Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88109
Title: 基於視覺與無線網路融合的室內環境穩健SLAM 系統
Robust SLAM with Vision and WiFi Fusion in Indoor Environments
Authors: 黃佳琪
Chia-Chi Huang
Advisor: 周承復
Cheng-Fu Chou
Keyword: 視覺 SLAM,WiFi 定位,
Visual SLAM,WiFi localization,
Publication Year : 2023
Degree: 碩士
Abstract: 視覺 SLAM(同時定位與地圖構建)已被廣泛應用於室內機器人或是自駕車領域中。然而,在現實世界的室內環境中,視覺 SLAM 可能因為存在動態物體、照明變化或缺乏特徵等原因而無法正常工作,進而導致機器人位置估計不準確或跟踪失敗。此外,不同位置的特徵類似可能會導致錯誤的回環檢測以及回環校正。
由於大多數現代室內環境已經具備 WiFi 基礎設施,WiFi 定位另一種常用於室內定位的技術。然而,大多數基於接收信號強度指示(RSSI)的 WiFi 定位方法需要離線數據庫構建,這在不需要先驗知識的 SLAM 應用情景下並不適用。
為了解決這些問題,本論文提出了一種能夠實時運行並交互更新 WiFi 和視覺訊息的方法,提供 WiFi 和視覺 SLAM 相結合的解決方案,通過在視覺 SLAM 加入 WiFi 訊息,該系統在環境中更具魯棒性,同時提供了一種具有成本效益的解決方案。
Visual SLAM (Simultaneous Localization and Mapping) has been widely utilized for indoor service robots. However, in real­world indoor environments, Visual SLAM can encounter issues that hinder its proper functioning. These issues include the presence of dynamic objects, changes in illumination, or a lack of discernible features, leading to inaccurate estimation of the robot’s position or tracking failure. Additionally, perceptual aliasing can arise when different locations exhibit similar characteristics, resulting in false loop closure detection.
WiFi localization is another popular technology employed for indoor positioning, as most modern indoor environments are already equipped with WiFi infrastructure. However, many WiFi localization methods based on Received Signal Strength Indication (RSSI) necessitate offline database construction, which is unsuitable for SLAM use cases that operate without prior knowledge.
To tackle these challenges, this thesis proposes a method capable of running in realtime, actively updating both WiFi and vision information. This method integrates WiFi and visual SLAM to enhance the visual SLAM system using WiFi signals. By leveraging WiFi information, the system becomes more robust to the environment and offers a costeffective solution.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88109
DOI: 10.6342/NTU202301565
Fulltext Rights: 未授權
Appears in Collections:資訊工程學系

Files in This Item:
File SizeFormat 
ntu-111-2.pdf
  Restricted Access
14.62 MBAdobe PDF
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved