Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 資訊管理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87146
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林永松zh_TW
dc.contributor.advisorYeong-Sung Linen
dc.contributor.author劉柏辰zh_TW
dc.contributor.authorBo-Chen Liuen
dc.date.accessioned2023-05-11T05:33:08Z-
dc.date.available2023-11-10-
dc.date.copyright2023-05-10-
dc.date.issued2023-
dc.date.submitted2023-01-24-
dc.identifier.citationReferences
[1] D. Estrin, R. Govindan, J. Heidemann, and S. Kumar, “Next century challenges:Scalable coordination in sensor networks,” in Proceedings of the 5th Annual ACM/IEEE International Conference on Mobile Computing and Networking, pp. 263–270,1999.
[2] L. Zhaohua and G. Mingjun, “Survey on network lifetime research for wireless sensor networks,” in 2009 2nd IEEE International Conference on Broadband NetworkMultimedia Technology, pp. 899–902, 2009.
[3] J. Vales-Alonso, E. Egea-López, A. Martínez-Sala, P. Pavón-Mariño, M. Victoria BuenoDelgado, and J. García-Haro, “Performance evaluation of mac transmission power control in wireless sensor networks,” Computer Networks, vol. 51, no. 6,pp. 1483–1498, 2007.
[4] C. Rong, G. Zhao, L. Yan, E. Cayirci, and H. Cheng, “Chapter 10 - wireless network security,” in Network and System Security (Second Edition) (J. R. Vacca, ed.),pp. 291–317, Boston: Syngress, second edition ed., 2014.
[5] I. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wireless sensor networks: A survey,” Computer Networks, vol. 38, no. 4, pp. 393–422, 2002.
[6] V. Mhatre and C. Rosenberg, “Design guidelines for wireless sensor networks: Communication, clustering and aggregation,” Ad Hoc Networks, vol. 2, no. 1, pp. 45–63,2004.
[7] C. Perkins, E. Royer, S. Das, and M. Marina, “Performance comparison of two on-demand routing protocols for ad hoc networks,” IEEE Personal Communications,vol. 8, no. 1, pp. 16–28, 2001.
[8] A. Djedouboum, A. Gueroui, A. Mohamadou, and Z. Aliouat, “Big data collection in large-scale wireless sensor networks,” Sensors, vol. 18, 12 2018.
[9] V. P. Mhatre and C. P. Rosenberg, “Design guidelines for wireless sensor networks: Communication, clustering and aggregation,” Ad Hoc Networks, vol. 2, pp. 45–63,2004.
[10] M. O. Farooq and T. Kunz, “Wireless multimedia sensor networks testbeds and state-of-the-art hardware: A survey,” in Communication and Networking (T.-h. Kim,H. Adeli, W.-c. Fang, T. Vasilakos, A. Stoica, C. Z. Patrikakis, G. Zhao, J. G. Vil-172 lalba, and Y. Xiao, eds.), (Berlin, Heidelberg), pp. 1–14, Springer Berlin Heidelberg,2012.
[11] P. Bellavista, G. Cardone, A. Corradi, and L. Foschini, “Convergence of manet and wsn in iot urban scenarios,” Sensors Journal, IEEE, vol. 13, pp. 3558–3567, 10 2013.
[12] D. Kumar, “Cloud communication and iot for smart devices in real time environment,” International Journal for Research in Applied Science and Engineering Technology, vol. 6, pp. 1593–1597, 03 2018.
[13] G. Huang, “10 emerging technologies that will change your world,” Technology Review, vol. 107, no. 1, pp. 32–+, 2004.
[14] J. Yick, B. Mukherjee, and D. Ghosal, “Wireless sensor network survey,” Computer networks, vol. 52, no. 12, pp. 2292–2330, 2008.
[15] S. P. Khapre, S. Chopra, A. Khan, P. Sharma, and A. Shankar, “Optimized routing method for wireless sensor networks based on improved ant colony algorithm,” in 2020 10th International Conference on Cloud Computing, Data Science Engineering (Confluence), pp. 455–458, 2020.
[16] M. Cardei, M. T. Thai, Y. Li, and W. Wu, “Energy-efficient target coverage in wireless sensor networks,” in Proceedings IEEE 24th Annual Joint Conference of the IEEE Computer and Communications Societies., vol. 3, pp. 1976–1984, IEEE, 2005.
[17] B. Yener, M. Magdon-Ismail, and F. Sivrikaya, “Power optimal connectivity and coverage in wireless sensor networks,” Wireless Networks, vol. 13, pp. 537–550, 08 2007.
[18] J. Carle and D. Simplot-Ryl, “Energy-efficient area monitoring for sensor networks,”Computer, vol. 37, no. 2, pp. 40–46, 2004.
[19] V. Raghunathan, C. Schurgers, S. Park, and M. B. Srivastava, “Energy-aware wireless microsensor networks,” IEEE Signal processing magazine, vol. 19, no. 2,pp. 40–50, 2002.
[20] C.-Y. Chong and S. P. Kumar, “Sensor networks: Evolution, opportunities, and challenges,” Proceedings of the IEEE, vol. 91, no. 8, pp. 1247–1256, 2003.
[21] A. Chamam and S. Pierre, “Energy-efficient state scheduling for maximizing sensor network lifetime under coverage constraint,” in Third IEEE International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob2007), pp. 63–63, 2007.
[22] D. Gao, L. Liang, G. Xu, and S. Zhang, “Power control based on routing protocol in wireless sensor networks,” in 2010 Second International Conference on Future Networks, pp. 53–57, 2010.
[23] A. Akbas, H. Yildiz, B. Tavli, and S. Uludag, “Joint optimization of transmission power level and packet size for wsn lifetime maximization,” IEEE Sensors Journal, vol. 16, pp. 5084–5094, 06 2016.
[24] Z. Cheng, M. Perillo, and W. B. Heinzelman, “General network lifetime and cost models for evaluating sensor network deployment strategies,” IEEE Transactions on mobile computing, vol. 7, no. 4, pp. 484–497, 2008.
[25] M. Ma, Y. Yang, and M. Zhao, “Tour planning for mobile data-gathering mechanisms in wireless sensor networks,” IEEE transactions on vehicular technology, vol. 62, no. 4, pp. 1472–1483, 2012.
[26] L. Xiang, J. Luo, and C. Rosenberg, “Compressed data aggregation: Energy-efficient and high-fidelity data collection,” IEEE/ACM transactions on Networking, vol. 21, no. 6, pp. 1722–1735, 2012.
[27] Y. Zhang, C.-H. Feng, I. Demirkol, and W. B. Heinzelman, “Energy-efficient duty cycle assignment for receiver-based convergecast in wireless sensor networks,” in 2010 IEEE Global Telecommunications Conference GLOBECOM 2010, pp. 1–5, 2010.
[28] B. Blum, T. He, S. Son, and J. Stankovic, “Igf: A state-free robust communication protocol for wireless sensor networks,” University of Virginia Dept. of Computer Science Tech Report, 2003.
[29] H. M. Ammari and S. K. Das, “Centralized and clustered k-coverage protocols for wireless sensor networks,” IEEE Transactions on Computers, vol. 61, no. 1, pp. 118–133, 2012.
[30] S. Lin, F. Miao, J. Zhang, G. Zhou, L. Gu, T. He, J. A. Stankovic, S. Son, and G. J. Pappas, “Atpc: Adaptive transmission power control for wireless sensor networks,” ACM Trans. Sen. Netw., vol. 12, mar 2016.
[31] N. A. Pantazis and D. D. Vergados, “A survey on power control issues in wireless sensor networks,” IEEE Communications Surveys Tutorials, vol. 9, no. 4, pp. 86– 107, 2007.
[32] J. Liu and S. Singh, “Atcp: Tcp for mobile ad hoc networks,” IEEE Journal on Selected Areas in Communications, vol. 19, no. 7, pp. 1300–1315, 2001.
[33] H. U. Yildiz, B. Tavli, and H. Yanikomeroglu, “Transmission power control for link-level handshaking in wireless sensor networks,” IEEE Sensors Journal, vol. 16, no. 2, pp. 561–576, 2016.
[34] Z. Yuanyuan, X. Jia, and H. Yanxiang, “Energy efficient distributed connected dominating sets construction in wireless sensor networks,” in Proceedings of the 2006 International Conference on Wireless Communications and Mobile Computing, IWCMC ’06, (New York, NY, USA), p. 797–802, Association for Computing Machinery, 2006.
[35] V. Rodoplu and T. Meng, “Minimum energy mobile wireless networks,” IEEE Journal on Selected Areas in Communications, vol. 17, no. 8, pp. 1333–1344, 1999.
[36] C. Perkins and E. Royer, “Ad-hoc on-demand distance vector routing,” in Proceedings WMCSA’99. Second IEEE Workshop on Mobile Computing Systems and Applications, pp. 90–100, 1999.
[37] A. Gagarin, S. Hussain, and L. T. Yang, “Distributed search for balanced energy consumption spanning trees in wireless sensor networks,” in 2009 International Conference on Advanced Information Networking and Applications Workshops, pp. 1037–1042, 2009.
[38] O. Yilmaz and K. Erciyes, “Distributed weighted node shortest path routing for wireless sensor networks,” Communications in Computer and Information Science, vol. 84, 01 2010.
[39] R. M. Karp, “On the computational complexity of combinatorial problems,” Networks, vol. 5, no. 1, pp. 45–68, 1975.
[40] J.-H. Chang and L. Tassiulas, “Maximum lifetime routing in wireless sensor networks,” IEEE/ACM Transactions on networking, vol. 12, no. 4, pp. 609–619, 2004.
[41] F. F. Jurado-Lasso, K. Clarke, A. N. Cadavid, and A. Nirmalathas, “Energy-aware routing for software-defined multihop wireless sensor networks,” IEEE Sensors Journal, vol. 21, no. 8, pp. 10174–10182, 2021.
[42] A. M. Geoffrion, Lagrangean relaxation for integer programming, pp. 82–114.Berlin, Heidelberg: Springer Berlin Heidelberg, 1974.
[43] M. L. Fisher, “An applications oriented guide to lagrangian relaxation,” Interfaces, vol. 15, no. 2, pp. 10–21, 1985.
[44] P. (Slade), Wang, P. (Taylor), Li, F. R. Chowdhury, L. Zhang, and X. Zhou, “A mixed integer programming formulation and scalable solution algorithms for traffic control coordination across multiple intersections based on vehicle space-time trajectories,” Transportation Research Part B: Methodological, vol. 134, no. C, pp. 266–304, 2020.
[45] M. Held, P. Wolfe, and H. Crowder, Validation of Subgradient Optimization. IBM Thomas J. Watson Research Division, 1973.
[46] K. Helbig Hansen and J. Krarup, “Improvements of the held–karp algorithm for the symmetric traveling-salesman problem,” Math. Program., vol. 7, p. 87–96, dec 1974.
[47] H. Yildiz, S. Kurt, and B. Tavli, “The impact of near-ground path loss modeling on wireless sensor network lifetime,” 10 2014.
[48] J. Vales-Alonso, E. Egea-López, A. Martínez-Sala, P. Pavón-Mariño, M. Victoria Bueno Delgado, and J. García-Haro, “Performance evaluation of mac transmission power control in wireless sensor networks,” Comput. Netw., vol. 51, p. 1483–1498,apr 2007.
[49] A. Nandi and S. Kundu, “Optimal transmit power and packet size in wireless sensor networks in lognormal shadowed environment,” International Journal of Sensor Networks, vol. 11, pp. 81–89, 03 2012.
[50] A. Martinez-Sala, J.-M. Molina-Garcia-Pardo, E. Egea-Ldpez, J. Vales-Alonso, L. Juan-Llacer, and J. Garcia-Haro, “An accurate radio channel model for wireless sensor networks simulation,” Journal of Communications and Networks, vol. 7, no. 4, pp. 401–407, 2005.
[51] M. Zuniga and B. Krishnamachari, “Analyzing the transitional region in low power wireless links,” in 2004 First Annual IEEE Communications Society Conference on Sensor and Ad Hoc Communications and Networks, 2004. IEEE SECON 2004., pp. 517–526, 2004.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87146-
dc.description.abstract近年來,無線感測網路因為其成本低,耗電量低,體積小和容易布置等等特性,被大量的運用在各領域中。但其缺點也顯而易見。因為每個感測器中是以無線的方式傳送資料,因此電源的來源通常來自感測器內的電池。感測網路中能源的節省和功率控制便成為一個極其重要的議題。
在此論文中我們將此無線網路最小化之問題構建為數學模型,並且此問題受延遲和產出之限制。在模型中我們需要決定感測器活躍的機率,傳送之距離和傳送之封包大小並藉以最小化能耗。此些決策變數中存在著不同的平衡,我們也藉由後續的實驗找出他們之間不同的關係。
此論文於運用拉格朗日鬆弛法,將其分解成子問題一一解出並最終產出緊貼於上界之下界數值。在實驗中我們也找出不同拉格朗日係數的使用方法,並期望能達到能源消耗的最小化,並同時也能維持網路的連接和資料之輸出。
zh_TW
dc.description.abstractIn recent years, Wireless Sensor Networks(WSNs) have been widely used in various fields because of their low cost, low power consumption, small size and easy deployment. But its shortcomings are also obvious. Because each sensor transmits data wirelessly, the source of power usually comes from the battery inside the sensor. Energy conservation and power control in sensing networks becomes an extremely important issue.
In this paper we model this wireless network minimization problem as a mathematical model, and the problem subjected to delay and throughput constraints. In the model we need to determine the probability of the sensor being active, the distance to transmit and the size of the transmitted packet to minimize energy consumption. There are different trade offs among these decision variables, and we also find different relationships between them through follow-up experiments.
This paper uses the Lagrangian relaxation method and decompose it into sub-problems and solve them one by one, and find a lower bound that is tight with the upper bound value. In the experiment, we also find out different use of the Lagrangian multipliers, and hope to achieve the minimization of energy consumption, and at the same time to maintain the network connection and data output.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-05-11T05:33:08Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-05-11T05:33:08Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents摘要 i
Abstract ii
Contents iv
List of Figures ix
List of Tables x
Chapter 1 Introduction 1
1.1 Background Overview . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.1 Characteristics of WSN . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.2 Architecture of WSN . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Chapter 2 Literature Review 7
2.1 Duty Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Control of Transmission Power . . . . . . . . . . . . . . . . . . . . 9
2.3 Topology Control and Routing . . . . . . . . . . . . . . . . . . . . . 10
Chapter 3 Problem Formulation 13
3.1 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Model 1 : One-to-One Relationship . . . . . . . . . . . . . . . . . . 14
3.3 Model 2 : Many-to-One Relationship . . . . . . . . . . . . . . . . . 20
3.4 Model 3 : Network Tree Structure Relationship . . . . . . . . . . . . 27
Chapter 4 Solution Approach 38
4.1 Lagrangian Relaxation Method . . . . . . . . . . . . . . . . . . . . . 38
4.2 Model 1 : One-to-One Relationship . . . . . . . . . . . . . . . . . . 41
4.2.1 Deal with Decision Variables . . . . . . . . . . . . . . . . . . . . . 41
4.2.2 The LR Subproblems . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.2.2.1 Subproblem 1(related to decision variable xi) . . . . . 48
4.2.2.2 Subproblem 2(related to decision variable xj ) . . . . . 50
4.2.2.3 Subproblem 3(related to decision variable yi) . . . . . . 52
4.2.2.4 Subproblem 4(related to decision variable yj ) . . . . . 54
4.2.2.5 Subproblem 5(related to decision variable qi) . . . . . . 57
4.2.2.6 Subproblem 6(related to decision variable qj ) . . . . . 59
4.2.2.7 Subproblem 7(related to decision variable ri) . . . . . . 61
4.2.2.8 Subproblem 8(related to decision variable rj ) . . . . . 63
4.2.2.9 Subproblem 9(related to decision variable Zij ) . . . . . 66
4.2.2.10 Subproblem 10(related to decision variable βij ) . . . . 67
4.3 Model 2 : Many-to-One Relationship . . . . . . . . . . . . . . . . . 70
4.3.1 Deal with Decision Variables . . . . . . . . . . . . . . . . . . . . . 70
4.3.2 The LR Subproblems . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.3.2.1 Subproblem 1(related to decision variable xi) . . . . . 77
4.3.2.2 Subproblem 2(related to decision variable xκ) . . . . . 79
4.3.2.3 Subproblem 3(related to decision variable yi) . . . . . . 81
4.3.2.4 Subproblem 4(related to decision variable yκ) . . . . . 83
4.3.2.5 Subproblem 5(related to decision variable qi) . . . . . . 85
4.3.2.6 Subproblem 6(related to decision variable qκ) . . . . . 87
4.3.2.7 Subproblem 7(related to decision variable ri) . . . . . . 89
4.3.2.8 Subproblem 8(related to decision variable rκ) . . . . . 91
4.3.2.9 Subproblem 9(related to decision variable Ziκ) . . . . . 94
4.3.2.10 Subproblem 10(related to decision variable βiκ) . . . . 95
4.3.2.11 Subproblem 11(related to decision variable Ii) . . . . . 97
4.4 Model 3 : Network Tree Structure Relationship . . . . . . . . . . . . 99
