Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 食品科技研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87569
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor潘敏雄zh_TW
dc.contributor.advisorMin-Hsiung Panen
dc.contributor.author鍾尚哲zh_TW
dc.contributor.authorShang-Che Chungen
dc.date.accessioned2023-06-20T16:07:01Z-
dc.date.available2023-11-09-
dc.date.copyright2023-06-20-
dc.date.issued2023-
dc.date.submitted2023-02-15-
dc.identifier.citationAbebe Alamineh, E. (2018). Extraction of pectin from orange peels and characterizing its physical and chemical properties. American Journal of Applied Chemistry, 6(2). doi:10.11648/j.ajac.20180602.13
Alenquer, M., & Amorim, M. J. (2015). Exosome biogenesis, regulation, and function in viral infection. Viruses, 7(9), 5066-5083. doi:10.3390/v7092862
Alfieri, M., Leone, A., & Ambrosone, A. (2021). Plant-derived nano and microvesicles for human health and therapeutic potential in nanomedicine. Pharmaceutics, 13(4). doi:10.3390/pharmaceutics13040498
An, Q., van Bel, A. J. E., & Hückelhoven, R. (2007). Do plant cells secrete exosomes derived from multivesicular bodies? Plant Signal. Behav., 2(1), 4-7. doi:10.4161/psb.2.1.3596
Böing, A. N., van der Pol, E., Grootemaat, A. E., Coumans, F. A. W., Sturk, A., & Nieuwland, R. (2014). Single-step isolation of extracellular vesicles by size-exclusion chromatography. J. Extracell. Vesicles, 3(1), 23430. doi:10.3402/jev.v3.23430
Baldini, N., Torreggiani, E., Roncuzzi, L., Perut, F., Zini, N., & Avnet, S. (2018). Exosome-like nanovesicles isolated from Citrus limon L. exert antioxidative effect. Curr. Pharm. Biotechnol., 19(11), 877-885. doi:10.2174/1389201019666181017115755
Baldrich, P., Rutter, B. D., Karimi, H. Z., Podicheti, R., Meyers, B. C., & Innes, R. W. (2019). Plant extracellular vesicles contain diverse small RNA species and are enriched in 10- to 17-nucleotide “tiny” RNAs. The Plant Cell, 31(2), 315-324. doi:10.1105/tpc.18.00872
Barciszewska, M., Sucha, A., Bałabańska, S., & Chmielewski, M. K. (2016). Gel electrophoresis in a polyvinylalcohol coated fused silica capillary for purity assessment of modified and secondary-structured oligo- and polyribonucleotides. Scientific Reports, 6(1), 19437. doi:10.1038/srep19437
Battistelli, M., & Falcieri, E. (2020). Apoptotic bodies: particular extracellular vesicles involved in intercellular communication. Biology (Basel), 9(1), 21. doi:10.3390/biology9010021
Berger, E., Colosetti, P., Jalabert, A., Meugnier, E., Wiklander, O. P. B., Jouhet, J., Errazurig-Cerda, E., Chanon, S., Gupta, D., Rautureau, G. J. P., Geloen, A., El-Andaloussi, S., Panthu, B., Rieusset, J., & Rome, S. (2020). Use of nanovesicles from orange juice to reverse diet-induced gut modifications in diet-induced obese mice. Mol. Ther. - Methods Clin. Dev., 18, 880-892. doi:10.1016/j.omtm.2020.08.009
Busatto, S., Vilanilam, G., Ticer, T., Lin, W. L., Dickson, D. W., Shapiro, S., Bergese, P., & Wolfram, J. (2018). Tangential flow filtration for highly efficient concentration of extracellular vesicles from large volumes of fluid. Cells, 7(12). doi:10.3390/cells7120273
Cvjetkovic, A., Lotvall, J., & Lasser, C. (2014). The influence of rotor type and centrifugation time on the yield and purity of extracellular vesicles. J. Extracell. Vesicles, 3. doi:10.3402/jev.v3.23111
Deepa, K., Sheeja, T. E., Santhi, R., Sasikumar, B., Cyriac, A., Deepesh, P. V., & Prasath, D. (2014). A simple and efficient protocol for isolation of high quality functional RNA from different tissues of turmeric (Curcuma longa L.). Physiol. Mol. Biol. Plants, 20(2), 263-271. doi:10.1007/s12298-013-0218-y
Deng, Z., Rong, Y., Teng, Y., Mu, J., Zhuang, X., Tseng, M., Samykutty, A., Zhang, L., Yan, J., Miller, D., Suttles, J., & Zhang, H. G. (2017). Broccoli-derived nanoparticle inhibits mouse colitis by activating dendritic cell AMP-activated protein kinase. Mol. Ther., 25(7), 1641-1654. doi:10.1016/j.ymthe.2017.01.025
Farley, J. T., Eldahshoury, M. K., & de Marcos Lousa, C. (2022). Unconventional secretion of plant extracellular vesicles and their benefits to human health: a mini review. Front. Cell Dev. Biol., 10, 883841. doi:10.3389/fcell.2022.883841
Favela-Hernández, J. M., González-Santiago, O., Ramírez-Cabrera, M. A., Esquivel-Ferriño, P. C., & Camacho-Corona Mdel, R. (2016). Chemistry and pharmacology of Citrus sinensis. Molecules, 21(2), 247. doi:10.3390/molecules21020247
Fujita, D., Arai, T., Komori, H., Shirasaki, Y., Wakayama, T., Nakanishi, T., & Tamai, I. (2018). Apple-derived nanoparticles modulate expression of organic-anion-transporting polypeptide (OATP) 2B1 in Caco-2 cells. Mol. Pharm., 15(12), 5772-5780. doi:10.1021/acs.molpharmaceut.8b00921
Ho, J., Chaiswing, L., & St. Clair, D. K. (2022). Extracellular vesicles and cancer therapy: insights into the role of oxidative stress. Antioxidants, 11(6), 1194.
