請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87723完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林宗賢 | zh_TW |
| dc.contributor.advisor | Tsung-Hsien Lin | en |
| dc.contributor.author | 陳邦正 | zh_TW |
| dc.contributor.author | Pang-Cheng Chen | en |
| dc.date.accessioned | 2023-07-19T16:07:26Z | - |
| dc.date.available | 2023-11-10 | - |
| dc.date.copyright | 2023-07-19 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-05-29 | - |
| dc.identifier.citation | R. Wu, J. H. Huijsing, and K. A. A. Makinwa, Precision Instrumentation Amplifiers and Read-Out Integrated Circuits, Springer, 2013.
R. Muller, H. –P. Le, W. Li, P. Ledochowitsch, S. Gambini, T. Bjorninen, A. Koralek, J. M. Carmena, M. M. Maharbiz, E. Alon, and J. M. Rabaey, “A Minimally Invasive 64-channel Wireless μECoG Implant,” IEEE J. Solid-State Circuits, vol. 50, no. 1, pp. 344–359, Jan. 2015. J. Xu, S. Mitra, A. Matsumoto, S. Patki, C. Van Hoof, K. A. A. Makinwa, and R. F. Yazicioglu, “A Wearable 8-Channel Active-electrode EEG/ETI Acquisition System for Body Area Networks,” IEEE J. Solid-State Circuits, vol.49, no.9, pp. 2005–2016, Sep. 2014. Y. -P. Hsu, Z. Liu and M. M. Hella, "A 12.3-μW 0.72-mm² Fully Integrated Front-End IC for Arterial Pulse Waveform and ExG Recording," IEEE J. Solid-State Circuits, vol. 55, no. 10, pp. 2756-2770, Oct. 2020. C. -Y. Wu, C. -H. Cheng and Z. -X. Chen, "A 16-Channel CMOS Chopper-Stabilized Analog Front-End ECoG Acquisition Circuit for a Closed-Loop Epileptic Seizure Control System," IEEE Tran. on Biomedical Circuits and Systems, vol. 12, no. 3, pp. 543-553, June 2018. Q. Fan, K. A. A. Makinwa, and J. H. Huijsing, Capacitively-Coupled Chopper Amplifiers, Springer, 2017. J. F. Witte, K. A. A. Makinwa, and J. H. Huijsing, Dynamic Offset Compensated CMOS Amplifiers, Springer, 2009 A. Sedra and K. Smith, “A 345 µW Multi-Sensor Biomedical SoC With Bio-Impedance, 3-Channel ECG, Motion Artifact Reduction, and Integrated DSP”, IEEE J. Solid-State Circuits, vol. 50, no. 1, pp 230-234, January 2015. X. Gao, L. Lin, Y. Liu, and X. Huang " LTPS TFT Process on Polyimide Substrate for Flexible AMOLED," Journal of Display Technology, vol. 11, no. 8, pp.666-669, Aug. 2015. C. -C. Tu, Y.-K. Wang, and T.-H. Lin, " A Low-Noise Area-Efficient Chopped VCO-Based CTDSM for Sensor Applications in 40-nm CMOS," IEEE J. Solid-State Circuits, vol. 52, no. 10, pp. 2523-2532, Oct. 2017. M. Z. Straayer, and M. H. Perrot, " A 12-Bit, 10-MHz Bandwidth, Continuous-Time Delta-Sigma ADC with a 5-Bit, 950-MS/s VCO-Based Quantizer," IEEE J. Solid-State Circuits, vol. 43, no. 4, pp. 805-814, Apr. 2008. C. -L. Chen, and T.-H. Lin, "An Open-loop VCO-based ADC with Quasi-Chopping and Non-linearity Cancellation for Bio-Sensor Applications", IEEE Biomedical Circuits and Systems Conference (BioCAS), 2022, pp. 317-320. G. Fortunato et al., "LTPS TFT Technology on Flexible Substrates for Sensor Applications ", International Workshop on Active-Matrix Flatpanel Displays and Devices (AM-FPD), 2014, pp. 311-314. T. Carusone, D. Johns, K. W. Martin, and David Johns. “Analog Integrated Circuit Design.” Hoboken, NJ: John Wiley & Sons, 2012. P. Huang, C.-C. Tu and T.-H. Lin, "An Area-Efficient VCO-Based Hall Sensor Readout System for Autofocus Applications," IEEE International Symposium on Circuits and Systems (ISCAS), 2019, pp. 1-5. H. C. Hor and L. Siek, "Review on VCO based ADC in Modern Deep Submicron CMOS Technology," IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), 2012, pp. 86-88. W.-M. Lin, C.-F. Lin, and S.-I. Liu, “A CBSC Second-order Sigma-delta Modulator in 3μm LTPS-TFT Technology,” IEEE Asian Solid-State Circuits Conference, 2009, pp. 133-136. C.-C. Tu, Y.-K. Wang and T.-H. Lin, "A 0.06mm2 ± 50mV range −82dB THD Chopper VCO-based Sensor Readout Circuit in 40nm CMOS," IEEE Symposium on VLSI Circuits, 2017, pp. C84-C85. W. Zhao et al., “A 0.025-mm2 0.8-V 78.5-dB SNDR VCO-based Sensor Readout Circuit in a Hybrid PLL-M Structure,” IEEE J. Solid-State Circuits, vol. 55, no. 3, pp. 666–679, Mar. 2020 V. Milovanović and H. Zimmermann, "On fully differential and complementary single-stage self-biased CMOS differential amplifiers," Eurocon 2013, pp. 1955-1963 M. Shinya, M. Ochi, and T. Kugimiya, “Amorphous oxide semiconductor adopting back-channel-etch type thin-film transistor.” Kobelco Technol. Rev. 34, pp.52-58. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87723 | - |
| dc.description.abstract | 本論文利用低溫多晶矽薄膜半導體製程於塑膠材質之基板上實作了一開迴路壓控振盪器為主之類比數位轉換器晶片,由於低溫多晶矽薄膜半導體製程具有相當大程度的製程變異及較低的能源使用效率,本電路具備之高度數位化的特性使其較能夠克服在製作中會遇到的製程與環境變異帶來之影響,主體壓控振盪器亦是由單顆振盪器取代傳統製程中常用的差動結構,避免再在此製程中產生更多不匹配,同時採用了基於反向器所設計之轉導器做為振盪器前端以增加功耗使用效率,並導入系統層級斬波器的結構去消除整體系統的輸入偏移電壓及閃爍雜訊。本晶片之量測設定於輸入範圍為1.5 VDC,電壓源5 V,此晶片核心面積為4.76平方毫米,操作於5伏電壓源下僅需0.381 毫瓦功耗。有效位元數經過量測在頻寬為9.76 Hz下達到8.6有效位元數,在品質因素方面達到FoMs = 97.74 dB及FoMw = 47.19 nJ/conv。 | zh_TW |
| dc.description.abstract | This work presents a Voltage-Controlled Oscillator (VCO)-based Analog-to-Digital Converter implemented on the LTPS-TFT process. This work is designed for DC sensing applications. It is fabricated using the LTPS-TFT 3μm process. Despite TFT's characteristics, such as large process variation and poor power efficiency, its ability to be manufactured on flexible substrates can create plenty of new applications. This work features a highly digital topology and a system-level chopping technique. It also employs a robust ring oscillator due to its digital-friendly structure. The self-biased inverter-based OTA is used not only improving power efficiency but also constructing robust inner negative feedback. Making the system has better robustness under LTPS-TFT’s large mismatch. To further enhance the ADC performance, a system-level chopper is used to reduce the impact of flicker noise and offset voltage induced by TFT. The measurement was conducted with 1.5 V DC input. The total power consumption in this work is 0.381 mW under a 5 V supply voltage. The core area is 4.76 mm2. The measured ENOB achieves 8.6 within a 9.76 Hz bandwidth. It results in the corresponding FoM of 97.74 dB and FoMw of 47.19 nJ/conv. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-07-19T16:07:26Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-07-19T16:07:26Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 論文審定書 i
摘要 v Abstract vii List of Figures xi List of Tables xiv Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Thesis Overview 1 Chapter 2 Introduction to Low-Temperature Poly-Silicon Thin Film Transistors (LTPS-TFT) and Flexible Electronics 3 2.1 Introduction 3 2.2 Motivation 7 2.3 LTPS-TFT’s design constraints 7 2.3.1 Threshold Voltage Variation 8 2.3.2 Poor Power Efficiency 9 2.3.3 In-band Flicker Noise 10 2.3.4 Poor Channel Length Modulation 11 2.4 Conclusion 13 Chapter 3 Fundamental of Sensor Interface Circuits and Prior Art 15 3.1 Fundamental Sensor Front-End Structures 15 3.2 Prior Sensor Interface Circuits 19 3.2.1 IA+ADC 19 3.2.2 VCO-based ADC 20 3.3 Figure of Merit 22 Chapter 4 An Open-Loop VCO-Based ADC with System-Level Chopping for Sensor Applications in LTPS-TFT 25 4.1 Introduction 25 4.2 Fundamentals of VCO-Based ADCs 26 4.3 Proposed VCO-Based ADC Architecture 29 4.4 Circuit Implementation 32 4.4.1 The Gm-CCO Structure 32 4.4.2 Inverter-based Operational Transconductance Amplifier (OTA) 33 4.4.3 Current Controlled Oscillator 35 4.4.4 Coarse-Fine Counter 39 4.4.5 System simulation 42 Chapter 5 Measurement 45 5.1 Die Photo 45 5.2 Measurement Environment Setup 46 5.3 Measurement Results 49 5.3.1 Self-biased Inverter-based OTA 49 5.3.2 Current Controlled Oscillator 52 5.3.3 VCO-based ADC Measurement 54 5.4 Discussion and Summary 58 Chapter 6 Conclusions and Future Works 59 6.1 Conclusions 59 6.2 Future Works 59 References 61 | - |
| dc.language.iso | en | - |
| dc.subject | 類比數位轉換器 | zh_TW |
| dc.subject | 壓控振盪器 | zh_TW |
| dc.subject | 數位化結構 | zh_TW |
| dc.subject | 低功率 | zh_TW |
| dc.subject | 製程變異 | zh_TW |
| dc.subject | 可撓性基板 | zh_TW |
| dc.subject | 低溫多晶矽薄膜半導體製程 | zh_TW |
| dc.subject | 類比前端電路 | zh_TW |
| dc.subject | 系統層級斬波器 | zh_TW |
| dc.subject | 感測器 | zh_TW |
| dc.subject | System-Level Chopping | en |
| dc.subject | LTPS-TFT | en |
| dc.subject | Flexible substrate | en |
| dc.subject | Low-Power | en |
| dc.subject | Highly Digital structure | en |
| dc.subject | DC Sensor | en |
| dc.subject | Process Variation Challenges | en |
| dc.subject | Voltage-Controlled Oscillator | en |
| dc.subject | Analog to Digital Converter (ADC) | en |
| dc.title | 以低溫多晶矽薄膜電晶體製程設計之開迴路壓控振盪器類比數位訊號轉換器 | zh_TW |
| dc.title | Design of an Open-loop VCO-based ADC in LTPS-TFT Process | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 劉深淵;李泰成;陳忠宏 | zh_TW |
| dc.contributor.oralexamcommittee | Shen-Iuan Liu;Tai-Cheng Lee;Jhong-Hong Chen | en |
| dc.subject.keyword | 低溫多晶矽薄膜半導體製程,可撓性基板,製程變異,低功率,數位化結構,感測器,類比前端電路,壓控振盪器,類比數位轉換器,系統層級斬波器, | zh_TW |
| dc.subject.keyword | LTPS-TFT,Flexible substrate,Low-Power,Highly Digital structure,DC Sensor,Process Variation Challenges,Voltage-Controlled Oscillator,Analog to Digital Converter (ADC),System-Level Chopping, | en |
| dc.relation.page | 63 | - |
| dc.identifier.doi | 10.6342/NTU202300847 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2023-05-29 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 電子工程學研究所 | - |
| 顯示於系所單位: | 電子工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 未授權公開取用 | 3.82 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
