請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87734完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 簡俊超 | zh_TW |
| dc.contributor.advisor | Jun-Chau Chien | en |
| dc.contributor.author | 翁維陽 | zh_TW |
| dc.contributor.author | Wei-Yang Weng | en |
| dc.date.accessioned | 2023-07-19T16:11:14Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-07-19 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-05-08 | - |
| dc.identifier.citation | [1] A. Ionescu, "Nanoelectronics roadmap: evading Moore's law," 01/01 2008.
[2] M. Graef, "More Than Moore White Paper," presented at the 2021 IEEE International Roadmap for Devices and Systems Outbriefs, 2021. [3] "INTERNATIONAL ROADMAP FOR DEVICES AND SYSTEMS," 2022. [4] G. M. Whitesides, "The origins and the future of microfluidics," Nature, vol. 442, no. 7101, pp. 368-73, Jul 27 2006, doi: 10.1038/nature05058. [5] P. Research. "Microfluidics Market Size, Growth, Trends, Report 2021-2030." (accessed. [6] R. B. Schoch, J. Han, and P. Renaud, "Transport phenomena in nanofluidics," Reviews of Modern Physics, vol. 80, no. 3, pp. 839-883, 2008, doi: 10.1103/RevModPhys.80.839. [7] J. Castillo-León and W. E. Svendsen, Lab-on-a-Chip Devices and Micro-Total Analysis Systems. 2015. [8] Y. H. Ghallab and Y. Ismail, "CMOS Based Lab-on-a-Chip: Applications, Challenges and Future Trends," IEEE Circuits and Systems Magazine, vol. 14, no. 2, pp. 27-47, 2014, doi: 10.1109/mcas.2014.2314264. [9] Y. Huang and A. J. Mason, "Lab-on-CMOS integration of microfluidics and electrochemical sensors," Lab Chip, vol. 13, no. 19, pp. 3929-34, Oct 7 2013, doi: 10.1039/c3lc50437a. [10] J. C. Chien, A. Ameri, E. C. Yeh, A. N. Killilea, M. Anwar, and A. M. Niknejad, "A high-throughput flow cytometry-on-a-CMOS platform for single-cell dielectric spectroscopy at microwave frequencies," Lab Chip, vol. 18, no. 14, pp. 2065-2076, Jul 10 2018, doi: 10.1039/c8lc00299a. [11] H. Meng, M. I. o. T. D. o. E. Engineering, and C. Science, CMOS Nanofluidics. Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2018. [12] C. Wang et al., "Wafer-scale integration of sacrificial nanofluidic chips for detecting and manipulating single DNA molecules," Nat Commun, vol. 8, p. 14243, Jan 23 2017, doi: 10.1038/ncomms14243. [13] F. Hjeij et al., "UHF dielectrophoretic handling of individual biological cells using BiCMOS microfluidic RF-sensors," in 2016 46th European Microwave Conference (EuMC), 4-6 Oct. 2016 2016, pp. 265-268, doi: 10.1109/EuMC.2016.7824329. [Online]. Available: https://ieeexplore.ieee.org/stampPDF/getPDF.jsp?tp=&arnumber=7824329&ref= [14] A. Rasmussen, M. Gaitan, L. E. Locascio, and M. E. Zaghloul, "Fabrication techniques to realize CMOS-compatible microfluidic microchannels," Journal of Microelectromechanical Systems, vol. 10, no. 2, pp. 286-297, 2001, doi: 10.1109/84.925785. [15] P. Rajapaksha, A. Elbourne, S. Gangadoo, R. Brown, D. Cozzolino, and J. Chapman, "A review of methods for the detection of pathogenic microorganisms," Analyst, vol. 144, no. 2, pp. 396-411, Jan 14 2019, doi: 10.1039/c8an01488d. [16] S. M. e. a. Manohar, "Flow cytometry principles, applications and recent advances," Bioanalysis, vol. 13,3, pp. 181-198, 2021. [17] J. Yan, C. Wang, Y. Fu, J. Guo, and J. Guo, "3D printed microfluidic Coulter counter for blood cell analysis," Analyst, vol. 147, no. 14, pp. 3225-3233, Jul 12 2022, doi: 10.1039/d2an00633b. [18] B. Shen, J. Dawes, and M. L. Johnston, "A 10 M Omega, 50 kHz-40 MHz Impedance Measurement Architecture for Source-Differential Flow Cytometry," IEEE Trans Biomed Circuits Syst, vol. 16, no. 5, pp. 766-778, Oct 2022, doi: 10.1109/TBCAS.2022.3182905. [19] A. Manickam, C. A. Johnson, S. Kavusi, and A. Hassibi, "Interface design for CMOS-integrated Electrochemical Impedance Spectroscopy (EIS) biosensors," Sensors (Basel), vol. 12, no. 11, pp. 14467-88, Oct 29 2012, doi: 10.3390/s121114467. [20] S. I. E. Lin, "A novel splitter design for microfluidic biochips using centrifugal driving forces," Microfluidics and Nanofluidics, vol. 9, no. 2-3, pp. 523-532, 2010, doi: 10.1007/s10404-010-0568-5. [21] J. K. Rosenstein, M. Wanunu, C. A. Merchant, M. Drndic, and K. L. Shepard, "Integrated nanopore sensing platform with sub-microsecond temporal resolution," Nat Methods, vol. 9, no. 5, pp. 487-92, Mar 18 2012, doi: 10.1038/nmeth.1932. [22] Z. Saeed Mohammadi, IN, Z. (US); Mojgan Sarmadi, IN, W. L. (US); Hossein Pajouhi, and I. (US), "PERFORATED MOSSTRUCTURE FOR SINGLE BOMOLECULE DETECTION," 2015. [23] R. Pan, K. Hu, D. Jiang, U. Samuni, and M. V. Mirkin, "Electrochemical Resistive-Pulse Sensing," J Am Chem Soc, vol. 141, no. 50, pp. 19555-19559, Dec 18 2019, doi: 10.1021/jacs.9b10329. [24] X. Chen, T. Li, H. Zeng, Z. Hu, and B. Fu, "Numerical and experimental investigation on micromixers with serpentine microchannels," International Journal of Heat and Mass Transfer, vol. 98, pp. 131-140, 2016, doi: 10.1016/j.ijheatmasstransfer.2016.03.041. [25] R. R. Harrison and C. Charles, "A low-power low-noise cmos for amplifier neural recording applications," IEEE Journal of Solid-State Circuits, vol. 38, no. 6, pp. 958-965, 2003, doi: 10.1109/jssc.2003.811979. [26] R. Costanzo and S. M. Bowers, "A Current Reuse Regulated Cascode CMOS Transimpedance Amplifier With 11-GHz Bandwidth," IEEE Microwave and Wireless Components Letters, vol. 28, no. 9, pp. 816-818, 2018, doi: 10.1109/lmwc.2018.2854594. [27] J. C. Chien, S. W. Baker, H. T. Soh, and A. Arbabian, "Design and Analysis of a Sample-and-Hold CMOS Electrochemical Sensor for Aptamer-based Therapeutic Drug Monitoring," IEEE J Solid-State Circuits, vol. 55, no. 11, pp. 2914-2929, Nov 2020, doi: 10.1109/jssc.2020.3020789. [28] M. Ballini et al., "A 1024-Channel CMOS Microelectrode Array With 26,400 Electrodes for Recording and Stimulation of Electrogenic Cells In Vitro," IEEE J Solid-State Circuits, vol. 49, no. 11, pp. 2705-2719, Nov 2014, doi: 10.1109/JSSC.2014.2359219. [29] E. Farjami, L. Clima, K. V. Gothelf, and E. E. Ferapontova, "DNA interactions with a Methylene Blue redox indicator depend on the DNA length and are sequence specific," Analyst, vol. 135, no. 6, pp. 1443-8, Jun 2010, doi: 10.1039/c0an00049c. [30] D. Ham, H. Park, S. Hwang, and K. Kim, "Neuromorphic electronics based on copying and pasting the brain," Nature Electronics, vol. 4, no. 9, pp. 635-644, 2021, doi: 10.1038/s41928-021-00646-1. [31] D. Jung et al., "A CMOS 21 952-Pixel Multi-Modal Cell-Based Biosensor With Four-Point Impedance Sensing for Holistic Cellular Characterization," IEEE Journal of Solid-State Circuits, vol. 56, no. 8, pp. 2438-2451, 2021, doi: 10.1109/jssc.2021.3085571. [32] S. Kumashi et al., "A CMOS Multi-Modal Electrochemical and Impedance Cellular Sensing Array for Massively Paralleled Exoelectrogen Screening," IEEE Trans Biomed Circuits Syst, vol. 15, no. 2, pp. 221-234, Apr 2021, doi: 10.1109/TBCAS.2021.3068710. [33] S.-Y. Lu et al., "A Review of CMOS Electrochemical Readout Interface Designs for Biomedical Assays," IEEE Sensors Journal, vol. 21, no. 11, pp. 12469-12483, 2021, doi: 10.1109/jsen.2021.3056443. [34] A. Manickam et al., "A CMOS Electrochemical Biochip With 32$\times$ 32 Three-Electrode Voltammetry Pixels," IEEE Journal of Solid-State Circuits, vol. 54, no. 11, pp. 2980-2990, 2019, doi: 10.1109/jssc.2019.2941020. [35] K. Niitsu, S. Ota, K. Gamo, H. Kondo, M. Hori, and K. Nakazato, "Development of Microelectrode Arrays Using Electroless Plating for CMOS-Based Direct Counting of Bacterial and HeLa Cells," IEEE Trans Biomed Circuits Syst, vol. 9, no. 5, pp. 607-19, Oct 2015, doi: 10.1109/TBCAS.2015.2479656. [36] J. S. Park et al., "1024-Pixel CMOS Multimodality Joint Cellular Sensor/Stimulator Array for Real-Time Holistic Cellular Characterization and Cell-Based Drug Screening," IEEE Trans Biomed Circuits Syst, vol. 12, no. 1, pp. 80-94, Feb 2018, doi: 10.1109/TBCAS.2017.2759220. [37] N. Perez-Prieto and M. Delgado-Restituto, "Recording Strategies for High Channel Count, Densely Spaced Microelectrode Arrays," Front Neurosci, vol. 15, p. 681085, 2021, doi: 10.3389/fnins.2021.681085. [38] W. Tedjo and T. Chen, "An Integrated Biosensor System With a High-Density Microelectrode Array for Real-Time Electrochemical Imaging," IEEE Trans Biomed Circuits Syst, vol. 14, no. 1, pp. 20-35, Feb 2020, doi: 10.1109/TBCAS.2019.2953579. [39] V. Viswam et al., "Impedance Spectroscopy and Electrophysiological Imaging of Cells With a High-Density CMOS Microelectrode Array System," IEEE Trans Biomed Circuits Syst, vol. 12, no. 6, pp. 1356-1368, Dec 2018, doi: 10.1109/TBCAS.2018.2881044. [40] X. Yuan, A. Hierlemann, and U. Frey, "Extracellular Recording of Entire Neural Networks Using a Dual-Mode Microelectrode Array With 19584 Electrodes and High SNR," IEEE J Solid-State Circuits, vol. 56, no. 8, pp. 2466-2475, Aug 2021, doi: 10.1109/JSSC.2021.3066043. [41] Z. Zhong, Z. Li, K. Chakrabarty, T. Y. Ho, and C. Y. Lee, "Micro-Electrode-Dot-Array Digital Microfluidic Biochips: Technology, Design Automation, and Test Techniques," IEEE Trans Biomed Circuits Syst, vol. 13, no. 2, pp. 292-313, Apr 2019, doi: 10.1109/TBCAS.2018.2886952. [42] P. M. Levine, P. Gong, R. Levicky, and K. L. Shepard, "Active CMOS Sensor Array for Electrochemical Biomolecular Detection," IEEE Journal of Solid-State Circuits, vol. 43, no. 8, pp. 1859-1871, 2008, doi: 10.1109/jssc.2008.925407. [43] H. Sungkil, C. N. LaFratta, V. Agarwal, Y. Xin, D. R. Walt, and S. Sonkusale, "CMOS Microelectrode Array for Electrochemical Lab-on-a-Chip Applications," IEEE Sensors Journal, vol. 9, no. 6, pp. 609-615, 2009, doi: 10.1109/jsen.2009.2020193. [44] C.-K. Cheng, C.-T. Ho, D. Lee, and B. Lin, "Multirow Complementary-FET (CFET) Standard Cell Synthesis Framework Using Satisfiability Modulo Theories (SMTs)," IEEE Journal on Exploratory Solid-State Computational Devices and Circuits, vol. 7, no. 1, pp. 43-51, 2021, doi: 10.1109/jxcdc.2021.3092769. [45] T. Z. Hong et al., "First Demonstration of heterogenous Complementary FETs utilizing Low-Temperature (200 °C) Hetero-Layers Bonding Technique (LT-HBT)," in 2020 IEEE International Electron Devices Meeting (IEDM), 12-18 Dec. 2020 2020, pp. 15.5.1-15.5.4, doi: 10.1109/IEDM13553.2020.9372001. [46] P.-J. Sung et al., "Fabrication of Vertically Stacked Nanosheet Junctionless Field-Effect Transistors and Applications for the CMOS and CFET Inverters," IEEE Transactions on Electron Devices, vol. 67, no. 9, pp. 3504-3509, 2020, doi: 10.1109/ted.2020.3007134. [47] "<First Demonstration of heterogenous Complementary FETs utilizing Low-Temperature Wafer Bonding.PDF>." [48] C. Y. Huang et al., "3-D Self-aligned Stacked NMOS-on-PMOS Nanoribbon Transistors for Continued Moore’s Law Scaling," in 2020 IEEE International Electron Devices Meeting (IEDM), 12-18 Dec. 2020 2020, pp. 20.6.1-20.6.4, doi: 10.1109/IEDM13553.2020.9372066. [49] Y.-T. Cheng, "Design and fabrication of vertically stacked GAA complementary-FET via membrane printing," 2022. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87734 | - |
| dc.description.abstract | 本論文包含三個部分:用於細胞檢測的CMOS嵌入式微流道系統、用於電化學感測的CMOS晶片上電極開發以及CFET元件的製作。首先,我們提出了一種新穎的CMOS嵌入式微流道平台,該平台具有晶片上阻抗感測電極和三維微/奈流體學,適用於下一代POC診斷設備。該平台採用單步驟後CMOS濕刻蝕刻製程,透過去除CMOS後端製程走線(BEOL),由金屬來形成中空流體通道。通過提高水力壓力來優化蝕刻過程,從而將蝕刻速率提高了10倍。為了研究各種流體通道的可行性,我們設計了多種具有不同功能的通道幾何形狀,對應日益增長的微流道技術與元件。為了晶片上電極進行阻抗感測,我們探索了各種策略,並提出了“通孔”電極,在保持檢測能力的同時亦維持其完整性。我們還研究了平台的長期穩定性,並展示了使用不同濃度離子溶液進行阻抗感測的有效性。此外,我們還設計了一個跨阻放大器,使用串接電流再利用放大器作為類比前端電路,製作了我們提出的高度CMOS整合的微流道系統的原型。其次,我們展示了用於電化學感測的CMOS片上電極的開發。我們採用化學鍍膜和蒸鍍沉積的過程在鋁墊層上製作金層。通過這樣的技術開發,我們成功地將微電極陣列與CMOS晶片整合。為了驗證我們感測電極的功能,我們使用卡那霉素之適體進行分子感測。結果與商業電極的結果相似,因此可證明其功能。最後,我們介紹了一種新的製程技術,用於實現CFET結構。我們採用薄膜轉移技術來製作堆疊通道結構,無需進行複雜的磊晶生長和晶圓鍵合。透過使用氦離子束微影技術,我們成功地將元件的關鍵尺寸縮小到50奈米以下。 | zh_TW |
| dc.description.abstract | This thesis contains three parts: a CMOS-embedded microfluidics system for cell detection, CMOS-integrated on-chip electrode development for electrochemical sensing, and the fabrication of a CFET device.To begin with, we present a novel CMOS-embedded microfluidics platform that features on-chip impedance-sensing electrodes, and 3D micro/nanofluidics suitable for next-generation point-of-care (POC) diagnostic devices. The platform uses a single-step post-CMOS wet-etching process to create hollow fluidic channels by removing CMOS back-end-of-line (BEOL) routing metals. The etching process is optimized by improving the etching rate by 10× through hydraulic pressure. To investigate the feasibility of a variety of fluidic channels, we design several channel geometries of different functions, corresponding to more and more emerging microfluidics techniques. To integrate on-chip electrodes for impedance sensing, we explore various strategies and present "via" electrodes that maintain their integrity in the etching process while preserving detection sensitivity. We also investigate the long-term reliability of the platform and demonstrate the efficacy of impedance sensing using ionic solutions of varying strengths. We also design a transimpedance amplifier employing a cascode current-reuse amplifier as an analog front-end circuit to make the prototype of our proposed highly CMOS-integrated microfluidics system.Secondly, we demonstrate the development of CMOS on-chip electrodes for electrochemical sensing. We adopt the process of both ENIG and evaporator deposition to make a gold layer onto the aluminum pad layer. With such process development, we successfully integrate a microelectrode array with a CMOS chip. To verify the functionality of our sensing electrodes, we use kanamycin aptamer to conduct molecular sensing. The results are consistent with the data from commercial electrodes.In the last, we introduce a novel fabrication technique to realize the CFET architecture. We use membrane transfer techniques to make the stacked channel structure without complex epitaxial growth and wafer bonding. By using helium ion beam lithography, we successfully shrink the device’s critical size to below 50nm. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-07-19T16:11:14Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-07-19T16:11:14Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 ii
中文摘要 iii Abstract iv Contents vi List of Figures ix List of Tables xv Chapter 1 Introduction 1 1.1 More-than-Moore 2 1.2 More-Moore 3 1.3 Research motivation 5 1.4 Thesis structure 7 Chapter 2 CMOS-embedded microfluidics 8 2.1 Research background 8 2.1.1 Micro/nanofluidics and lab-on-a-Chip 8 2.1.2 Integration of CMOS chip and micro/nanofluidics 10 2.1.3 Cell detection methodology 15 2.2 Research motivation 20 2.3 Proposed system concept 21 2.4 BEOL etching process 23 2.4.1 Etching in bulk solution 23 2.4.2 Optimized etching process 24 2.5 Passive structures 26 2.5.1 Straight line channel with various sizes 26 2.5.2 Multiple-channel splitter 27 2.5.3 3D fluidic channel by the stacked metal layer 28 2.5.4 Resistive pulse sensing channel 31 2.5.5 Sheath flow channel 32 2.5.6 Serpentine channel 33 2.6 Active testing blocks 35 2.6.1 Embedded sensing electrodes 35 2.6.2 Transistor array 37 2.6.3 Transimpedance amplifier sensing chain 38 2.7 System integration and packaging 42 2.7.1 Microfluidics preparation 44 2.7.2 SU-8 lithography 45 2.7.3 CMOS with epoxy packaging 47 2.7.4 Electrical module integration 49 2.8 Measurement results and discussion 52 2.8.1 Transistor function verification after long-term etching 52 2.8.2 Resistive pulse sensing 55 2.8.3 Real-time monitoring for embedded sensing electrodes 57 2.8.4 Impedance sensing demonstration 58 Chapter 3 CMOS-integrated micro-electrode for aptamer sensing 60 3.1 Research background 60 3.1.1 Aptamer-based electrochemical biosensing 60 3.1.2 CMOS-based microelectrode array 62 3.1.3 On-chip electrode fabrication methodology 64 3.2 Sensing verification by off-chip electrodes 67 3.2.1 Commercial electrodes 68 3.2.2 Deposited electrode by E-gun evaporator 69 3.3 CMOS on-chip microelectrodes 70 3.3.1 Fabrication flow 70 3.3.2 Measurement results 71 Chapter 4 3D-stacked Electronics Device Fabrication 73 4.1 Research background 73 4.1.1 3D electronics 73 4.1.2 Complementary field-effect transistor (CFET) 74 4.1.3 CFET fabrication methodology 75 4.2 Proposed novel CFET process flow 79 4.3 Declaration 82 Chapter 5 Conclusion 83 Chapter 6 Future work 85 References 88 | - |
| dc.language.iso | en | - |
| dc.subject | 互補式場效電晶體 | zh_TW |
| dc.subject | 類比前端電路 | zh_TW |
| dc.subject | 微/奈米流道 | zh_TW |
| dc.subject | 微電極 | zh_TW |
| dc.subject | 細胞檢測 | zh_TW |
| dc.subject | 電化學檢測 | zh_TW |
| dc.subject | micro/nanfluidics | en |
| dc.subject | analog front-end circuit | en |
| dc.subject | CFET | en |
| dc.subject | electrochemical sensing | en |
| dc.subject | cellular sensing | en |
| dc.subject | microelectrode | en |
| dc.title | 應用於下世代生醫檢測與邏輯之互補式金屬氧化物半導體整合微/奈米流道細胞/電化學感測 及互補式場效電晶體 | zh_TW |
| dc.title | CMOS-integrated Cellular/Electrochemical Micro/nanofluidics and CFET (Complementary FET) for Next-generation Biosensing and Logic | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 廖育德;李尉彰 | zh_TW |
| dc.contributor.oralexamcommittee | Yu-Te Liao;Wei-Chang Li | en |
| dc.subject.keyword | 類比前端電路,微/奈米流道,微電極,細胞檢測,電化學檢測,互補式場效電晶體, | zh_TW |
| dc.subject.keyword | analog front-end circuit,micro/nanfluidics,microelectrode,cellular sensing,electrochemical sensing,CFET, | en |
| dc.relation.page | 91 | - |
| dc.identifier.doi | 10.6342/NTU202300773 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2023-05-08 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 電子工程學研究所 | - |
| 顯示於系所單位: | 電子工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf | 8.84 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