Hovhannisyan, L., Czechowska, E., & Gutowska-Owsiak, D. (2021). The role of non-immune cell-derived extracellular vesicles in allergy. Front. Immunol., 12, 702381. doi:10.3389/fimmu.2021.702381
Ito, Y., Taniguchi, K., Kuranaga, Y., Eid, N., Inomata, Y., Lee, S. W., & Uchiyama, K. (2021). Uptake of microRNAs from exosome-like nanovesicles of edible plant juice by rat enterocytes. Int. J. Mol. Sci., 22(7). doi:10.3390/ijms22073749
Joo, T., Sowndhararajan, K., Hong, S., Lee, J., Park, S. Y., Kim, S., & Jhoo, J. W. (2014). Inhibition of nitric oxide production in LPS-stimulated RAW 264.7 cells by stem bark of Ulmus pumila L. Saudi. J. Biol. Sci., 21(5), 427-435. doi:10.1016/j.sjbs.2014.04.003
Jurenka, J. S. (2009). Anti-inflammatory properties of curcumin, a major constituent of Curcuma longa: a review of preclinical and clinical research. Altern. Med. Rev., 14(2), 141-153.
Kalarikkal, S. P., Prasad, D., Kasiappan, R., Chaudhari, S. R., & Sundaram, G. M. (2020). A cost-effective polyethylene glycol-based method for the isolation of functional edible nanoparticles from ginger rhizomes. Sci. Rep., 10(1), 4456. doi:10.1038/s41598-020-61358-8
Kim, E., Kim, Y.-J., Ji, Z., Kang, J. M., Wirianto, M., Paudel, K. R., Smith, J. A., Ono, K., Kim, J.-A., Eckel-Mahan, K., Zhou, X., Lee, H. K., Yoo, J. Y., Yoo, S.-H., & Chen, Z. (2022). ROR activation by nobiletin enhances antitumor efficacy via suppression of IκB/NF-κB signaling in triple-negative breast cancer. Cell Death Dis., 13(4), 374. doi:10.1038/s41419-022-04826-5
Kunnumakkara, A. B., Anand, P., & Aggarwal, B. B. (2008). Curcumin inhibits proliferation, invasion, angiogenesis and metastasis of different cancers through interaction with multiple cell signaling proteins. Cancer Lett., 269(2), 199-225. doi:10.1016/j.canlet.2008.03.009
Lakshmi, P., & Kumar, G. (2010). Nano-suspension technology: A review. Int. J. Pharm. Pharm. Sci., 2, 35-40.
Li, P., Kaslan, M., Lee, S. H., Yao, J., & Gao, Z. (2017). Progress in exosome isolation techniques. Theranostics, 7(3), 789-804. doi:10.7150/thno.18133
Liu, C., Yan, X., Zhang, Y., Yang, M., Ma, Y., Zhang, Y., Xu, Q., Tu, K., & Zhang, M. (2022). Oral administration of turmeric-derived exosome-like nanovesicles with anti-inflammatory and pro-resolving bioactions for murine colitis therapy. J. Nanobiotechnology, 20(1), 206. doi:10.1186/s12951-022-01421-w
Livshits, M. A., Khomyakova, E., Evtushenko, E. G., Lazarev, V. N., Kulemin, N. A., Semina, S. E., Generozov, E. V., & Govorun, V. M. (2015). Isolation of exosomes by differential centrifugation: theoretical analysis of a commonly used protocol. Sci. Rep., 5, 17319. doi:10.1038/srep17319
Logozzi, M., Di Raimo, R., Mizzoni, D., & Fais, S. (2021). Nanovesicles from organic agriculture-derived fruits and vegetables: characterization and functional antioxidant content. Int. J. Mol. Sci., 22(15), 8170. doi:10.3390/ijms22158170
Lässer, C., Alikhani, V. S., Ekström, K., Eldh, M., Paredes, P. T., Bossios, A., Sjöstrand, M., Gabrielsson, S., Lötvall, J., & Valadi, H. (2011). Human saliva, plasma and breast milk exosomes contain RNA: uptake by macrophages. J. Transl. Med., 9, 9. doi:10.1186/1479-5876-9-9
Lu, P. S., Inbaraj, B. S., & Chen, B. H. (2018). Determination of oral bioavailability of curcuminoid dispersions and nanoemulsions prepared from Curcuma longa Linnaeus. J. Sci. Food. Agric., 98(1), 51-63. doi:10.1002/jsfa.8437
Matiz, G., Osorio, M. R., Camacho, F., Atencia, M., & Herazo, J. (2012). Effectiveness of antimicrobial formulations for acne based on orange (Citrus sinensis) and sweet basil (Ocimum basilicum L) essential oils. Biomedica., 32(1), 125-133. doi:10.1590/s0120-41572012000100014
Mu, J., Zhuang, X., Wang, Q., Jiang, H., Deng, Z. B., Wang, B., Zhang, L., Kakar, S., Jun, Y., Miller, D., & Zhang, H. G. (2014). Interspecies communication between plant and mouse gut host cells through edible plant derived exosome-like nanoparticles. Mol. Nutr. Food. Res., 58(7), 1561-1573. doi:10.1002/mnfr.201300729
Oosthuyzen, W., Sime, N. E., Ivy, J. R., Turtle, E. J., Street, J. M., Pound, J., Bath, L. E., Webb, D. J., Gregory, C. D., Bailey, M. A., & Dear, J. W. (2013). Quantification of human urinary exosomes by nanoparticle tracking analysis. J. Physiol., 591(23), 5833-5842. doi:10.1113/jphysiol.2013.264069
Perut, F., Roncuzzi, L., Avnet, S., Massa, A., Zini, N., Sabbadini, S., Giampieri, F., Mezzetti, B., & Baldini, N. (2021). Strawberry-derived exosome-like nanoparticles prevent oxidative stress in human mesenchymal stromal cells. Biomolecules, 11(1), 87.
Prasad, S., & Aggarwal, B. B. (2011). Turmeric, the golden spice: from traditional medicine to modern medicine. In I. F. F. Benzie & S. Wachtel-Galor (Eds.), Herbal Medicine: Biomolecular and Clinical Aspects (2nd ed.). Boca Raton (FL).
Raimondo, S., Naselli, F., Fontana, S., Monteleone, F., Lo Dico, A., Saieva, L., Zito, G., Flugy, A., Manno, M., Di Bella, M. A., De Leo, G., & Alessandro, R. (2015). Citrus limon-derived nanovesicles inhibit cancer cell proliferation and suppress CML xenograft growth by inducing TRAIL-mediated cell death. Oncotarget, 6(23), 19514-19527. doi:10.18632/oncotarget.4004
Raposo, G., & Stoorvogel, W. (2013). Extracellular vesicles: exosomes, microvesicles, and friends. J. Cell Biol., 200(4), 373-383. doi:10.1083/jcb.201211138
Rome, S. (2019). Biological properties of plant-derived extracellular vesicles. Food Funct., 10(2), 529-538. doi:10.1039/c8fo02295j
Ruby, A. J., Kuttan, G., Babu, K. D., Rajasekharan, K. N., & Kuttan, R. (1995). Anti-tumour and antioxidant activity of natural curcuminoids. Cancer Lett., 94(1), 79-83. doi:10.1016/0304-3835(95)03827-j
Rutter, B. D., & Innes, R. W. (2016). Extracellular vesicles isolated from the leaf apoplast carry stress-response proteins. Plant Physiol., 173(1), 728-741. doi:10.1104/pp.16.01253
Sapsford, K. E., Tyner, K. M., Dair, B. J., Deschamps, J. R., & Medintz, I. L. (2011). Analyzing nanomaterial bioconjugates: a review of current and emerging purification and characterization techniques. Anal. Chem., 83(12), 4453-4488. doi:10.1021/ac200853a
Selvam, R., Subramanian, L., Gayathri, R., & Angayarkanni, N. (1995). The anti-oxidant activity of turmeric (Curcuma longa). J. Ethnopharmacol, 47(2), 59-67. doi:10.1016/0378-8741(95)01250-h
Song, G., Mao, Y. B., Cai, Q. F., Yao, L. M., Ouyang, G. L., & Bao, S. D. (2005). Curcumin induces human HT-29 colon adenocarcinoma cell apoptosis by activating p53 and regulating apoptosis-related protein expression. Braz. J. Med. Biol. Res., 38(12), 1791-1798. doi:10.1590/s0100-879x2005001200007
Stanly, C., Alfieri, M., Ambrosone, A., Leone, A., Fiume, I., & Pocsfalvi, G. (2020). Grapefruit-derived micro and nanovesicles show distinct metabolome profiles and anticancer activities in the A375 human melanoma cell line. Cells, 9(12), 2722. doi:10.3390/cells9122722
Stanly, C., Fiume, I., Capasso, G., & Pocsfalvi, G. (2016). Isolation of exosome-like vesicles from plants by ultracentrifugation on sucrose/deuterium oxide (D2O) density cushions. Methods Mol. Biol., 1459, 259-269. doi:10.1007/978-1-4939-3804-9_18
Suchorska, W. M., & Lach, M. S. (2016). The role of exosomes in tumor progression and metastasis (Review). Oncol. Rep., 35(3), 1237-1244. doi:10.3892/or.2015.4507
Suharta, S., Barlian, A., Hidajah, A. C., Notobroto, H. B., Ana, I. D., Indariani, S., Wungu, T. D. K., & Wijaya, C. H. (2021). Plant-derived exosome-like nanoparticles: A concise review on its extraction methods, content, bioactivities, and potential as functional food ingredient. J. Food. Sci., 86(7), 2838-2850. doi:10.1111/1750-3841.15787
Summer, H., Grämer, R., & Dröge, P. (2009). Denaturing urea polyacrylamide gel electrophoresis (Urea PAGE). J. Vis. Exp.(32). doi:10.3791/1485
Sundaram, K., Mu, J., Kumar, A., Behera, J., Lei, C., Sriwastva, M. K., Xu, F., Dryden, G. W., Zhang, L., Chen, S., Yan, J., Zhang, X., Park, J. W., Merchant, M. L., Tyagi, N., Teng, Y., & Zhang, H. G. (2022). Garlic exosome-like nanoparticles reverse high-fat diet induced obesity via the gut/brain axis. Theranostics, 12(3), 1220-1246. doi:10.7150/thno.65427
Teng, Y., Ren, Y., Sayed, M., Hu, X., Lei, C., Kumar, A., Hutchins, E., Mu, J., Deng, Z., Luo, C., Sundaram, K., Sriwastva, M. K., Zhang, L., Hsieh, M., Reiman, R., Haribabu, B., Yan, J., Jala, V. R., Miller, D. M., Van Keuren-Jensen, K., Merchant, M. L., McClain, C. J., Park, J. W., Egilmez, N. K., & Zhang, H. G. (2018). Plant-derived exosomal microRNAs shape the gut microbiota. Cell Host Microbe, 24(5), 637-652 e638. doi:10.1016/j.chom.2018.10.001
Théry, C., Witwer, K. W., Aikawa, E., Alcaraz, M. J., Anderson, J. D., Andriantsitohaina, R., Antoniou, A., Arab, T., Archer, F., Atkin-Smith, G. K., Ayre, D. C., Bach, J. M., Bachurski, D., Baharvand, H., Balaj, L., Baldacchino, S., Bauer, N. N., Baxter, A. A., Bebawy, M., Beckham, C., Bedina Zavec, A., Benmoussa, A., Berardi, A. C., Bergese, P., Bielska, E., Blenkiron, C., Bobis-Wozowicz, S., Boilard, E., Boireau, W., Bongiovanni, A., Borràs, F. E., Bosch, S., Boulanger, C. M., Breakefield, X., Breglio, A. M., Brennan, M., Brigstock, D. R., Brisson, A., Broekman, M. L., Bromberg, J. F., Bryl-Górecka, P., Buch, S., Buck, A. H., Burger, D., Busatto, S., Buschmann, D., Bussolati, B., Buzás, E. I., Byrd, J. B., Camussi, G., Carter, D. R., Caruso, S., Chamley, L. W., Chang, Y. T., Chen, C., Chen, S., Cheng, L., Chin, A. R., Clayton, A., Clerici, S. P., Cocks, A., Cocucci, E., Coffey, R. J., Cordeiro-da-Silva, A., Couch, Y., Coumans, F. A., Coyle, B., Crescitelli, R., Criado, M. F., D'Souza-Schorey, C., Das, S., Datta Chaudhuri, A., de Candia, P., De Santana, E. F., De Wever, O., Del Portillo, H. A., Demaret, T., Deville, S., Devitt, A., Dhondt, B., Di Vizio, D., Dieterich, L. C., Dolo, V., Dominguez Rubio, A. P., Dominici, M., Dourado, M. R., Driedonks, T. A., Duarte, F. V., Duncan, H. M., Eichenberger, R. M., Ekström, K., El Andaloussi, S., Elie-Caille, C., Erdbrügger, U., Falcón-Pérez, J. M., Fatima, F., Fish, J. E., Flores-Bellver, M., Försönits, A., Frelet-Barrand, A., Fricke, F., Fuhrmann, G., Gabrielsson, S., Gámez-Valero, A., Gardiner, C., Gärtner, K., Gaudin, R., Gho, Y. S., Giebel, B., Gilbert, C., Gimona, M., Giusti, I., Goberdhan, D. C., Görgens, A., Gorski, S. M., Greening, D. W., Gross, J. C., Gualerzi, A., Gupta, G. N., Gustafson, D., Handberg, A., Haraszti, R. A., Harrison, P., Hegyesi, H., Hendrix, A., Hill, A. F., Hochberg, F. H., Hoffmann, K. F., Holder, B., Holthofer, H., Hosseinkhani, B., Hu, G., Huang, Y., Huber, V., Hunt, S., Ibrahim, A. G., Ikezu, T., Inal, J. M., Isin, M., Ivanova, A., Jackson, H. K., Jacobsen, S., Jay, S. M., Jayachandran, M., Jenster, G., Jiang, L., Johnson, S. M., Jones, J. C., Jong, A., Jovanovic-Talisman, T., Jung, S., Kalluri, R., Kano, S. I., Kaur, S., Kawamura, Y., Keller, E. T., Khamari, D., Khomyakova, E., Khvorova, A., Kierulf, P., Kim, K. P., Kislinger, T., Klingeborn, M., Klinke, D. J., 2nd, Kornek, M., Kosanović, M. M., Kovács Á, F., Krämer-Albers, E. M., Krasemann, S., Krause, M., Kurochkin, I. V., Kusuma, G. D., Kuypers, S., Laitinen, S., Langevin, S. M., Languino, L. R., Lannigan, J., Lässer, C., Laurent, L. C., Lavieu, G., Lázaro-Ibáñez, E., Le Lay, S., Lee, M. S., Lee, Y. X. F., Lemos, D. S., Lenassi, M., Leszczynska, A., Li, I. T., Liao, K., Libregts, S. F., Ligeti, E., Lim, R., Lim, S. K., Linē, A., Linnemannstöns, K., Llorente, A., Lombard, C. A., Lorenowicz, M. J., Lörincz Á, M., Lötvall, J., Lovett, J., Lowry, M. C., Loyer, X., Lu, Q., Lukomska, B., Lunavat, T. R., Maas, S. L., Malhi, H., Marcilla, A., Mariani, J., Mariscal, J., Martens-Uzunova, E. S., Martin-Jaular, L., Martinez, M. C., Martins, V. R., Mathieu, M., Mathivanan, S., Maugeri, M., McGinnis, L. K., McVey, M. J., Meckes, D. G., Jr., Meehan, K. L., Mertens, I., Minciacchi, V. R., Möller, A., Møller Jørgensen, M., Morales-Kastresana, A., Morhayim, J., Mullier, F., Muraca, M., Musante, L., Mussack, V., Muth, D. C., Myburgh, K. H., Najrana, T., Nawaz, M., Nazarenko, I., Nejsum, P., Neri, C., Neri, T., Nieuwland, R., Nimrichter, L., Nolan, J. P., Nolte-'t Hoen, E. N., Noren Hooten, N., O'Driscoll, L., O'Grady, T., O'Loghlen, A., Ochiya, T., Olivier, M., Ortiz, A., Ortiz, L. A., Osteikoetxea, X., Østergaard, O., Ostrowski, M., Park, J., Pegtel, D. M., Peinado, H., Perut, F., Pfaffl, M. W., Phinney, D. G., Pieters, B. C., Pink, R. C., Pisetsky, D. S., Pogge von Strandmann, E., Polakovicova, I., Poon, I. K., Powell, B. H., Prada, I., Pulliam, L., Quesenberry, P., Radeghieri, A., Raffai, R. L., Raimondo, S., Rak, J., Ramirez, M. I., Raposo, G., Rayyan, M. S., Regev-Rudzki, N., Ricklefs, F. L., Robbins, P. D., Roberts, D. D., Rodrigues, S. C., Rohde, E., Rome, S., Rouschop, K. M., Rughetti, A., Russell, A. E., Saá, P., Sahoo, S., Salas-Huenuleo, E., Sánchez, C., Saugstad, J. A., Saul, M. J., Schiffelers, R. M., Schneider, R., Schøyen, T. H., Scott, A., Shahaj, E., Sharma, S., Shatnyeva, O., Shekari, F., Shelke, G. V., Shetty, A. K., Shiba, K., Siljander, P. R., Silva, A. M., Skowronek, A., Snyder, O. L., 2nd, Soares, R. P., Sódar, B. W., Soekmadji, C., Sotillo, J., Stahl, P. D., Stoorvogel, W., Stott, S. L., Strasser, E. F., Swift, S., Tahara, H., Tewari, M., Timms, K., Tiwari, S., Tixeira, R., Tkach, M., Toh, W. S., Tomasini, R., Torrecilhas, A. C., Tosar, J. P., Toxavidis, V., Urbanelli, L., Vader, P., van Balkom, B. W., van der Grein, S. G., Van Deun, J., van Herwijnen, M. J., Van Keuren-Jensen, K., van Niel, G., van Royen, M. E., van Wijnen, A. J., Vasconcelos, M. H., Vechetti, I. J., Jr., Veit, T. D., Vella, L. J., Velot, É., Verweij, F. J., Vestad, B., Viñas, J. L., Visnovitz, T., Vukman, K. V., Wahlgren, J., Watson, D. C., Wauben, M. H., Weaver, A., Webber, J. P., Weber, V., Wehman, A. M., Weiss, D. J., Welsh, J. A., Wendt, S., Wheelock, A. M., Wiener, Z., Witte, L., Wolfram, J., Xagorari, A., Xander, P., Xu, J., Yan, X., Yáñez-Mó, M., Yin, H., Yuana, Y., Zappulli, V., Zarubova, J., Žėkas, V., Zhang, J. Y., Zhao, Z., Zheng, L., Zheutlin, A. R., Zickler, A. M., Zimmermann, P., Zivkovic, A. M., Zocco, D., & Zuba-Surma, E. K. (2018). Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J. Extracell. Vesicles, 7(1), 1535750. doi:10.1080/20013078.2018.1535750
Trams, E. G., Lauter, C. J., Norman Salem, Jr., & Heine, U. (1981). Exfoliation of membrane ecto-enzymes in the form of micro-vesicles. Biochim. Biophys. Acta - Biomembr., 645(1), 63-70. doi:10.1016/0005-2736(81)90512-5
Tricarico, C., Clancy, J., & D'Souza-Schorey, C. (2017). Biology and biogenesis of shed microvesicles. Small GTPases, 8(4), 220-232. doi:10.1080/21541248.2016.1215283
Tschuschke, M., Kocherova, I., Bryja, A., Mozdziak, P., Angelova Volponi, A., Janowicz, K., Sibiak, R., Piotrowska-Kempisty, H., Iżycki, D., Bukowska, D., Antosik, P., Shibli, J. A., Dyszkiewicz-Konwińska, M., & Kempisty, B. (2020). Inclusion biogenesis, methods of isolation and clinical application of human cellular exosomes. J. Clin. Med., 9(2). doi:10.3390/jcm9020436
Urbanelli, L., Magini, A., Buratta, S., Brozzi, A., Sagini, K., Polchi, A., Tancini, B., & Emiliani, C. (2013). Signaling pathways in exosomes biogenesis, secretion and fate. Genes (Basel), 4(2), 152-170. doi:10.3390/genes4020152
van den Boorn, J. G., Dassler, J., Coch, C., Schlee, M., & Hartmann, G. (2013). Exosomes as nucleic acid nanocarriers. Adv. Drug Deliv. Rev., 65(3), 331-335. doi:10.1016/j.addr.2012.06.011
Van Hung, P., Chi, P. T., & Phi, N. T. (2013). Comparison of antifungal activities of Vietnamese citrus essential oils. Nat. Prod. Res., 27(4-5), 506-508. doi:10.1080/14786419.2012.706293
Xiao, J., Feng, S., Wang, X., Long, K., Luo, Y., Wang, Y., Ma, J., Tang, Q., Jin, L., Li, X., & Li, M. (2018). Identification of exosome-like nanoparticle-derived microRNAs from 11 edible fruits and vegetables. PeerJ, 6, e5186. doi:10.7717/peerj.5186
Xu, X., Lai, Y., & Hua, Z. C. (2019). Apoptosis and apoptotic body: disease message and therapeutic target potentials. Biosci Rep, 39(1). doi:10.1042/BSR20180992
Yang, M., Liu, X., Luo, Q., Xu, L., & Chen, F. (2020). An efficient method to isolate lemon derived extracellular vesicles for gastric cancer therapy. J. Nanobiotechnology, 18(1), 100. doi:10.1186/s12951-020-00656-9
Zhang, M., Viennois, E., Prasad, M., Zhang, Y., Wang, L., Zhang, Z., Han, M. K., Xiao, B., Xu, C., Srinivasan, S., & Merlin, D. (2016). Edible ginger-derived nanoparticles: A novel therapeutic approach for the prevention and treatment of inflammatory bowel disease and colitis-associated cancer. Biomaterials, 101, 321-340. doi:10.1016/j.biomaterials.2016.06.018
Zhang, M., Xiao, B., Wang, H., Han, M. K., Zhang, Z., Viennois, E., Xu, C., & Merlin, D. (2016). Edible ginger-derived nano-lipids loaded with doxorubicin as a novel drug-delivery approach for colon cancer therapy. Mol. Ther., 24(10), 1783-1796. doi:10.1038/mt.2016.159
Zhang, Y., Bi, J., Huang, J., Tang, Y., Du, S., & Li, P. (2020). Exosome: A review of its classification, isolation techniques, storage, diagnostic and targeted therapy applications. Int. J. Nanomedicine, 15, 6917-6934. doi:10.2147/IJN.S264498
Zhou, G., Zhou, Y., & Chen, X. (2017). New insight into Inter-kingdom communication: Horizontal transfer of mobile small RNAs. Front. Microbiol., 8, 768. doi:10.3389/fmicb.2017.00768
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87569-
dc.description.abstract植物來源性胞外囊泡 (Plant-derived extracellular vesicles,簡稱PDEVs) 如其名為從植物分離出來的胞外囊泡,雖然PDEVs相關的研究剛起步沒有多少年,但已有研究指出其具有多種生物活性。近年來,從食用蔬果到植物根莖皆有發表成功分離出胞外囊泡的成果。薑黃是物種Curcuma longa的根莖,常用於烹飪和草藥中,為咖哩橘黃色的色素來源之一,薑黃的研究在學界已持續多年,已知這類橘黃色植物根莖具有多種生物活性,包括抗發炎、抗癌等,然而關於薑黃來源性胞外囊泡 (TEVs) 的研究相當少。此外,柑橘類水果常見於日常生活飲食中,以富含維生素 C 並具抗氧化及抗發炎功效聞名,已有研究成功從中分離出柑橘類胞外囊泡 (CEVs),但從不同品種柑橘類分離出的胞外囊泡之間是否有差異則不明確。因此在本次研究中,我們目標從薑黃與不同品種柳橙中分離出胞外囊泡,並分析其性質和生物活性。藉由切向過濾法成功分離出 TEVs,CEVs 則是利用超高速離心與蔗糖梯度離心法純化得到,後續我們測定粒徑分布與界達電位來了解不同胞外囊泡間的奈米性質差異。分析不同成熟度來源的 TEVs 中發現了小片段RNA,且未成熟 TEVs 薑黃素(Curcumin, CU)含量較高。在細胞實驗中,TEVs 可以抑制大腸癌細胞株的增殖,然而CEVs 則否,同時從成熟薑黃中分離出的 TEVs 在抑制癌細胞生長的效果比未成熟薑黃的效果好。除此之外,成熟來源的 TEVs 在不殺死巨噬細胞的情況下,能夠抑制經 LPS 誘導後的 NO 產生量,但再製成空載體後這些現象就消失。這些結果得出 TEVs 具有抗癌與抗發炎應用的潛力,我們也發現薑黃的成熟差異及內容物在本研究中影響 TEVs 的生物活性。在未來,影響 TEVs 功能的關鍵因素及 CEVs 其他的生物活性需要更深入的研究探討。zh_TW
dc.description.abstractPlant-derived extracellular vesicles (PDEVs) are kind of extracellular vesicles isolated from plants, which present the various bioactivities. Turmeric is the rhizomes of Curcuma longa which is commonly used in cuisine and herbs with various bioactivities, including anti-inflammatory, anticancer, etc. However, there is little research on the turmeric derived extracellular vehicles (TEVs). Citrus fruits are commonly found in the daily diet, and are known to be rich in vitamin C and have antioxidant and anti-inflammatory properties. Citrus derived extracellular vesicles (CEVs) have been successfully isolated, but it is not clear whether there are differences between the extracellular vesicles isolated from different citrus species. Therefore, in this study, we aimed to isolate EVs from turmeric and different varieties of citrus, and analyzed their characteristics and biological functions. The TEVs were successfully isolated by tangential flow filtration (TFF), and the CEVs were purified by ultra-centrifugation and sucrose gradient centrifugation. Particle size distribution and zeta potential were subsequently measured to understand the difference between different extracellular vesicles. Moreover, small-sized RNAs were found in TEVs, and TEVs from different maturity have differences in curcumin content. In cell experiments, TEVs could inhibit proliferation of colorectal cancer cells, but CEVs don’t have same effects. Interestingly, we noted that TEVs isolated from mature turmeric couldn’t suppress the growth of cancer cells. In addition, mature TEVs were able to suppress NO production after LPS induction without killing macrophages, but these phenomena disappeared when TEVs were remanufacture as vectors. These results concluded that the TEVs have the potential ability to apply in anticancer and anti-inflammatory, and we also found that different maturity and contents of TEVs affected the biological activity in this study. In the future, we would elucidate the key factors that contribute to the functions of TEVs, and the other biological functions of CEVs need more investigation.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-06-20T16:07:01Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-06-20T16:07:01Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents目錄

口試委員會審定書 I
謝誌 II
中文摘要 III
Abstract IV
目錄 V
圖目錄 VII
表目錄 IX
縮寫表 X
第壹章、文獻回顧 1
第一節 細胞外囊泡 (Extracellular vesicles) 1
(一) 細胞外囊泡 (Extracellular vesicles) 簡介 1
(二) 外泌體 (Exosome) 2
(三) 微囊泡 (Microvesicles) 4
(四) 凋亡小體 (Apoptotic bodies) 4
第二節 植物來源胞外囊泡 (Plant-derived extracellular vesicles) 6
(一) 植物來源性胞外囊泡之簡介 6
(二) 植物來源性胞外囊泡的分離方法 6
(三) 植物來源性胞外囊泡之生物活性 7
第三節 薑黃 (Turmeric) 10
(一) 簡介 10
(二) 薑黃之生物活性 10
第四節 柑橘類 (Citrus) 11
(一) 柑橘類簡介 11
(二) 柑橘類之生物活性 11
第貳章、研究動機與實驗架構 12
第參章、實驗材料與方法 13
第一節 實驗材料 13
(一) 實驗儀器 13
(二) 樣品與試劑 14
(一) 薑黃胞外囊泡樣品之分離 15
(二) 柳橙果肉胞外囊泡樣品之分離 16
(三) 自薑黃胞外囊泡製備奈米載體 17
(四) Curcuminoids 之萃取與分析 17
(五) 胞外囊泡物理性質測定 18
(六) 細胞培養 19
(七) 細胞存活率試驗 21
(八) 細胞培養液中一氧化氮之測定 22
(九) 蛋白質電泳 23
(十) 蛋白質銀染色法 25
(十一) RNA萃取 26
(十二) RNA電泳 27
第三節 統計分析 28
第肆章、結果與討論 29
第一節、 薑黃來源性胞外囊泡的分離與性質 29
(一) 不同成熟度的薑黃差異 29
(二) 不同成熟度的薑黃來源性胞外囊泡 31
(三) 薑黃來源性胞外囊泡的奈米性質 32
(四) 薑黃胞外囊泡的內容物 36
第二節、 柳橙來源性胞外囊泡的分離與性質 42
(一) 柳橙來源性胞外囊泡的製備與外觀 42
(二) 柳橙來源性胞外囊泡的奈米性質 44
第三節、 植物來源性胞外囊泡的生物活性 47
(一) 薑黃來源性胞外囊泡對大腸癌細胞株存活率之影響 47
(二) 柳橙果肉來源性胞外囊泡對大腸癌細胞株存活率之影響 50
(三) 成熟薑黃來源性胞外囊泡與再製載體對 RAW264.7 巨噬細胞株之影響 52
第伍章、結論 56
參考文獻 57
-
dc.language.isozh_TW-
dc.subject柳橙來源胞外囊泡zh_TW
dc.subject抗發炎zh_TW
dc.subject抑制細胞增生zh_TW
dc.subject薑黃來源胞外囊泡zh_TW
dc.subjectcitrus-derived extracellular vesiclesen
dc.subjectinhibition of cell proliferationen
dc.subjectanti-inflammatoryen
dc.subjectturmeric-derived extracellular vesiclesen
dc.title薑黃與柳橙胞外囊泡特性與其細胞生物活性之研究zh_TW
dc.titleCharacterization of turmeric and citrus-derived extracellular vesicles and investigation of biological activities in cell modelsen
dc.typeThesis-
dc.date.schoolyear111-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee何元順;黃步敏;郭靜娟;王應然zh_TW
dc.contributor.oralexamcommitteeYuan-Soon Ho;Bu-Miin Huang;Ching-Chuan Kuo;Ying-Jan Wangen
dc.subject.keyword薑黃來源胞外囊泡,柳橙來源胞外囊泡,抑制細胞增生,抗發炎,zh_TW
dc.subject.keywordturmeric-derived extracellular vesicles,citrus-derived extracellular vesicles,inhibition of cell proliferation,anti-inflammatory,en
dc.relation.page71-
dc.identifier.doi10.6342/NTU202300038-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2023-02-16-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept食品科技研究所-
dc.date.embargo-lift2028-01-07-
顯示於系所單位:食品科技研究所

文件中的檔案:
檔案 大小格式 
ntu-111-1.pdf
  未授權公開取用
3.14 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved