請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8803完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 馬劍清 | |
| dc.contributor.author | Yi-Hsien Lin | en |
| dc.contributor.author | 林宜賢 | zh_TW |
| dc.date.accessioned | 2021-05-20T20:01:38Z | - |
| dc.date.available | 2011-12-01 | |
| dc.date.available | 2021-05-20T20:01:38Z | - |
| dc.date.copyright | 2011-08-20 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-08-17 | |
| dc.identifier.citation | [1]Abu-Alshaikh, I., Köklüce, B., 2006. One-dimensional transient dynamic response in functionally graded layered media. J. Eng. Math. 54, 17-30.
[2]Black, M.C., Carpenter, E.W., Spencer, A.J.M., 1960. On the solution of one dimensional elastic wave propagation problems in stratified media by the method of characteristics. Geophysical Prospecting. VIII, 218-230. [3]Brekhovskikh, L.M., 1980. Waves in layered media. Academic Press, New York. [4]Cai, H., Bao, G., 1998. Crack bridging in functionally graded coatings. Int. J. Solids Struct. 35, 701-717. [5]Chiu, T.C., Erdogan, F., 1999. One-dimensional wave propagation in a functionally graded elastic medium. J. Sound Vibr. 222, 453-487. [6]Chi, S.H., Chung, Y.L., 2006. Mechanical behavior of functionally graded material plates under transverse load-part i: analysis. Int. J. Solids Struct. 43, 3657-3674. [7]Cagniard, L., 1939. Reflexion et Refraction des ondes Seismiques Progressives, Cauthiers-Villars, Paris; Translated into English and revised by E.A. Flinn and C.H. Dix, 1962. Reflection and Refraction of Progressive Seismic Waves, McGraw-Hill, New York. [8]Chen, X., Chandra, N., Rajendran, A.M., 2004. Analytical solution to the plate impact problem of layered heterogeneous material systems. Int. J. Solids Struct. 41, 4635-4659. [9]Delale, F., Erdogan, F., 1983. The crack problem for a nonhomogeneous plane. J. Appl. Mech. (Trans . ASME) 50, 609-614. [10]Durbin, F., 1974. Numerical inversion of Laplace transforms: an efficient improvement to Dubner and Abate’s method. Computer J. 17, 371-376. [11]Dubner, R., Abate, J., 1968. Numerical inversion of Laplace transforms by relating them to the finite Fourier cosine transform. J. Assoc. Comp. Mach. 15, 115-123. [12]Ewing, W.M., Jardetzky, W.S., Press, F., 1957. Elastic waves in layered media. McGraw-Hill, New York. [13]Erdogan, F., Wu, B.H., 1995. Crack problems in FGM layers under thermal stresses. J. Therm. Stresses 19, 237-265. [14]Haskell, N., 1953. The dispersion of surface waves on multilayered media. Bull. Seism. Soc. Am. 43, 17-34. [15]Han, X., Liu, G.R., 2002. Effects of SH waves in functionally graded plate. Mech. Res. Comm. 29, 327-338. [16]Han, X., Liu, G.R., Lam, K.Y., 2000. A quadratic layer element for analyzing stress waves in functionally gradient materials and its application in material characterization. J. Sound Vibr. 236, 307-321. [17]Hegemier, G.A., Nayfeh, A.H., 1973. A continuum theory for wave propagation in laminated composites. Case 1: propagation normal to the laminates. ASME J. Appl. Mech. 40, 503-510. [18]Jabbari, M., Sohrabpour, S., Eslami, M.R., 2002. Mechanical and thermal stresses in a functionally graded hollow cylinder due to radially symmetric loads. Int. J. Pres. Ves. Pip. 79, 493-497. [19]Jin, Z.H., Paulino, G.H., 2001. Transient thermal stress analysis of an edge crack in a functionally graded material. Int. J. Fracture 107, 73-98. [20]Jin, Z.H., Batra, R.C., 1996. Stresses intensity relaxation at the tip of an edge crack in a functionally graded material subjected to a thermal shock. J. Therm. Stresses 19, 317-339. [21]Lamb, H., 1904. On the propagation of tremors over the surface of an elastic solid. Phil. Trans. Roy. Soc. London Ser. A203, 1-42. [22]Lee, J.M., Ma, C.C., 2010. “Analytical Solutions for an Antiplane Problem of Two Dissimilar Functionally Graded Magnetoelectroelastic Half-planes”, Acta Mechanica. 212, 21-38. [23]Lee, G.S., Ma, C.C., 1999. Transient elastic waves propagating in a multi-layered medium subjected to in-plane dynamic loadings I. theory. Proc. R. Soc. London A 456, 1355-1374. [24]Lee, J.D., Du, S., Liebowitz, H., 1984. Three-dimensional finite element and dynamic analysis of composite laminate subjected to impact. Comput. Struct. 19, 807-813. [25]Liu, G.R., Han, X., Lam, K.Y., 1999. Stress waves in functionally gradient materials and its use for material characterization. Compos. B: Eng. 30, 383-394. [26]Lundergan, C.D., Drumheller, D.S., 1971. Propagation of stress waves in a laminated plate composite. J. Appl. Phys. 42 (2), 669-675. [27]Ma, C.C., Lee, G.S., 1999. Transient elastic waves propagating in a multi-layered medium subjected to in-plane dynamic loadings II. Numerical calculation and experimental measurement. Proc. R. Soc. London A 456, 1375-1396. [28]Ma, C.C., Huang, K.C., 1996. Analytical transient analysis of layered composite medium subjected to dynamic inplane impact loadings. Int. J. Solids Struct. 33, 4223-4238. [29]Ma, C.C., Liu, S.W., Lee, G.S., 2001. Dynamic response of a layered medium subjected to anti-plane loadings. Int. J. Solids Struct. 38, 9295-9312. [30]Ma, C.C., Lee, G.S., 2006. General three-dimensional analysis of transient elastic waves in a multilayered medium. ASME J. Appl. Mech. 73, 490-504. [31]Ma, C.C., Lee, J.M., 2009. “Theoretical Analysis of In-plane Problem in Functionally Graded Nonhomogeneous Magnetoelectroelastic Bimaterials”, Int. J. Solids Struct. 46, 4208-4220. [32]Ma, C.C., Lee, J.M., 2009. “Full-field Analysis of a Functionally Graded Magnetoelectroelastic Nonhomogeneous Layered Half-plane”, CMES-Comp. Model. Eng. 54, 87-120. [33]Manolis, G.D., Beskos, D.E., 1981. Dynamic stress concentration studies by boundary integrals and Laplace transform. Int. J. Numer. Meth. Eng. 17, 573-599. [34]Manolis, G.D., Beskos, D.E., 1980. Thermally induced vibrations of beam structures. Comput. Meth. Appl. Mech. Engng 21, 337-355. [35]Mukunoki, I., Ting, T.C.T., 1980. Transient wave propagation normal to the layering of a finite layered medium. Int. J. Solids Struct. 16, 239-251. [36]Narayanan, G.V., Beskos, D.E., 1982. Numerical operational methods for time-dependent linear problems. Int. J. Numer. Meth. Eng. 18, 1829-1854. [37]Papoulis, A., 1957. A new method of inversion of the Laplace transform. Quart. Appl. Math. 14, 405-414. [38]Pao, Y.H., Gajewski, R., 1977. The generalized ray theory and transient responses of layered elastic solids. in: Mason, W.P. (Ed.), Physical Acoustics, 13. Academic Press, New York (Chapter 6). [39]Pekeris, C.L., Alterman, Z., Abramovici, F., Jarosh, H., 1965. Propagation of a compressional pulse in a layered solid. Rev. Geophys. 3, 25-47. [40]Santare, M.H., Thamburaj, P., Gazoans, G.A., 2003. The use of graded finite elements in the study of elastic wave propagation in continuously non-homogeneous materials. Int. J. Solids Structs. 40, 5621-5634. [41]Su, X.Y., Tian, J.Y., Pao, Y.H., 2002. Application of the reverberation-ray matrix to the propagation of elastic waves in a layered solid. Int. J. Solids Struct. 39, 5447-5463. [42]Sun, C.T., Achenbach, J.D., Herrmann, G., 1968. Time-harmonic waves in a stratified medium propagating in the direction of the layering. ASME J. Appl. Mech. 35, 408-411. [43]Sun, C.T., Achenbach, J.D., Herrmann, G., 1968. Continuum theory for a laminated medium. ASME J. Appl. Mech. 35, 467-475. [44]Sun, C.T., Chen, J.K., 1985. On the impact of initially stressed composite laminates. J. Compos. Mater. 19, 490-504. [45]Spencer, T.W., 1960. The method of generalized reflection and transmission coefficients. Geophysics 25, 625-641. [46]Stern, M., Bedford, A., Yew, C.H., 1971. Wave propagation in viscoelastic laminates. ASME J. Appl. Mech. 38, 448-454. [47]Tang, Z., Ting, T.C.T., 1985. Transient waves in a layered anisotropic elastic medium. Proc. R. Soc. Lond. A397, 67-85. [48]Thomson, W.T., 1950. Transmission of elastic waves through a stratified solid medium. J. Appl. Phys. 21, 89-93. [49]Ting, T.C.T., Mukunoki, I., 1979. A theory of viscoelastic analogy for wave propagation normal to the layering of a layered medium. ASME J. Appl. Mech. 46, 329-336. [50]李艮生,1998,”三維層狀介質暫態彈性波傳的理論解析、計算及實驗”,國立台灣大學機械工程研究所博士論文。 [51]廖雪吩,2007,”應用數值拉普拉斯逆轉換法於壓電材料動力破壞之研究”,淡江大學航空太空工程學系碩士班碩士論文。 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8803 | - |
| dc.description.abstract | 當一均佈動力載荷施加於均質或非均質層狀介質的表面時,本文以拉普拉斯轉換技巧,分析其域內的一維暫態波傳問題。對於均質多層域的暫態響應,採用三種不同的分析及數值計算方式:廣義射線法,Durbin 數值拉普拉斯逆轉換以及有限元素法。由矩陣形式Bromwich展開所組成的廣義射線解為一精確解,展開後級數的每一項代表經過界面相同次數的穿透或反射波。若不執行級數展開,將轉換域下的矩陣解直接採用Durbin 數值逆轉換,所得之結果為一混合解析與數值解,適合計算層狀介質的長時間暫態響應。有限元素解則為一純數值解,可以多點計算並快速分析複雜結構物的暫態響應,但對於高頻或是急遽變化的響應則會出現震盪形式的數值誤差,三種數值計算的結果皆有良好的驗證。
而關於非均質材料的暫態問題,則是使用拉普拉斯轉換技巧配合數值逆轉換的混合解析與數值解,首先探討多項式函數形式的功能性梯度單層域,在雙邊自由與單邊固定的邊界條件,於表面受動力載荷下的應力波傳分析,而與多層均質材料模擬單層功能性梯度板的暫態響應,亦有良好的一致性。本文進一步分析層狀功能性梯度材料,討論其域內的暫態彈性波傳,在數值計算上,則以三層功能性梯度材料為例,將其退化為廣泛應用的雙層相異質材料夾功能性梯度材料之暫態問題,並研究其單邊與雙邊的不連續情況對於暫態響應之影響。 隨機、週期與連續分佈型三種類型的多層均質材料在本文亦有深入研究。文中並以複合材料力學的等效材料方式進行化簡,分析多層域暫態響應並探討等效材料在暫態波傳分析的適用性。 | zh_TW |
| dc.description.abstract | In this study, one-dimensional transient wave-propagation in homogeneously and inhomogeneously multilayered media are analyzed by Laplace transform technique. The numerical calculations for homogeneously multilayered media are performed by three methods: generalized ray method, numerical Laplace inversion method (Durbin’s formula), and finite element method (FEM). The analytical result of generalized ray solution for multilayered structures is composed of matrix-form Bromwich expansion in the transform domain. Every term represents a group of waves which is transmitted or reflected through the interface. The numerical inversion of Laplace transform by Durbin’s formula is also used to calculate the transient responses. This numerical Laplace inversion technique has the advantage of calculating the long-time transient responses for complicated multilayered structures. FEM result also agrees well with the calculations by generalized ray method and numerical Laplace inversion.
For the transient-wave problem of inhomogeneously multilayered media, we use Laplace transform technique and the numerical Laplace inversion (Durbin’s formula) to calculate the dynamic behavior of the polynomial FGM (functionally graded material) slab. In addition, the FGM slab is approximated as a multilayered medium with homogeneous material in each layer. The transient responses of FGM formulation and multilayered solution are discussed in detail. Furthermore, transient-wave in inhomogeneously multilayered media is analyzed. In the numerical calculation, three-layered functionally graded media is used for analysis and the degenerative problem of an FGM bounded to two elastic homogeneous materials is discussed. Finally, the numerical calculations of the transient responses for randomly distributed, periodically distributed, and continuously distributed multilayered media are performed to investigate if the effective material concept is suitable for dynamic analysis. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-20T20:01:38Z (GMT). No. of bitstreams: 1 ntu-100-D94522024-1.pdf: 6577586 bytes, checksum: 2f6bd2e9b23a297687e93c3135082d45 (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 摘要......................................................................................I
Abstract............................................................................... II 目錄.....................................................................................III 圖目錄..................................................................................V 表目錄..................................................................................XI 第一章緒論............................................................................1 1-1 研究動機..........................................................................1 1-2 文獻回顧..........................................................................1 1-3 本文研究方法與主要內容....................................................5 第二章廣義射線理論................................................................7 2-1 雙層相異質材料的廣義射線理論..........................................7 2-2 雙層相異質材料的數值計算與結果討論...............................16 2-2-1 波的退化與群組.............................................................16 2-2-2 黃銅-鋁雙層材料於不同組合下之暫態響應分析..................18 第三章均佈動力載荷施載於多層域等向性均質材料的暫態波傳解析.........................................................................................28 3-1 廣義射線解.......................................................................28 3-2 數值拉普拉斯逆轉換..........................................................35 3-3 有限元素解.......................................................................40 3-4 三種方法的數值結果與討論................................................41 3-4-1 三層結構物於均佈載荷下的暫態響應................................41 3-4-2 十層結構物於均佈載荷下的暫態響應................................43 3-4-3 二十層結構物於均佈載荷下的長時間響應..........................45 第四章多層域等向性非均質材料的暫態波傳解析與數值計算........59 4-1 單層功能性梯度材料..........................................................59 4-1-1 拉普拉斯轉換法分析單層功能梯度材料受均佈動力載荷下的暫 態響應...................................................................................59 4-1-2 以多層等向性均質材料來模擬單層功能性梯度板的暫態波傳行 為.........................................................................................67 4-2 多層域功能性梯度材料.......................................................70 4-2-1 三層功能性梯度材料的暫態波傳行為................................75 4-2-2 雙層相異質材料夾功能性梯度材料的暫態波傳行為.............77 4-2-3 三層功能性梯度材料退化為雙層相異質材料夾功能性梯度材料 .............................................................................................79 4-2-4 雙層相異質材料夾功能性梯度材料的連續性探討................81 第五章等效材料在多層域暫態波傳的適用性分析.......................109 5-1 多層隨機分佈型材料中的彈性波傳分析..............................110 5-2 多層週期分佈型材料中的彈性波傳分析............................. 111 5-3 多層連續分佈型材料中的彈性波傳分析..............................113 第六章結論與展望.................................................................133 6-1 本文成果........................................................................133 6-2 未來展望........................................................................134 參考文獻..............................................................................135 附錄A..................................................................................139 附錄B..................................................................................140 | |
| dc.language.iso | zh-TW | |
| dc.title | 彈性波於多層域均質與非均質材料之暫態波傳理論解析與數值計算 | zh_TW |
| dc.title | Theoretical Analysis and Numerical Simulation of
Transient Wave in Homogeneous and Nonhomogeneous Multilayered Media | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 趙振綱,楊旭光,劉紹文,應宜雄 | |
| dc.subject.keyword | 功能性梯度材料,廣義射線法,Durbin,FEM,暫態響應,多層域, | zh_TW |
| dc.subject.keyword | FGM,generalized ray,Durbin,FEM,transient response,multilayered, | en |
| dc.relation.page | 140 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2011-08-17 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf | 6.42 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
