t-phase to the o-
phase at lower temperatures occurs with a low energy barrier, leading to a greater amount
of o-phase. Moreover, the average V. follows a linear trend, indicating increased FE
enhancement[44, 45]. Cryogenic temperatures effectively compensate for the loss of
memory window (MW = 2V.) caused by the thin film.

The Tecurie plays a crucial role in forming the FE o-phase during the cooling process.
To promote the formation of more o-phase, the amount of [V,] can be reduced during the
fabrication process, increasing the Tcuie. While the LGD theory can explain the cryogenic
phase transition in the material's properties, it does not incorporate the intrinsic phase
transition mechanism due to the absence of energy barriers. Therefore, the kinetic energy
barriers between each phase are critical for understanding the physical mechanism of

cryogenic behavior based on the experimental data.

27

doi:10.6342/NTU202301680



35} - --- Fitting
g flitted T ST32K o pyperiment
2 30t
&
= O
= 95 “=~--¢P, increases 23%
= B T
ot Tea -
S
= 20
% _ _aO(T B Tcurie)
R~ 15} B
50 100 160 200 250 300
Temperature (K)

Fig. 3.4-3 Fitting results using the LGD model from Hfy.5Zro.s0> superlattices

with Oz exposure 10s of remanent polarization vs. temperatures.
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Fig. 3.4-4 Fitting results using the LGD model from Hfo.5ZrosO> superlattices

with O3 exposure 10s of average V. vs. temperatures.
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3.5 First-principle Calculation

To gain a better understanding, the relative free energies of the t-, 0-, and m-phases
in Hfy 5Zro502, dependent on temperature, were calculated as shown in Fig. 3.5-1. The
Hfo5Zro 50, film with 5s O exposure was used as a reference for the theoretical
calculations, consistent with the LGD analyses. The phase free energy (Eq. (3.5.1))

comprises bulk energy, entropy contribution, and interfacial energy (Eq. (3.5.2))[46, 47].

(‘/‘:J_\
10.4
E [V, ]=3% — t-phase
§ ' e Increasing to 10.19 o-phase
\210.2 | a TTK 589 m-phase
25100k 300K
5 3
= .
= 98}
W
o . _
= 96f 949 40
.g l& @ 77K @ 300[(\
= 94
O
s

100 150 200 230 300
Temperature (K)

Fig. 3.5-1 Relative free energy of o-, t-, and m-phase with [V,]=3% under

various temperatures.

_ 27T(T'2X0i+7’d>(5i)
- nr2d

I;

(3.5.2)

The index "1" represents the phase in the Hfo5Zro50O> film, which could be the m-
29

doi:10.6342/NTU202301680



phase, o-phase, or t-phase. Gi, Ui, Si, and I'; denote the phase free energy, relative bulk
energy, entropy, and interfacial energy, respectively. For computational convenience, the
relative bulk energy of the m-phase is assumed to be zero.

According to the assumption of cylindrical grain growth in the Hfy 5Zro.50; film, the
interfacial energy I is a function of the interfacial energy of Hfo 5Zro502/ILs (oi) (Table
3-1), the estimated radius of the grain size (r=6nm) based on experimental data for
Hfo5Zro 50, [48], the thickness of HfosZrosO2 (d=6.3nm), and the -crystalline
phase/amorphous Hfy 5Zro 50 interfacial energy (6;) (Table 3-1), as shown in Eq. (3.5.2).
It should be noted that the assumed grain size radius (r=6nm) is based on the experimental
thickness. Gi, Ui, Si, and T'; values were calculated using density functional theory (DFT).
In our calculation, the value of I'i was found to be 9.58 eV/nm?® for the m-phase, 8.45
eV/nm?® for the o-phase, and 7.54 eV/nm? for the t-phase. The t-phase stability decreases

with decreasing temperature as its free energy increases.

Table 3-1 Interfacial energies of HZO/ILs [46]

Interfacial Energies .

of HZO/Ls (J/m?) | @028 | TiN (@)
m-phase 1.17 395
o-phase 1.52 3.03
t-phase 0.82 3.00

Based on the DFT calculations, the calculated relative free energy can be translated
into a free energy landscape (Fig. 3.5-2), along with the reported energy barriers for phase
transitions (Table 3-2). It is important to note that the explanations provided by the LGD

theory exclusively describe second-order phase transitions phenomenologically. The
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relative free energy (Gi) (Eq. (3.5.1), dependent on bulk energy (U;), temperature (T),
entropy (Si), and interfacial energy (I';)) for the t-phase continues to increase. At the same
time, that of the other two phases remains relatively stable during cooling (Fig. 3.5-1).
The activation barriers reported in the literature are listed in Table 3-2.

Due to the much higher energy barrier between the t- and m-phases compared to the
t- and o-phases (Table 3-2), the t-phase prefers to transition to the o-phase rather than the
m-phase (Fig. 7(b))[20, 49-52]. Considering the capping effect in our samples, the
activation barrier between the t- and m-phases has a higher value of 1.2 eV f.u.”! to 2.14
eV fu.”!, suppressing the formation of the m-phase during the cooling step, similar to
previous studies[53].

As the temperature decreases from 300K to 77K, the relative free energy of the t-
phase increases from 9.89 eV/nm? to 10.19 eV/nm?, while the energy barrier between the
t- and o-phases decreases (Fig. 3.5-2). Consequently, more o-phase is observed at 77K,
which aligns with the observed boost in 2P; in the experiments. Additionally, the lower
energy barrier between the t- and o-phases (20~35 meV f.u.!, [20, 54-57]in Table 3-2)
provides a favorable path for the cryogenic phase transition from the t- to o-phase.

The reversible transition between the AFE and FE confirms that the activation barrier
between the t- and o-phases is compatible with KT (26 meV(@300K). This indicates that

most equilibrium can be reached at the experimental temperature.
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[V,]=3%
During cooling

Free Energy

300K @300
orthorhombic monoclinic

Fig. 3.5-2 Schematic diagram of free energy for the phase transition during
cooling process. The relative barrier height between o- and t-phase decreases with
decreasing temperature, indicating the transition from t-phase to o-phase is more

favorable.

Table 3-2 Activation barriers between t/m phase and t/o-phase

w/o 45 meV f.u.! 315 meV f.u.-" 208 meV f.u."
[49] [20] [50]
capping
Um-phase 12eViu' | 214eViu-
capping [51] [52]
w/o 30 meV f.u." 20 meV f.u.! 27 meV f.u.!
capping [20] [54] [55]
t/o-ph
fo-phase 35 meV f.u." 23.4 meV f.u.!
capping [56] [57]

32

doi:10.6342/NTU202301680



3.6 Summary

Indeed, the experimental and theoretical findings support the clear cryogenic phase
transition in Hfy.sZro 5O, film and provide an explanation for the observed enhancement
of FE properties. The 23% improvement in 2P, with a high value of 54 uC/cm? at 77K,
demonstrates the effectiveness of the cryogenic phase transition.

The increase in the relative free energy of the t-phase plays a crucial role in reducing
the energy barrier for the transformation to the o-phase. This decrease in the energy barrier
facilitates the higher content of the o-phase in the Hfos5ZrosO; film, leading to the
observed boost in ferroelectricity.

Overall, the combination of experimental results and theoretical understanding
confirms the significance of cryogenic phase transition in Hfo sZro 50> films and its impact

on improving the FE properties, as indicated by the increased 2P; values.
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Chapter 4 - Thickness Effect in Ferroelectric Film

4.1 Introduction

FTJs, serving as FE NVMs, exhibit unique attributes such as nanosecond-level
write/erase speeds and minimal power consumption of a few femtojoules per bit. These
characteristics stem from the -electrical switching of spontaneous polarization.
Furthermore, in FTJ devices, written resistance states can be detected by measuring the
junction conductance, eliminating the need for a destructive polarization switch. From
the perspective of device applications, FTJs possess intriguing qualities. Unlike FE
capacitors, where leakage currents negatively impact device performance, the
conductance of FTJs serves as a functional characteristic. This unique property enables
the utilization of FTJs in NVM devices that outperform current FeRAM.

Unlike FeRAM, where data is typically read out using the FE switching current,
FTJs employ the tunneling current for data retrieval. However, FTJs face challenges such
as limited on-off ratio and low read-out current. Band diagram engineering by inserting
interfacial layers between metal and HfxZr1xO2 has been reported in several works to
improve the amount of read-out current. However, the thickness of these devices is still
too thick to meet the requirement of read-out limitation of FTJ and degrade the
polarization contribution due to the existence of an interfacial layer. By reducing the
thickness of the FTJ, the transmission current can be largely modified. The FE
polarization may strongly modulate the tunnel transmission, producing giant tunnel
electroresistance (TER) with on/off ratios. Furthermore, different from classic planar FTJ,
3D stacking vertical FTJ has been reported with an excellent on/off ratio and endurance

of 10° cycles which can be fabricated to high-density crossbar arrays.
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4.2 DC and AC on/off Ratio of 6.7nm Superlattices

The MFM TiN Hfy 5Zr0502 TiN structure with O> exposure 30s is fabricated as an
FTJ. The TEM image also defines the physical thickness of Hfy5Zro 502, 6.7nm (Fig.
4.2-1(a)). According to our previous, the HAADF image (Fig. 4.2-1(b)) demonstrates
clear ZrO»,-HfO; interfaces in the dark-bright fringes due to fewer [V,] resulting from
long-time O exposure. Meanwhile, good crystallinity of Hfos5ZrosO> with 30s O
exposure is observed by TEM image. To achieve excellent ferroelectricity, wake-up is
performed with a 4.5 MV/cm electrical field. High 2P,=48uC/cm? is obtained with
E.=1.3MV/cm. To extract the on-off ratio current, DC and AC measurements are applied

in this chapter.

(a)

Fig. 4.2-1 (a) TEM and (b) HAADF images of Hfy 5Zros02 with O2 exposure
30s.
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Fig. 4.2-2 P-E loop of 6.7nm superlattice Hfo.5Zro.s02 with O, exposure 30s.

4.2.1 DC Measurement of 6.7nm Superlattices

The waveform of the DC sweep is shown in Fig. 4.2-3(a). To preset the direction of

polarization, the sweeping voltage of -2 to 2V is applied initially in the sample. On current

(Jon) appears after the opposite polarization switching, meaning a negative sweep (0 ~ -

2V, 1% sweep) should follow the set positive polarization by -2 to 2V DC sweep. The

measured Jon 1s shown as the dash in Fig. 4.2-3(b). Off current (Jofr) appears when a

negative sweep (0 ~ -2V, 2" sweep) is followed with the set negative polarization by 2 to

-2V DC sweep. The measured Jofr is shown as the solid in Fig. On/off ratio of more than

100 achieved by the DC measurement in the superlattice Hfos5ZrosO> with 30s O»

exposure.
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Fig. 4.2-3 (a) Waveform of DC measurement. (b) Swept on/off ratio of 6.7nm

superlattice Hfo.5Zro.s02 with Oz exposure 30s.

4.2.2 AC Measurement of 6.7nm Superlattices

The waveform of AC pulse measurement is shown in Fig. 4.2-4(a). The preset pulse
at the voltage of +3V/100ns is performed on the superlattice Hfo.sZros02 with 30s O:
exposure. Pulse Jon occurs when applying the read pulse of -0.15V after a write pulse of
+3V. With the increasing pulse width from 100ns to 10ms, the pulse on/off ratio increases
to 68 (Fig. 4.2-4Fig. 4.2-3(b)). Note that the applying voltage of write is the same as that

of PV measuring in Fig, and the read voltage of -0.15V is selected far less than V. in Fig.
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Fig. 4.2-4 (a) Waveform of AC measurement. (b) Pulse on/off ratio of 6.7nm
superlattice Hfo 5Zro502 with Oz exposure 30s.

4.3 DC and AC on/off Ratio of 4nm Superlattices

Low read-out current has been considered one of the significant issues of FTJ
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production. The total read-out current (switching current plus tunneling current) should
be largely improved to increase the read-out current. Here we use the thinner thickness of
superlattice Hfo.5ZrosO2 with 30s Oz exposure to enhance the tunneling current. By
reducing the PEALD cycles of the HfO; and ZrO; mixture from 5 periods (6.7nm) to 3
periods (estimated 4nm), the MFM capacitor is fabricated for electrical analysis.
Measured PV loop under 4.5MV/cm electrical field, same as the 6.7nm one,
demonstrating excellent ferroelectricity with 2P~=15uC/cm? and E.=1.3MV/cm (Fig.
4.3-1). The V. also decreases to 0.5V due to the thinner thickness. Besides, the C-V
hysteresis shows two peaks in the forward and reverse C-V sweeps, indicating FE o-phase
dominance. While decreasing the HfosZrosOz thickness, the grain size distribution is
seriously affected[47]. O-phase population drops drastically with FE layer thickness
reducing from 5nm to 2nm, and t-phase population keeps increasing with FE layer
thickness decreasing[47]. It well explains the ferroelectricity loss with thinner

Hfo 5710502 thickness.
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Fig. 4.3-1 P-E loop of 4nm superlattice Hfo.5Zro.s0> with O exposure 30s.

4.3.1 DC Measurement of 4nm Superlattices

The waveform of the DC sweep is shown as Fig. 4.2-3(a). The measured Jon of 4nm
superlattice Hfo5Zros02 with 30s O exposure is shown as the red dash in Fig. 4.3-2. The
measured Jofr as the red solid in Fig. 4.3-2. Swept Jon and Jofr are separated clearly in 4nm
superlattice HfosZrosO2 with 30s O exposure, and the on/off ratio is more than 10.
Compared with the on/off ratio of 6.7nm MFM, the decrease could be the reason for
ferroelectricity loss. However, the amount of tunneling current is improved by more than

1000 and meets the expectation.
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Fig. 4.3-2 Swept on/off ratio of 4nm Hfy.5Zro.50> vs. 6.7nm Hfy.5Z1950>.

4.3.2 AC Measurement of 4nm Superlattices

The waveform of AC pulse measurement is shown in Fig. 4.3-3(a). The preset pulse
at the voltage of +1.8V/100ns is consistently performed on the 4nm superlattice
Hfo.5Zr0502 with 30s Oz exposure. The measured on/off ratio of 4nm MFM increases
from 1.4 to 2.1 with the pulse width increasing from 100ns to 10ms, shown in Fig.
4.3-3(b). Read on/off ratio of 4nm FTJ saturates at 2.1 after the pulse width increases to
Ims. Due to the surge of tunneling current, the on/off ratio is lower than that on 6.7nm
FTJ. Note that the applying voltage of write is the same as that of PV measuring in Fig.
4.3-1 to maintain the V. and the read voltage of -0.15V is selected far less than V. in Fig.

4.3-1.
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Fig. 4.3-3 Waveform of AC measurement. (b) Pulse on/off ratio of 4nm
superlattice Hfo 5Zro502 with Oz exposure 30s.

4.4 Summary

The thickness effect is investigated in this chapter. To solve the problem of a small
read-out current, the HZO thickness is decreased from 6.7nm to 4nm. On 6.7nm
superlattice Hfo 5Zro 502 with 30s Oz exposure, the DC on/off ratio is more than 100 while
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the AC on/off ratio is 67.8 at -0.15V with a 10ms read pulse. On 4nm superlattice
Hfo.5Zr0.502 with 30s Oz exposure, the DC on/off ratio is more than 10 while the AC on/off

ratio is 2.1 at -0.15V with a 10ms read pulse.
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Chapter S - Summary and Future Work

5.1 Summary

The experimental and theoretical analysis considering [V,], cryogenic phase
transition, and thickness effect of Hfo sZro 5O, are studied in this thesis. PEALD fabricates
the MFM capacitor to ensure the high-quality Hfo 5Zro 502 thin film. The material analysis
and electrical properties are investigated. Also, various measurement temperature is
performed in superlattice and alloy structures to verify the cryogenic phase transition.
LDG fitting and first-principle calculation are combined to demonstrate the origin of
cryogenic phase transition. To improve the read-out current, the thickness of Hf.5Zro 502
is reduced by decreasing PEALD cycles. DC and AC measurements are applied to
investigate the on/off ratio.

In Chapter 2, Hfo.5Zro.502 with Oz exposure 5s and 10s are fabricated by PEALD.
By tuning the Oz exposure time in film growth, [V,] of material is controlled. TEM and
HAADF images characterize the PEALD layer while high [V,] favors AFE t-phase and
low [V,] favors FE o-phase. Electrical analysis, including C-V, P-V, and dielectric
constant, are also consistent with the conclusion.

Chapter 3’s calculations based on the relative free energies and energy barriers
provide insights into enhancing FE properties through the t- to o-phase transition in
Hfo.5Zr0502 with decreasing temperature. The decrease in the energy barrier facilitates
the transformation to the o-phase, resulting in improved FE behavior, as observed in the
experimental data.

In Chapter 4, the read-out current is efficiently enhanced by decreasing the thickness
of Hfo.5Zr0502. Compared with the DC and AC measurement of thicker and thinner FE

layers, on/off ratio undergoes a decrease in the thinner one due to the rapid increase of
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tunneling current. By benchmarking our data and other works, the 4nm Hfo 5Z1950>

demonstrate excellent FE properties beyond 5nm.

5.2 Future Work

1. Fabrication of ultrathin Hfo5Zro.sO2 with high crystallinity film.
2. Performance improvement of ultrathin Hfo 5Zro 50:.

3. Band engineering by adding an interfacial layer.

4. Investigating the strain effect of Hfo 5Zro.50:.

5. FeFET with a high proportion of FE o-phase.
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