4.4.1 Deal with Decision Variables . . . . . . . . . . . . . . . . . . . . . 99
4.4.2 The LR Subproblems . . . . . . . . . . . . . . . . . . . . . . . . . 108
4.4.2.1 Subproblem 1(related to decision variable xθi ) . . . . . 108
4.4.2.2 Subproblem 2(related to decision variable xκi ) . . . . . 110
4.4.2.3 Subproblem 3(related to decision variable xξ ) . . . . . 112
4.4.2.4 Subproblem 4(related to decision variable yθi ) . . . . . 113
4.4.2.5 Subproblem 5(related to decision variable yκi ) . . . . . 114
4.4.2.6 Subproblem 6(related to decision variable yξ ) . . . . . 116
4.4.2.7 Subproblem 7(related to decision variable qθi ) . . . . . 117
4.4.2.8 Subproblem 8(related to decision variable qκRi ) . . . . 119
4.4.2.9 Subproblem 9(related to decision variable qξ ) . . . . . 121
4.4.2.10 Subproblem 10(related to decision variable rθi ) . . . . 122
4.4.2.11 Subproblem 11(related to decision variable rκi ) . . . . 123
4.4.2.12 Subproblem 12(related to decision variable rξ ) . . . . . 125
4.4.2.13 Subproblem 13(related to decision variable Zθi,κi ) . . . 126
4.4.2.14 Subproblem 14(related to decision variable Zκi,ξ ) . . . 128
4.4.2.15 Subproblem 15(related to decision variable βθi,κi ) . . . 129
4.4.2.16 Subproblem 16(related to decision variable βκi,ξ ) . . . 132
4.4.2.17 Subproblem 17(related to decision variable Iθi ) . . . . 133
4.4.2.18 Subproblem 18(related to decision variable IκRi ) . . . . 134
4.4.2.19 Subproblem 19(related to decision variable Dθi,ξ ) . . . 136
4.4.2.20 Subproblem 20(related to decision variable qκSi ) . . . . 138
4.4.2.21 Subproblem 21(related to decision variable IκSi ) . . . . 139
4.5 Lagrangian Dual Problem and The Subgradient Method . . . . . . . 140
4.6 Getting Primal Feasible Solution . . . . . . . . . . . . . . . . . . . . 145
4.6.1 Model 1(One-to-one relationship) . . . . . . . . . . . . . . . . . . 145
4.6.2 Model 2(Many-to-one relationship) . . . . . . . . . . . . . . . . . . 146
4.6.3 Model 3(Network Tree Structure) . . . . . . . . . . . . . . . . . . . 147
Chapter 5 Experimental Results and Discussion 150
5.1 Experimental Environment . . . . . . . . . . . . . . . . . . . . . . . 150
5.2 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . 152
5.2.1 The Design of Probability and Energy Consumption Functions . . . 152
5.2.2 Experiment 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
5.2.3 Experiment 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
5.2.4 Experiment 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
5.2.5 Experiment 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
5.2.6 Experiment 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
5.2.7 Experiment 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
Chapter 6 Conclusions and Future Work 169
6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
References 171
-
dc.language.isoen-
dc.subject最佳化zh_TW
dc.subject功率控制zh_TW
dc.subject能耗節省zh_TW
dc.subject綠能科技zh_TW
dc.subject無線感測網路zh_TW
dc.subject拉格朗日鬆弛法zh_TW
dc.subjectOptimizationen
dc.subjectPower Controlen
dc.subjectEnergy-Savingen
dc.subjectGreen Information Technologyen
dc.subjectWireless Sensor Networken
dc.subjectLagrangian Relaxationen
dc.title運用最佳化技術於綠能無線感測網路能耗控制機制zh_TW
dc.titleAn Optimization-based Power Control Mechanism for Saving Energy in Green Wireless Sensor Networksen
dc.typeThesis-
dc.date.schoolyear111-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee鍾順平;孔令傑;李家岩;呂俊賢zh_TW
dc.contributor.oralexamcommitteeShun-Ping Chung;Ling-Chieh Kung;Chia-Yen Lee;Chun-Hsien Luen
dc.subject.keyword功率控制,能耗節省,綠能科技,無線感測網路,拉格朗日鬆弛法,最佳化,zh_TW
dc.subject.keywordPower Control,Energy-Saving,Green Information Technology,Wireless Sensor Network,Lagrangian Relaxation,Optimization,en
dc.relation.page179-
dc.identifier.doi10.6342/NTU202210101-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2023-02-01-
dc.contributor.author-college管理學院-
dc.contributor.author-dept資訊管理學系-
顯示於系所單位:資訊管理學系

文件中的檔案:
檔案 大小格式 
ntu-111-1.pdf1.42 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved