請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87733完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 彭隆瀚 | zh_TW |
| dc.contributor.advisor | Lung-Han Peng | en |
| dc.contributor.author | 楊富翔 | zh_TW |
| dc.contributor.author | Fu-Hsiang Yang | en |
| dc.date.accessioned | 2023-07-19T16:10:53Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-07-19 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-05-04 | - |
| dc.identifier.citation | 1.T. H. Maiman, “Stimulated optical radiation in ruby,” Nature, vol. 187, pp. 493– 494, 1960.
2.T. T. Basiev and R. C. Powell, “Solid State Raman Lasers,” in Handbook of Laser Technology and Applications, C. Webb and J. Jones, Ed., London, UK: IOP, 2004, pp. 469-498. 3.L. Fenno, O. Yizhar, and K. Deisseroth, “The Development and Application of Optogenetics,” Annu. Rev. Neurosci.. vol. 34, pp. 389-412, 2011. 4.K. I. Willig, R. R. Kellner, R. Medda, B. Hein, S. Jakobs, and S. W. Hell, “Nanoscale resolution in GFP-based microscopy,” Nat. Methods, vol. 3, pp. 721-723, 2006. 5.J. Bückers, D. Wildanger, G. Vicidomini, L. Kastrup, and S. W. Hell, “Simultaneous multi-lifetime multi-color STED imaging for colocalization analyses,” Opt. Express, vol. 19, no. 4, pp. 3130-3143, 2011. 6.M. A. Mainster, “Wavelength Selection in Macular Photocoagulation: Tissue Optics, Thermal Effects, and Laser Systems,” Ophthalmology, vol. 93, no. 7, pp. 952-958, 1986. 7.T. S. Alster and J. R. Lupton, “Lasers in Dermatology An Overview of Types and Indications,” Am. J. Clin. Dermatol., vol. 2, no. 5, pp. 291-303, 2001. 8.D. Litscher, G. Wang, I. Gaischek, L. Wang, S. W. Liebmann, and E. Petek, “Yellow laser acupuncture — A new option for prevention and early intervention of lifestyle-related diseases: A randomized, placebo-controlled trial in volunteers,” Laser Ther., vol. 24, no. 1, pp.53-61, 2015. 9.C. Kränkel, D. T. Marzahl, F. Moglia, G. Huber, and P. W. Metz, “Out of the blue: Semiconductor laser pumped visible rare-earth doped lasers,” Laser & Photonics Reviews, vol. 10, no. 4, pp. 548-568, 2016. 10.Q. Ju, W. Yao, G. Ma, H. Tan, W. Liu, Q. Zhang, and J. Gao, “Diode pumped Dy:YAG yellow laser,” in 2017 Conference on Lasers and Electro-Optics Pacific Rim, Singapore, Singapore: Optical Society of America, 2017 11.J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev., vol. 127, no. 6, pp. 1918–1939, 1962. 12.D. N. Nikogosyan, “Basic Nonlinear Optical Crystals,” in Nonlinear Optical Crystals: A Complete Survey, D. N. Nikogosyan, Ed. New York, NY: Springer, 2006, pp. 5-74. 13.M. Marangoni and R. Ramponi, “Nonlinear Optical Waveguides in Stoichiometric Lithium Tantalate,” in Ferroelectric Crystals for Photonic Applications, P. Ferraro, S. Grilli, and P. D. Natale, Ed. Berlin, Heidelberg: Springer, 2014, pp. 79-98. 14.S. Kim and V. Gopalan, ”Domain reversal and nonstoichiometry in lithium tantalate,” J. Appl. Phys., vol. 90, no. 6, pp. 2949, 2001. 15.L. H. Peng, Y. C. Fang, and Y. C. Lin, “Polarization switching of lithium niobate with giant internal field,” Appl. Phys. Lett., vol. 74, no. 14, 2070, 1999. 16.D. Feng, N. B. Ming, J. F. Hong, Y. S. Yang, J. S. Zhu, Z. Yang, and Y. N. Wang, “Enhancement of second-harmonic generation in LiNbO3 crystals with periodic laminar ferroelectric domains,” Appl. Phys. Lett., vol. 37, no. 7, pp. 607-609, 1980. 17.H. Ito, C. Takyu, and H. Inaba, “Fabrication of periodic domain grating in LiNbO3 by electron beam writing for application of nonlinear optical processes,” Electron. Lett., vol. 27, no. 14, pp. 1221-1222, 1991. 18.I. Camlibel, “Spontaneous polarization measurements in several ferroelectric oxides using a pulsed-field method,” J. Appl. Phys., vol. 40, no. 4, pp. 1690-1693, 1969. 19.M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett., vol. 62, no. 5, pp. 435-436, 1993. 20.K. Mizuuchi and K. Yamamoto, “Harmonic blue light generation in bulk periodically poled LiTaO3,” Appl. Phys. Lett., vol. 66, no. 22, pp. 2943-2945, 1995. 21.R. Boyd, “Wave-Equation Description of Nonlinear Optical Interactions,” in Nonlinear Optics, 3rd Edition, R. Boyd, Ed. Cambridge, MA: Academic Press, 2008, pp.69-134. 22.J. Yao and Y. Wang, “Nonlinear Optical Frequency Mixing Theory,” in Nonlinear Optics and Solid-State Lasers, Advanced Concepts, Tuning-Fundamentals and Applications, J. Yao and Y. Wang, Ed. Berlin, Heidelberg: Springer, 2007, pp. 125-178. 23.W. Koechner, “Nonlinear Devices,” in Solid-State Laser Engineering, 6th revised and updated edition, W. Koechner, Ed. New York, NY: Springer, 2007, pp. 587-679. 24.G. D. Boyd, A. Ashkin, J. M. Dziedzic, and D. A. Kleinman, “Second-Harmonic Generation of Light with Double Refraction,” Phys. Rev., vol. 137, no. 4A, pp. 1305-1320, 1965. 25.韓志勇,“利用鎳擴散利用鎳擴散製程於週期性極化反轉鉭酸鋰垂直調制準相位匹配結構,”國立臺灣大學光電工程學研究所碩士論文, 2018. 26.R. G. Smith, “Effects of Momentum Mismatch on Parametric Gain,” J. Appl. Phys., vol. 41, no. 10, pp. 4121-4124, 1970. 27.M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-Phase-Matched Second Harmonic Generation: Tuning and Tolerances,” IEEE Journal of Quantum Electronics, vol. 28, no. 11, pp. 2631-2654, 1992. 28.L. H. Peng, Y. P. Tseng, K. L. Lin, Z. X. Huang, C. T. Huang, and A. H. Kung, “Depolarization field mitigated domain engineering in nickel diffused lithium tentalate,” Appl. Phys. Lett., vol. 92, no. 9, 092903, 2008. 29.R. C. Miller and G. Weinreich, “Mechanism for the Sidewise Motion of 180° Domain Walls in Barium Titanate,” Phys. Rev., vol. 117, no. 6, pp. 1460-1466, 1960. 30.G. D. Miller, “Periodically Poled Lithium Niobate: Modeling, Fabrication, and Non-linear-Optical Performance,” Ph.D. Thesis, Stanford University, Stanford, California, 1998. 31.周志賢,“準相位匹配鉭酸鋰高效率寬頻藍光雷射晶片之研製,”國立臺灣大學光電工程學研究所碩士論文, 2011. 32.I. S. Baturin, A. R. Akhmatkhanov, V. Ya. Shur, M. S. Nebogatikov, M. A. Dolbilov, and E. A. Rodina., “Characterization of Bulk Screening in Single Crystals of Lithium Niobate and Lithium Tantalate Family,” Ferroelectrics, vol. 374, no. 1, pp. 1-13, 2008. 33.吕百达,激光光学:光束描述、传输变换与光腔技术物理,第三版,第八章,高等教育出版社, 2003, pp.268-292. 34.ISO/TR 11146-3:2004, Lasers and laser-related equipment — test methods for laser beam widths, divergence angles and beam propagation ratios — part 3: Intrinsic and geometrical laser beam classification, propagation and details of test methods, 2004, [Online]. Available: https://www.iso.org/standard/33627.html. 35.吕百达,激光光学:光束描述、传输变换与光腔技术物理,第三版,第三章,高等教育出版社, 2003, pp.75-97. 36.范家浚,“同時產生雙波長近紅外光學參輛震盪器及橘黃光雷射研究,”國立臺灣大學光電工程學研究所碩士論文, 2022. 37.E. C. Hernández, S. Kalusniak, P. W. Metz, and C. Kränkel, “Diode-Pumped Laser Operation of Tb3+:LiLuF4 in the Green and Yellow Spectral Range,” Laser & Photonics Reviews, vol. 14, no. 2, pp. 1900229, 2020. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87733 | - |
| dc.description.abstract | 本篇論文內容是由三大部分構成:(1) 準相位匹配基本理論與光學參量振盪器原理之介紹,(2 )光學參量振盪器-倍頻橘黃光晶片之設計與研製,(3) 用光學方法測量光參振盪器-倍頻橘黃光晶片,並觀測共振腔內橘黃光模態的情況。
理論的部分介紹非線性頻率轉換、準相位匹配與光參振盪器。接著在鉭酸鋰光學參量振盪器晶體週期設計的部分中,以並聯光學參量振盪結構級聯倍頻與和頻週期結構方式,波長為532nm之綠光泵浦雷射達成準相位匹配之條件,使532nm綠光泵浦源先光學參量轉換成兩對波長為1163nm/1186nm之閒置光與986nm/964nm之信號光等近紅外光後再倍頻與和頻換成波長為581nm/587nm/593nm的橘黃光雷射。最後再利用本實驗室研究的晶片內擴散鎳金屬配合極高電壓致極化反轉之製程,用於製作厚度為1mm之共熔鉭酸鋰晶片。 光學量測部分,以脈衝之泵浦光經過光參振盪器晶體,以及級聯光參振盪器之腔內倍頻與和頻架構,成功的產生出效率為8.1%,而共振閾值為30.1MW/cm2的多波長橘黃光雷射,其光束品質因子Mx2與My2分別為2.23及5.13。 | zh_TW |
| dc.description.abstract | There are three parts in this thesis: (1) Quasi-phase matching (QPM) theory and the theory of optical parametric oscillators (OPO), (2) the design and fabrication of optical parametric oscillator-second harmonic generation (OPO-SHG) orange-yellow light QPM crystals, (3) optical measurement of OPO-SHG orange-yellow light generation and observation of the intra-cavity laser mode patterns of orange-yellow.
First of all, we outline the QPM theory for OPO and SHG processes. Secondly, the design of periodically poled congruent LiTaO3(PPCLT) which has parallel OPO structures cascaded by SHG and sum frequency generation(SFG) structures is introduced. This design can convert a 532 nm green laser pump into idler/signal waves at 1163/986 nm and 1186/964 nm simultaneously near infrared. In addition, it can continuously convert the idler waves 1163/1186 nm to SHG of 581/593 nm also enable SHG of 587 nm orange-yellow lasers. By taking the nickel-diffusion assisted electric poling process, cascaded OPO-SHG devices on a 1mm-thick CLT substrate is fabricated. Finally, the OPO-SHG device was measured to exhibit multi-wavelength spectra with a slope efficiency of 8.1% and threshold intensity of 30.1 MW/cm2, the orange-yellow laser was also characterized with a beam quality factor Mx2=2.23 and My2=5.13. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-07-19T16:10:53Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-07-19T16:10:53Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
中文摘要 ii 英文摘要 iii 目錄 iv 圖目錄 vii 表目錄 x 第一章 簡介 1 1.1 研究動機 1 1.2 非線性晶體的比較與選擇 3 1.3 鉭酸鋰介紹 5 1.4 極化反轉製程介紹 9 1.4.1 週期性區域反轉之製程 9 1.4.2 高溫擴散金屬致鐵電疇反轉法 9 1.5 非線性光學之頻率轉換 10 1.5.1 和頻轉換 10 1.5.2 差頻轉換 10 1.5.3 倍頻轉換 10 1.5.4 光學參量振盪器簡介 11 第二章 相位匹配理論 12 2.1 非線性光學轉換 12 2.1.1 非線性頻率轉換與 12 2.1.2 基頻光泵浦源無損耗之倍頻與和頻轉換 15 2.1.3 基頻光泵浦源損耗之倍頻轉換 16 2.1.4 基頻光考慮高斯光束之空間分布 18 2.2 雙折射相位匹配理論 19 2.3 準相位匹配理論 21 2.4 光參振盪器理論 25 2.4.1 光參產生理論 25 2.4.2 光學參量振盪器 27 第三章 非線性晶體設計及製程 30 3.1 準相位匹配晶體週期之計算及設計 30 3.1.1 倍頻晶體週期設計 30 3.1.2 光學參量振盪器晶體週期設計 31 3.1.3 頻寬及倍頻長度設計 33 3.1.4 橘黃光晶體週期設計 33 3.2 鉭酸鋰晶體內建電場方向確認 37 3.2.1 晶體矯頑電場與內建電場之測量 37 3.2.2 晶格方向判斷 39 3.2 週期性極化反轉晶片之製作 40 3.2.1 晶片製程介紹 40 3.2.2 極高電壓致極化反轉技術 42 3.2.3 極化反轉模型 44 3.2.4 反轉電壓脈衝波型 46 3.2.5 晶片端面研磨拋光 49 第四章 光學量測與分析 52 4.1光學量測架構 52 4.1.1 泵浦雷射 52 4.1.2 共振腔設計及模態匹配 56 4.2光學測量與分析 59 4.2.1 溫度頻寬 60 4.2.2 光譜分析 62 4.2.3 斜線效率 63 4.2.4 橘黃光模態 64 第五章 結論與未來展望 66 參考資料 68 附錄 73 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 倍頻 | zh_TW |
| dc.subject | 和頻 | zh_TW |
| dc.subject | SFG | en |
| dc.subject | SHG | en |
| dc.title | 準相位匹配之級聯光學參量振盪器 與倍頻橘黃光雷射研究 | zh_TW |
| dc.title | A Study of Generation of Orange-Yellow Laser by Cascaded OPO-SHG Processes on Quasi-Phase-Matching Periodically-Poled Lithium Tantalate | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 王維新;賴志明 | zh_TW |
| dc.contributor.oralexamcommittee | Way-Seen Wang;Chih-Ming Lai | en |
| dc.subject.keyword | 倍頻,和頻, | zh_TW |
| dc.subject.keyword | SHG,SFG, | en |
| dc.relation.page | 83 | - |
| dc.identifier.doi | 10.6342/NTU202300743 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2023-05-04 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 光電工程學研究所 | - |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf | 3.39 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
