Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87735
Title: 游檢測 : 水閥瑕疵檢測
YuInspect: Water Valve Defect Inspection
Authors: 游凱任
Kai-Jen Yu
Advisor: 傅楸善
Chiou-Shann Fuh
Keyword: 游檢測,工業產品影像處理,光學瑕疵檢測,水閥瑕疵檢測,人工智慧瑕疵檢測,
YuInspect,iIndustrial product image processing,optical defect inspection,water valve defect inspection,Artificial Intelligence defect inspection,
Publication Year : 2023
Degree: 碩士
Abstract: 本論文提出游檢測: 一個結合人工智慧和傳統影像處理的水閥檢測機台,透過機台的檢測可以知道水閥產線產出的水閥是否為瑕疵品,取代用人力辨別每個水閥並找出瑕疵品的人力成本。

總共有十一種型態的水閥且正反兩面皆須檢測,對於不同水閥的每一面客製化一個專屬於它的演算法,需被檢測的瑕疵類別有黑斑、紅斑、裂痕、缺角、無反光、缺角裂痕。

水閥會先經過震動盤初步篩選正反面,然後依次放入旋轉玻璃盤,藉由上下兩站相機得到水閥正反面照片。照片首先經由傳統演算法進行降噪和去背處理,然後送入訓練好的人工智慧模型判斷是否有瑕疵,最後決定這個水閥送往瑕疵產品或好的產品或非上述兩者的出料口。
In this thesis, we propose YuInspect: a water valve inspection machine, which combines artificial intelligence (AI) and traditional image processing. Through machine inspection, we can determine whether the water valves produced by the production line are defective or not, thereby replacing the manual labor required to identify each valve and find defective products.

There are eleven types of water valves to be inspected on both sides. For each side of different water valves, an algorithm is customized for it. The defects to be inspected include black spots, red spots, cracks, chipping, no-lapping, and chipping-cracks.

The water valves are initially screened for their orientation using a vibrating plate, and then sequentially placed on a rotating glass plate. The top and bottom cameras capture photographs of both sides of the water valve. We use traditional algorithms for noise reduction and background removal before feeding photographs into a trained AI model to detect any defects. Finally, the decision is made whether to send the water valve to the defective product, good product, or undetermined output port.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87735
DOI: 10.6342/NTU202301016
Fulltext Rights: 未授權
Appears in Collections:資訊工程學系

Files in This Item:
File SizeFormat 
ntu-111-2.pdf
  Restricted Access
4.94 MBAdobe PDF
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved