請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88109完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 周承復 | zh_TW |
| dc.contributor.advisor | Cheng-Fu Chou | en |
| dc.contributor.author | 黃佳琪 | zh_TW |
| dc.contributor.author | Chia-Chi Huang | en |
| dc.date.accessioned | 2023-08-08T16:20:25Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-08-08 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-07-13 | - |
| dc.identifier.citation | M. Abbas, M. Elhamshary, H. Rizk, M. Torki, and M. Youssef. Wideep: Wifibased accurate and robust indoor localization system using deep learning. In 2019 IEEE International Conference on Pervasive Computing and Communications (PerCom, pages 1–10. IEEE, 2019.
M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp. A tutorial on particle filters for online nonlinear/nongaussian bayesian tracking. IEEE Transactions on signal processing, 50(2):174–188, 2002. G. Biau and E. Scornet. A random forest guided tour. Test, 25:197–227, 2016. M. Burri, J. Nikolic, P. Gohl, T. Schneider, J. Rehder, S. Omari, M. W. Achtelik, and R. Siegwart. The euroc micro aerial vehicle datasets. The International Journal of Robotics Research, 2016. C. Campos, R. Elvira, J. J. Gomez, J. M. M. Montiel, and J. D. Tardós. ORBSLAM3: An accurate opensource library for visual, visualinertial and multimap SLAM. IEEE Transactions on Robotics, 37(6):1874–1890, 2021. C.C. Chou. Enhance SLAM Performance with TightlyCoupled Camera and Lidar Fusion. PhD thesis, National Taiwan University, Taipei, 2021. X. Gao, T. Zhang, Y. Liu, and Q. Yan. 14 lectures on visual slam: From theory to practice. 2017. A. Geiger, P. Lenz, C. Stiller, and R. Urtasun. Vision meets robotics: The kitti dataset. International Journal of Robotics Research (IJRR), 2013. G. Grisetti, R. Kümmerle, C. Stachniss, and W. Burgard. A tutorial on graphbased slam. IEEE Intelligent Transportation Systems Magazine, 2(4):31–43, 2010. Z. S. Hashemifar, C. Adhivarahan, A. Balakrishnan, and K. Dantu. Augmenting visual slam with wifi sensing for indoor applications. Autonomous Robots, 43:2245–2260, 2019. S. J. Julier and J. K. Uhlmann. New extension of the kalman filter to nonlinear systems. In Signal processing, sensor fusion, and target recognition VI, volume 3068, pages 182–193. Spie, 1997. M. Labbé and F. Michaud. Rtabmap as an opensource lidar and visual simultaneous localization and mapping library for largescale and longterm online operation. Journal of Field Robotics, 36(2):416–446, 2019. G. Lee, B.C. Moon, S. Lee, and D. Han. Fusion of the slam with wifibased positioning methods for mobile robotbased learning data collection, localization, and tracking in indoor spaces. Sensors, 20(18):5182, 2020. R. MurArtal, J. M. M. Montiel, and J. D. Tardos. Orbslam: a versatile and accurate monocular slam system. IEEE transactions on robotics, 31(5):1147–1163, 2015. J. Nubert, E. Walther, S. Khattak, and M. Hutter. Learningbased localizability estimation for robust lidar localization. In 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 17–24. IEEE, 2022 S. Papaioannou, H. Wen, A. Markham, and N. Trigoni. Fusion of radio and camera sensor data for accurate indoor positioning. In 2014 IEEE 11th International Conference on Mobile Ad Hoc and Sensor Systems, pages 109–117. IEEE, 2014. Z. Qian, J. Fu, and J. Xiao. Towards accurate loop closure detection in semantic slam with 3d semantic covisibility graphs. IEEE Robotics and Automation Letters,7(2):2455–2462, 2022. E. Rublee, V. Rabaud, K. Konolige, and G. Bradski. Orb: An efficient alternative to sift or surf. In 2011 International conference on computer vision, pages 2564–2571.Ieee, 2011. A. H. Salamah, M. Tamazin, M. A. Sharkas, and M. Khedr. An enhanced wifi indoor localization system based on machine learning. In 2016 International Conference on Indoor Positioning and Indoor Navigation (IPIN), pages 1–8, 2016. N. Singh, S. Choe, and R. Punmiya. Machine learning based indoor localization using wifi rssi fingerprints: An overview. IEEE Access, 9:127150–127174, 2021. L. Siyang, R. de Lacerda, and J. Fiorina. Wknn indoor wifi localization method using kmeans clustering based radio mapping. In 2021 IEEE 93rd Vehicular Technology Conference (VTC2021Spring), pages 1–5. IEEE, 2021. X. Song, X. Fan, X. He, C. Xiang, Q. Ye, X. Huang, G. Fang, L. L. Chen, J. Qin, and Z. Wang. Cnnloc: Deeplearning based indoor localization with wifi fingerprinting. In 2019 IEEE SmartWorld, Ubiquitous Intelligence Computing, Advanced Trusted Computing, Scalable Computing Communications, Cloud Big Data Computing, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), pages 589–595, 2019. C. Stachniss. Graphbased slam using pose graphs (cyrill stachniss), Apr 2020. Stanford Artificial Intelligence Laboratory et al. Robotic operating system. J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers. A benchmark for the evaluation of rgbd slam systems. In Proc. of the International Conference on Intelligent Robot Systems (IROS), Oct. 2012. C.Z. Sun, B. Zhang, J.K. Wang, and C.S. Zhang. A review of visual slam based on unmanned systems. In 2021 2nd International Conference on Artificial Intelligence and Education (ICAIE), pages 226–234. IEEE, 2021. Y.H. Wang, T.W. Yang, C.F. Chou, and I.C. Chang. Wifi dsar: Wifi based indoor localization using denoising supervised autoencoder. In 2021 30th Wireless and Optical Communications Conference (WOCC), pages 188–192, 2021. G. Welch, G. Bishop, et al. An introduction to the kalman filter. 1995. W. Xue, W. Qiu, X. Hua, and K. Yu. Improved wifi rssi measurement for indoor localization. IEEE Sensors Journal, 17(7):2224–2230, 2017. S. Yang, Q. Sun, X. Dong, and J. Yuan. A novel slam method using wifi signal strength and rgbd images. In 2018 IEEE 8th Annual International Conference on CYBER Technology in Automation, Control, and Intelligent Systems (CYBER),pages 540–545. IEEE, 2018. J. Zhang, M. Kaess, and S. Singh. On degeneracy of optimizationbased state estimation problems. In 2016 IEEE International Conference on Robotics and Automation (ICRA), pages 809–816. IEEE, 2016. R. Zhou, P. Chen, J. Teng, and F. Meng. Graph optimization model fusing ble ranging with wifi fingerprint for indoor positioning. Sensors, 22(11):4045, 2022. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88109 | - |
| dc.description.abstract | 視覺 SLAM(同時定位與地圖構建)已被廣泛應用於室內機器人或是自駕車領域中。然而,在現實世界的室內環境中,視覺 SLAM 可能因為存在動態物體、照明變化或缺乏特徵等原因而無法正常工作,進而導致機器人位置估計不準確或跟踪失敗。此外,不同位置的特徵類似可能會導致錯誤的回環檢測以及回環校正。
由於大多數現代室內環境已經具備 WiFi 基礎設施,WiFi 定位另一種常用於室內定位的技術。然而,大多數基於接收信號強度指示(RSSI)的 WiFi 定位方法需要離線數據庫構建,這在不需要先驗知識的 SLAM 應用情景下並不適用。 為了解決這些問題,本論文提出了一種能夠實時運行並交互更新 WiFi 和視覺訊息的方法,提供 WiFi 和視覺 SLAM 相結合的解決方案,通過在視覺 SLAM 加入 WiFi 訊息,該系統在環境中更具魯棒性,同時提供了一種具有成本效益的解決方案。 | zh_TW |
| dc.description.abstract | Visual SLAM (Simultaneous Localization and Mapping) has been widely utilized for indoor service robots. However, in realworld indoor environments, Visual SLAM can encounter issues that hinder its proper functioning. These issues include the presence of dynamic objects, changes in illumination, or a lack of discernible features, leading to inaccurate estimation of the robot’s position or tracking failure. Additionally, perceptual aliasing can arise when different locations exhibit similar characteristics, resulting in false loop closure detection.
WiFi localization is another popular technology employed for indoor positioning, as most modern indoor environments are already equipped with WiFi infrastructure. However, many WiFi localization methods based on Received Signal Strength Indication (RSSI) necessitate offline database construction, which is unsuitable for SLAM use cases that operate without prior knowledge. To tackle these challenges, this thesis proposes a method capable of running in realtime, actively updating both WiFi and vision information. This method integrates WiFi and visual SLAM to enhance the visual SLAM system using WiFi signals. By leveraging WiFi information, the system becomes more robust to the environment and offers a costeffective solution. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-08T16:20:25Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-08-08T16:20:25Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Verification Letter from the Oral Examination Committee i
Acknowledgements ii 摘要 iii Abstract iv Contents vi List of Figures ix Chapter 1 Introduction 1 Chapter 2 Related Work 4 2.1 Visual SLAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.2 WiFi based Indoor Localization . . . . . . . . . . . . . . . . . . . . 5 2.3 Visual SLAM with WiFi . . . . . . . . . . . . . . . . . . . . . . . . 7 2.4 Degenercy Detection . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Chapter 3 Method 12 3.1 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.1.1 System Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.1.2 SLAM Problem Formulation . . . . . . . . . . . . . . . . . . . . . 13 3.1.3 Graphbased SLAM . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.2 WiFi SLAM Module . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.2.1 Propagation Model . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.2.2 Mapping Submodule . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.2.3 Tracking Submodule . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.3 Visual SLAM Module . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.3.1 Base Visual SLAM Algorithm . . . . . . . . . . . . . . . . . . . . 22 3.3.2 Loop Detection Submodule . . . . . . . . . . . . . . . . . . . . . . 22 Chapter 4 Experiments 23 4.1 Dataset Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 4.1.1 Environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 4.1.2 Data Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . 24 4.2 WiFi SLAM Module . . . . . . . . . . . . . . . . . . . . . . . . . . 25 4.2.1 RSSI Threshold . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 4.2.2 Longterm Capability . . . . . . . . . . . . . . . . . . . . . . . . . 26 4.2.3 Comparison with Offline Methods . . . . . . . . . . . . . . . . . . 27 4.2.4 Comparison with EKF . . . . . . . . . . . . . . . . . . . . . . . . 27 4.3 Visual SLAM Module . . . . . . . . . . . . . . . . . . . . . . . . . 28 4.3.1 Tracking Failure Lighting . . . . . . . . . . . . . . . . . . . . . . 28 4.3.2 Tracking Failure Occlusion . . . . . . . . . . . . . . . . . . . . . 30 4.3.3 Tracking Failure Featureless . . . . . . . . . . . . . . . . . . . . . 31 4.3.4 False Loop Detection . . . . . . . . . . . . . . . . . . . . . . . . . 32 Chapter 5 Conclusion 33 5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 References 34 | - |
| dc.language.iso | en | - |
| dc.subject | 視覺 SLAM | zh_TW |
| dc.subject | WiFi 定位 | zh_TW |
| dc.subject | WiFi localization | en |
| dc.subject | Visual SLAM | en |
| dc.title | 基於視覺與無線網路融合的室內環境穩健SLAM 系統 | zh_TW |
| dc.title | Robust SLAM with Vision and WiFi Fusion in Indoor Environments | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 吳曉光;廖婉君;黃志煒;呂政修 | zh_TW |
| dc.contributor.oralexamcommittee | Hsiao-Kuang Wu;Wan-Jiun Liao;Chih-Wei Huang;Jenq-Shiou Leu | en |
| dc.subject.keyword | 視覺 SLAM,WiFi 定位, | zh_TW |
| dc.subject.keyword | Visual SLAM,WiFi localization, | en |
| dc.relation.page | 38 | - |
| dc.identifier.doi | 10.6342/NTU202301565 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2023-07-14 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 資訊工程學系 | - |
| 顯示於系所單位: | 資訊工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 未授權公開取用 | 14.62 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
