Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87730
Title: 人臉影像隱私保護之多任務生成對抗網路設計
Multi-Task Generative Adversarial Network Design for Privacy Protection of Facial Images
Authors: 潘怡倫
Yi-Lun Pan
Advisor: 吳家麟
Ja-Ling Wu
Keyword: 隱私保護,資料隱藏,對抗式生成網路,對偶推論,率失真理論,匿名性(去識別化),去匿名性(還原識別),相互資訊,
Privacy Protection,Information Hiding,Generative Adversarial Network,Dual Inference,Rate-distortion Theory,Anonymization (De-identification),De-anonymization (Re-identification),Mutual Information,
Publication Year : 2023
Degree: 博士
Abstract: 本研究主要因應近年由於消費型鏡頭與計算硬體的蓬勃發展與進步,使得擷取與儲存大量影像資料資料變得非常容易。設想一個資料擁有者,如醫院或是政府機構,是很容易針對個人進行資訊蒐集、儲存與處理。在這樣的情況下,要如何確保資料擁有者可以精準的將每份可識別個人身份 (Identify) 的資料做到保護與個人資料隱藏 (Information Hiding)以達到隱私保護 (Privacy Protection) 的目的;同時,在針對個人資訊完成去識別化與資訊隱藏後,仍能保留相當程度之資料堪用性以利後續特定目的之運用成為機敏資料分析與處理領域的核心研究課題。所以本研究提出了Multi-Task Generative Adversarial Network : Multi-Task GAN網路架構,透過對偶推論 (Dual Inference) 與Rate-Distortion理論,來設計Multi-Task GAN幾項校正損失函數。本研究也提出了對偶Multi-Task GAN網路架構設計完整的物理意義來進行相關理論分析,並搭配多種的實驗來驗證所宣稱的效果。
This study aims to address the ease of capturing and storing large amounts of image data due to the flourishing development and progress of consumer-grade lenses and computing hardware in recent years. As a result, for data owners such as hospitals or government agencies, it has become easy to collect, store, and process personal information. In this context, how to ensure that data owners can accurately protect and hide personally identifiable information (Identity) to achieve privacy protection and information hiding while still retaining a reasonable level of data utility for sensitive data analysis and processing has become a core research issue in the field of sensitive data analysis and processing. Therefore, this study proposes a Multi-Task Generative Adversarial Network (Multi-Task GAN) network architecture, which uses dual inference and rate-distortion theory to correct several loss functions of Multi-Task GAN. The study also presents a complete physical meaning to conduct a theoretical analysis of our system(such as Mutual Information) and validates the claimed effects with relevant experiments.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87730
DOI: 10.6342/NTU202300957
Fulltext Rights: 同意授權(全球公開)
Appears in Collections:資訊工程學系

Files in This Item:
File SizeFormat 
ntu-111-2.pdf48.86 MBAdobe PDFView/Open
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved