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摘要

近年來，無線感測網路因為其成本低，耗電量低，體積小和容易布置等等特

性，被大量的運用在各領域中。但其缺點也顯而易見。因為每個感測器中是以無

線的方式傳送資料，因此電源的來源通常來自感測器內的電池。感測網路中能源

的節省和功率控制便成為一個極其重要的議題。

在此論文中我們將此無線網路最小化之問題構建為數學模型，並且此問題受

延遲和產出之限制。在模型中我們需要決定感測器活躍的機率，傳送之距離和傳

送之封包大小並藉以最小化能耗。此些決策變數中存在著不同的平衡，我們也藉

由後續的實驗找出他們之間不同的關係。

此論文於運用拉格朗日鬆弛法，將其分解成子問題一一解出並最終產出緊貼

於上界之下界數值。在實驗中我們也找出不同拉格朗日係數的使用方法，並期望

能達到能源消耗的最小化，並同時也能維持網路的連接和資料之輸出。

關鍵字：功率控制，能耗節省，綠能科技，無線感測網路，拉格朗日鬆弛法，最

佳化
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Abstract

In recent years, Wireless Sensor Networks(WSNs) have been widely used in various

fields because of their low cost, low power consumption, small size and easy deployment.

But its shortcomings are also obvious. Because each sensor transmits data wirelessly, the

source of power usually comes from the battery inside the sensor. Energy conservation

and power control in sensing networks becomes an extremely important issue.

In this paper wemodel this wireless networkminimization problem as amathematical

model, and the problem subjected to delay and throughput constraints. In the model we

need to determine the probability of the sensor being active, the distance to transmit and the

size of the transmitted packet to minimize energy consumption. There are different trade

offs among these decision variables, and we also find different relationships between them

through follow-up experiments.

This paper uses the Lagrangian relaxationmethod and decompose it into sub-problems

and solve them one by one, and find a lower bound that is tight with the upper bound value.

In the experiment, we also find out different use of the Lagrangian multipliers, and hope

to achieve the minimization of energy consumption, and at the same time to maintain the

network connection and data output.
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Chapter 1 Introduction

1.1 Background Overview

1.1.1 Characteristics of WSN

Wireless sensor network (WSN) consists of a large number of sensing nodes which

are responsible for monitoring or performing certain measurements, such as temperature,

humidity, vehicular movement, noise levels, pressure, soil makeup [1],etc.

Nodes in sensor networks are also mostly battery powered [2]. Because of this char-

acteristic, designing the networks with high energy efficiency becomes crucial in order to

maximize their lifetime [3]. Properties such as decentralized control, broadcast and chan-

nel to transmit , among others are derived from ad-hoc networks. However, WSN are still

different from traditional ad-hoc networks.

The way that ad-hoc networks communicates is any-to any because the nodes in ad-

hoc network are in general less energy constrained [4]. On the other hand,the paradigm

1
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of many-to-one communication is more common in sensor networks [5]. This is because

the collected data will be sent to the nearest base station for aggregating the resulting data

to a higher class for processing [6], which later forms different kinds of topology and will

be changed frequently [7].

1.1.2 Architecture of WSN

Figure 1.1 demonstrates the general architecture of a WSN. It can be observed from

the diagram that sensor nodes are randomly deployed which formed a coverage area. We

suppose that sensor nodes are all capable of collecting and sensing information in their

area of interest. Each nodes are also able to communicate with higher class nodes for

transmitting the collected data through network interfaces. Higher class nodes will be de-

termined from the range with the sink/base station, which are used to gather data from

lower class nodes. A sink/base station is a node that acts as a bond between the user’s

internet and the WSN. Network data are often processed by the sink/base station in prepa-

ration for sending only relevant data to the user. Requests to other nodes can also be sent

by the user via the sink/base station [8].

2

http://dx.doi.org/10.6342/NTU202210101


doi:10.6342/NTU202210101

Figure 1.1: Architecture of WSN

It is noticed that high level nodes closer to the base station or the sink are more easily

to exhaust their battery energy than other lower level nodes since they are in charge of

aggregating data [9]. Hence,sensor nodes should optimize several decisions ,including

the amount of data flow, transmission power level and the activeness of the sensor on

each link in order to avoid the over-utilization of energy in batteries [10].

1.2 Motivation

WSN plays an important role in the development for a wide range of application in

Internet of Things(IoT) [11]. It is also considered one of the emerging technologies that

will change the world [12], [13]. However, due to environmental constraints and other

factors that increases costs, changing the batteries of the sensor seems to be difficult. For

instance, it is not cost-effective and even impossible to replace the batteries of the nodes in

3
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aWSN deployed underneath the ocean for observant purpose. Hence, energy efficiency is

one of the most crucial criteria while designingWSN [14] and has not stop being discussed

even in recent years [15]. In this research, we intend to propose a model to optimize the

energy efficiency of a WSN.

1.3 Objectives

Lifetime maximization of WSN has been addressed by substantial research works

[16], [17], [18], [19]. Energy conservation strategies are generally divided into several

types [20], [21]:

• Type 1 : Scheduling strategy on alternating states of nodes between sleep and active

modes.

• Type 2 : Power control aiming to optimize tradeoff between energy consumption

and connectivity.

• Type 3 : Best routes,cluster and aggregation for sensor nodes.

• Type 4 : Reduction or compression of transmitted data .

• Type 5 : Efficiency of retransmission and acknowledgements protocols on data link

layer.

4
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Most studies concern their power control mechanism on a certain type. It is shown

that [22] focuses their study on type 2, and [21] on the other hand extend their research on

type 1. [23] took both transmission power and packet size into consideration. When the

packet size is reduced, the overall impact of bit error rates on packet loss will also drop.

However, a smaller packet size will result in more packet transmission due to the fixed

header protocol. On the other hand, by increasing the transmission power of sensor nodes,

packet loss probability will decrease, but high transmission power will also result in high

energy dissipation. The tradoff between packet size and transmission power are discussed

specifically in [23]. Several researches also simplify assumptions such as assuming perfect

feedback channel and lossless channel [24], [25], [26]. However, in practical, it is known

that WSNs are subjected to packet errors so as acknowledgements sent by receivers.

1.3.1 Methods

In this research, we tend to include the studies on type 1 and 2. Therefore, in order

to address the issues of the states between nodes, the tradeoff between energy consump-

tion and connectivity will be discuss in our model. The efficiency of retransmission and

acknowledgements protocols on data link layer will also be considered. A mathemati-

cal formulation taking both packet size and transmission power into account as well as

different solution approaches will be introduced in the following chapters.
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In the first part of our proposed model, we focus on formulating the relationship

between two sensor nodes, which forms an one-to-one link. In the second part, an many-

to-one relationship is considered, which will later form a star topology and an aggregate

point for gathering data from the lower class. At last, a tree structure will be discussed in

order to form a complete WSN.

1.4 Thesis Organization

This thesis is organized as follows. In Chapter 2, related works regarding this prob-

lem will be provided. A formal formulation of the problem, including text description as

well as in mathematical form, will be described in Chapter 3. Chapter 4 will provide the

solution approach for the problem stated in Chapter 3. Experimental results and discussion

on the previously proposed methods will be shown in Chapter 5 . Finally, a conclusion

will be drawn in Chapter 6.
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Chapter 2 Literature Review

Mechanisms to reduce energy consumption in wireless sensor network has been stud-

ied extensively. By determining the states of nodes through its active and sleeping periods

brightly can help us avoid needless waste of energy. Power control techniques that seek to

optimal the tradeoff of energy consumption and connectivity are also crucial. Last but not

least, finding the best routes, cluster and aggregation points when designing networks will

also prevent energy waste. In this section, studies and technology related to these research

will be presented.

2.1 Duty Cycle

Duty cycle is one of the most effective operation in terms of increasing the energy ef-

ficiency of the sensor network. It managed the energy resource of the nodes by constantly

switching the states of the sensor nodes. There are different operation states of a node,

such as idle,sleep,listen and transmit. Distance-based Duty Cycle Assignment (DDCA)
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and Traffic-Adaptive Distance-based Duty Cycle Assignment (TDDCA) are proposed in

[27]. Here it assumes that nodes closer to sink must transmit a larger size of packet than

those further from the sink. Hence , DDCA is used as a function to determine the duty

cycle with the distances of the nodes to the sink. Additionally, TDDCA is responsible for

adapting duty cycle later on according to the current traffic patterns observed by the nodes.

According to receiver-based protocols [28], the traffic of the network can be indicated by

the number of retransmitted RTS packets. If the retransmission of RTS increases dramat-

ically and eventually outnumbers the original RTS packet, it means that there might be

traffic congestion. TDDCA will then tune the duty cycle to mitigate congestion.

Coverage requirements are also related to the node duty cycle. Not only should we

minimize the consumption of energy, but the sensor nodes should also be able to cover

the targets that is monitored. Moreover,a disjoint set of nodes should be formed to cover

the monitored area in order to maximize the network’s lifetime. However,connectivity of

the network should also be considered. [29] focus on solving k-coverage problem while

ensuring the connectivity between all active nodes. K-coverage means that every location

is covered by at least k sensors in a sensor network. By solving this, [29] decomposes the

problem into field slicing and sensor selection. Field slicing first split the sensing region

into little pieces of a particular shape(Reuleaux Triangles), then sensor selection selects

as small subset of sensors as possible to cover it.

8
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2.2 Control of Transmission Power

The control of transmission power aims to adjust the node’s transmission power at

appropriate levels due to factors such as the range between transmitter and receiver or the

current state of traffic. Researches about this topic has been conducted in [30], [31].It is

shown that [31] classifies different approaches of power control the protocol layers em-

ployed: MAC, Network and Transport layer. A MAC layer approach aims to decrease

the chance of collision,in order to minimize the energy consumption used in transmission.

Network layer approach employed two basic scenes: Power-Aware Routing and Maxi-

mum Lifetime Routing. Both of the approach concentrates on network routing rather than

control in transmission power, which we will discuss in the next section.Transport layer

Protocol (TCP) is responsible for congestion control and retransmission in a network,so

approaches employed in transport layer can alter the retransmission behavior in order to

achieve lower energy consumption [32]. Power control in transmission problem are also

referred to as the Range Assignment(RA) or Strong Minimum Energy Topology(SMET),

which discusses the tradeoffs of throughput,traffic and reliability.

In [30], an Adaptive Transmission Power Control(ATPC) model was proposed. In

ATPC, a model built in each nodes will adjust their power according to the link quality.

This model employs a feedback-based transmission power control algorithm to maintain

9
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link quality dynamically. ATPC relies on pairwise adjustment to achieve energy saving

and furthermore shows the superiority of link level compared to the node level and network

level in terms of energy efficiency [33].It is shown that [33] built a mathematical model to

investigate the impact of transmission power control to network lifetime. Higher transmis-

sion power will sure decrease the probability of handshake failure, but it may not lead to

maximizing the network’s lifetime since some links selection of maximummight increase

energy consumption. Lossless feedback channel are also investigated in [33]. [22] pro-

posed a hybrid model by considering both transmission power and the node’s address. The

transmission power will be optimized according to the distance between neighbor nodes

and through searching the table with the address of nodes for the next hop. Therefore,

transmission can be adjust with the information of the mapping table.

2.3 Topology Control and Routing

A decent node deployment in topology control can lead to reducing network traffic,

avoid packet collision , improving network throughput and save energy. The main part

of node deployment is to find a subset of nodes that is strongly connected to become the

backbone of the network. The rest of the nodes can be connected to the backbone. This

backbone topology not only guarantees the connectivity of the network but also allows

non-backbone nodes to be turned off to save energy. This kind of problem is oftenmodeled

10

http://dx.doi.org/10.6342/NTU202210101


doi:10.6342/NTU202210101

as Connected Dominating Set (CDS) mathematical problem. A CDS-based algorithm

is presented by [34] to construct the network with prolonging the network lifetime and

balancing energy consumption. But when it comes to fault tolerance, CDS problems won’t

be enough because it only preserves 1-connectivity. Therefore, kmCDS problem where

k-connectivity and m dominating sets are brought to consideration.

Routing, also known as the data transmission problem, is broadly studied in WSN. It

can be roughly divided into the group related to Shortest Path Tree (SPT) and Minimum

Spanning Tree (MST) based models and those centered around flow problems. SPT and

MST algorithms help us find the paths that consumes the minimum energy consumption to

achieve energy efficiency [35], [36]. Dijkstra’s or Bellman Ford algorithms are often used

in these models. Different situation of the nodes are took into consideration by [37] such as

some nodes may deplete energy faster than others. However, SPT may lead to unbalance

load between sensors since the model tends to choose certain routes, so residual energy,

buffer size or other factors are later took into account in [38]. Routing problems aim to

minimize total energy consumption or maximizing networks lifetime are also formulate

as Multi-Commodity Flow Problems. Commodity is a source-destination pair, and it is

shown in [39]that the multi-commodity flow problem is NP-hard. [40] formulates the

Multi-commodity flow problem into Integer Linear Programming and represents the flow

by the number of packets and the transmission energy. [41] proposed an energy-aware
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routing algorithm to prolong the network life time of wireless sensor network.

12

http://dx.doi.org/10.6342/NTU202210101


doi:10.6342/NTU202210101

Chapter 3 Problem Formulation

In this chapter, the optimization problem of power control mechanism for saving

energy in wireless sensor networks will be thoroughly described. The constraints as well

as the associated assumptions will also be covered. A mathematical formulation will be

presented at the end of this chapter.

3.1 Problem Description

The aim of this research is to minimize the energy consumption of the WSN while

considering the connectivity and throughput. We proposed three models as a slotted time

systemwhich discusses the optimal problem based on three perspective of the nodes: One-

to-One Relationship, Many-to-One Relationship and the whole Network Tree Structure

Relationship. In a slotted time system, collision will occur if more than 2 node pairs are

competing for a same slot. The bandwidth of each time slot is considered fixed. We will

discuss these three models sequentially. An overview of each model will be present in the
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following section.

3.2 Model 1 : One-to-One Relationship

In this section, the mathematical form is given for the problem of One-to-One Rela-

tionship model where we take node i and node j into consideration.

The given parameters as well as their descriptions are shown in Table 3.1:

Table 3.1: Given Parameters

Notation Description

S The index set of sensors, which is {1, 2, 3, . . . , s}

L The index set of all possible links, which is {1, 2, 3, . . . , l}

Tij The allowable delay from i ∈ S to j ∈ S (end to end)

λij Data rate between i ∈ S and j ∈ S

dij The distance between i ∈ S and j ∈ S

Ri Set of possible range for i ∈ S

τi Timeout interval for i ∈ S (a given ♯ of time slots)

tij The transmission time from i ∈ S to j ∈ S , e.g. slot time = 1

gij The aggregate flow on link (i ∈ S,j ∈ S)∈ L(
λij

qiqjPij
)

fij Retransmission
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The decision variables and their descriptions are are shown in Table 3.2:

Table 3.2: Decision Variables

Notation Description

rs Transmission range of s ∈ S,rs ∈ Rs

M The index set of all possible packet size , which is {1, 2, 3, . . . , m}

qi The probability that i ∈ S is active in a time slot

Pij(ri,m) The probability of i ∈ S to transmit packet withm ∈M size to j ∈ S
when no error occurs with transmission range radius of ri ∈ Ri

Also the function of j, which is the basic inherent channel quality
between i and j

Ca
i (ri,m) The average power consumption rate when i ∈ S is active with

transmission range ri in 1 time slot(influenced by m)

Cb
i (ri,m) The average power consumption rate when i ∈ S is inactive with

transmission range ri in 1 time slot(influenced by m)

Cτ
i (ri,m) The average power consumption rate for i ∈ S to transmit am ∈M

size packet(in 1 time slot) with transmission range ri ∈ Ri

Also the functions Ca
i (ri,m),Cb

i (ri,m) and Cτ
i (ri,m) are given, the

parameters of the function are to be determined, so the value of the
function itself is a decision variable

The objective function is expressed as formula (3.1):

min
∑
i∈S

∑
j∈S

[
Ca

i (ri,m)qi + Ca
j (rj,m)qj + Cb

i (ri,m)(1− qi) + Cb
j (rj,m)(1− qj) + Cτ

i (ri,m)qi
]

m

(3.1)

The objective function aims to minimize the energy consumption in a time slot by

controlling qi and qj , which is the probability that node i and node j is active in a time slot.

In Ca
i (ri,m) we consider the transmission range of node i to decide the power con-

sumption when the node is active and in Cb
j (ri,m) we consider the transmission range of

node i to decide the power consumptionwhen the node is inactive. When transmitting data,
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we consider the transmission range to determine the power consumption ofCτ
i (ri,m). We

also consider the packet size level that node i is transmitting because it would influence

the size of the time slot. Therefore, the bigger the packet size, the longer the time slot

will be needed to transmit a packet. The probability of transmitting a packet without error

will also decrease when m increases, and we assume each packet has a fixed size header,

therefore the larger the packet size is, the larger the throughput is. We take all the above

mentioned factors into consideration to find the trade off of the packet size and the power

consumption in a single byte. So the objective function will be divided by m to normalize

by the length of time slot.

The packet size is categorized into different level where high packet size level indi-

cates larger packet size. At a same encapsulation mechanism, packets share the same over-

head. So a larger packet size indicates a larger payload size, whichmeansmore data will be

transmitted. On the other hand, with a fixed bit error rate, the larger of the packet size level,

the larger of the power consumption Cτ
i (ri,m). As for the success probability(Pij(ri,m))

of node i to transmit packet size level m to node j with transmission range radius ri , the

larger of the packet size level, the smaller of Pij(ri,m). Hence there appears an interest-

ing tradeoff, which is when in a noiseless channel, larger packet size may lead to larger

throughput. But in a noisy channel, larger packet size may cause lower probability to

success.
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Figure 3.1 shows the relationship between node i and node j, with the success and er-

ror rate to transmit a packet of qiqjPij(ri,m) and 1−qiqjPij(ri,m) respectively. λij+fijis

the aggregate flow on link i, j. Each transmission is considered as a bernoulli trial as result

of the same probability to successfully transmit. We assume that we have to transmit k

times to success, each failure transmission will cost us a timeout interval of τi. Hence,

the transmission time is a random variable governed by a geometric distribution. The ex-

pected value for the number of transmission to get the first success is a fraction of the

probability to successfully transmit, which is 1
qiqjPij(ri,m)

. The probability Pij(ri,m) con-

siders when both data and acknowledgement success. If the acknowledgement is received

by the transmitter before a timeout interval τi, then it is considered a successful transmis-

sion.

Figure 3.1: One-to-One Relationship

If the packet successfully transmit to node j, data rate of λij will be transferred and

formula (3.2) will be derived as follow:

λij = (λij + fij)(qiqjPij(ri,m)) ∀i ∈ S, j ∈ S,m ∈M (3.2)

When the transmission failed, a retransmission will begin and fij can be derived as follow
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formula (3.3):

fij = (λij + fij)(1− qiqjPij(ri,m)) ∀i ∈ S, j ∈ S,m ∈M (3.3)

The value of fij can also be derived from formula (3.2) as formula (3.4):

fij =
λij(1− qiqjPij(ri,m))

qiqjPij(ri,m)
∀i ∈ S, j ∈ S,m ∈M (3.4)

The objective function is subject to the following constraints.

There are several ways to recover from error transmission which occurs retransmis-

sion delay. The first one we introduce is error detection. We assume that a successful

transmission includes the acknowledgement send from the receiver which shows that the

transmission is without error, otherwise the receiver will send a negative acknowledge-

ment. The second one is when the sender did not receive acknowledgement, there will be

a timeout interval denoted as τi to keep the sender from infinite waiting for the acknowl-

edgement.

Constraint (3.5) ensures that the time spent for a single successful transmission will

be smaller than the allowable delay from node i to node j. We assume that queuing delay

is ignored, the delay over link (i,j) is the time spent for a single successful transmission,

which is the number of transmission before getting the first success ( 1
qiqjPij(ri,m)

− 1)

times the timeout interval τi emerged for each failed transmission plus one slot time for

the success transmission. It is expressed as

τi

[
1

qiqjPij(ri,m)
− 1

]
+ 1 ≤ Tij ∀i ∈ S, j ∈ S,m ∈M (3.5)
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τi is the smaller the better in a single slot. However there are other delays so we have

to precisely set up τi.

Constraint (3.6), (3.7) and (3.8) ensures that the value of qi , qj andPij(ri,m) fall

within a small number ϵ and 1. Since qi, qj and Pij(ri,m) denotes the probability that

node i is active in a time slot, the probability that node j is active in a time slot and the

probability of node i to transmit packet to node j without error with transmission range

radius of ri, respectively, it is required that qi , qj and Pij(ri,m) fall in between a small

number ϵ and 1. The constraints are expressed as :

ϵ ≤ qi ≤ 1 ∀i ∈ S (3.6)

ϵ ≤ qj ≤ 1 ∀j ∈ S (3.7)

ϵ ≤ Pij(ri,m) ≤ 1 ∀i ∈ S, j ∈ S (3.8)

Constraint (3.9) and (3.10) are expressed as

ri ∈ Ri ∀i ∈ S (3.9)

rj ∈ Rj ∀j ∈ S (3.10)
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3.3 Model 2 : Many-to-One Relationship

The given parameters as well as their descriptions are shown in Table 3.3:

Table 3.3: Given Parameters

Notation Description

S The index set of sensor nodes, which is {1, 2, 3, . . . , s}

L The index set of all possible links, which is {1, 2, 3, . . . , l}

κ The relay node , responsible for aggregating data sent from the lower
level layer sensor nodes

Tiκ The allowable end to end delay from i ∈ S to relay node κ

n The amount of nodes in the lower layer of Many-to-one structure

diκ The distance between i ∈ S and relay node κ

Ri Set of possible range for i ∈ S

Rκ Set of possible range for relay node κ

τi Timeout interval for i ∈ S (a given ♯ of time slots)

tiκ The transmission time from i ∈ S to relay node κ , e.g. 1 slot time

giκ The aggregate flow on link (i ∈ S,relay node κ)∈ L( 1
qiqκPiκ

)

t The least expected time slots for the network to work

Pi The initial power storage for sensor node i ∈ S

Pκ The initial power storage for relay node κ
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The decision variables and their descriptions are are shown in Table 3.4:

Table 3.4: Decision Variables

Notation Description

rs Transmission range of s ∈ S,rs ∈ Rs

rκ Transmission range of relay node κ, rκ ∈ Rκ

M The index set of all possible packet size , which is {1, 2, 3, . . . , m}

qi The probability that i ∈ S is active in a time slot

qκ The probability that relay node κ is active in a time slot

Piκ(ri,m) The probability of i ∈ S to transmit packet withm ∈M size to relay
node κ when no error occurs with transmission range radius of ri ∈ Ri

Ca
i (ri,m) The average power consumption rate when i ∈ S is active with

transmission range ri ∈ Ri in 1 time slot(influenced by m)

Cb
i (ri,m) The average power consumption rate when i ∈ S is inactive with

transmission range ri ∈ Ri in 1 time slot(influenced by m)

Ca
κ(rκ,m) The average power consumption rate when relay node κ is active with

transmission range rκ ∈ Rκ in 1 time slot(influenced by m)

Cb
κ(rκ,m) The average power consumption rate when relay node κ is inactive

with transmission range rκ ∈ Rκ in 1 time slot(influenced by m)

Cτ
i (ri,m) The average power consumption rate for i ∈ S to transmit am ∈M

size packet(in 1 time slot) with transmission range ri ∈ Ri

Also the functions Ca
i (ri,m), Cb

i (ri,m), Ca
κ(rκ,m), Cb

κ(rκ,m) and
Cτ

i (ri,m) are given, the parameters of the function are to be
determined, so the value of the function itself is a decision variable

TheMany-to-One Relationship model is an extension from the One-to-One Relation-

ship model. As shown in Figure 3.2, we assume that there are n nodes waiting to transmit

data to relay node κ and they share the same interface to transmit. N nodes indicates that

each node’s probability to transmit will not exceed 1
n
, which constrained to the maximum

throughput. Moreover, the probability to transmit of each nodes might be less than 1
n
in

order to save energy. Relay node κ is the aggregate node that is responsible for gathering
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data from the lower level nodes, and so theoretically relay node κ will have a higher prob-

ability to be active, which is a higher qκ. Therefore, we can consider this Many-to-One

Relationship model as a tree structure.

Figure 3.2: Many-to-One Relationship

In this tree structure, we first take only node i and node j into consideration. We

assume that node i and node j is in need to transmit data to relay node κ , so node i and

node j is competing for relay node κ . We can assume that node i and node j obtains

different average delay upper limit due to the importance of the data. The probability for i

to successfully transmit to k is when node i and relay node κ is active, but node j is inactive

in order to avoid collision. And we assume that lower level sensor nodes will always have

data to transmit to relay node κ. The formula indicating the possibility of sensor node i to

successfully transmit to relay node κ is shown below as formula (3.11).

qi(1− qj)qκPiκ(ri,m) ∀i ∈ S, j ∈ S,m ∈M (3.11)
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When all the nodes finish transferring their data to relay node κ , then it is consider

that relay node κ has finish gathering all the data. In this scenario that we only consider

node i and node j, the time that relay node κ will take to finish aggregating all the data

is the largest value between the time node i transmits and the time node j transmits. It is

shown as formula (3.12).

max{τi
[

1

qi(1− qj)qκPiκ(ri,M)
− 1

]
+ 1, τi

[
1

qj(1− qi)qκPjk(rj,M)
− 1

]
+ 1}

∀i ∈ S, j ∈ S,m ∈M (3.12)

Now we take all the n nodes in the lower layer into consideration, which is node a

to node z competing to transmit to relay node κ . In this scenario we assume that there

are always data needed to be send in the lower layer, which is when node a to node z is

active, they will try to send data to relay node κ . We focus on the possibility where node

i successfully transmits data to relay node κ . This system we designed is a slotted time

system, which means for every time slot, if there is only one node transmitting data then

it will success, else it will collide and fail to transmit. We also neglect the fact that nodes

are waiting for timeout interval to timeout or the situation that the previous time sending

the data is failure, which indicates that the probability of no one is using a time slot is low.

Therefore for i to successfully transmit, it happens at the scenario where all the nodes are

inactive except the transmitter node i and the receiver relay node κ. In the scenario we

consider, we assume that each point is parallel and competing for an interface in a slotted
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time. Every sensor has information to send and will send when there is a chance. The

probability for node i to successfully transmit to relay node κ is shown as formula (3.13).

qi(1− qa)(1− qj)× ...× (1− qz)qκPiκ(ri,M) (3.13)

The objective function is expressed as formula (3.14):

min
Ca

i (ri,m)qi + Ca
j (ri,m)qj + Ca

a(ra,m)qa + ...+ Ca
z (rz,m)qz + Ca

κ(rκ,m)qκ

m

+
Cb

i (ri,m)(1− qi) + Cb
j (ri,m)(1− qj) + ...+ Cb

z(rz,m)(1− qz) + Cb
κ(rκ,m)(1− qκ)

m

+
Cτ

i (ri,m)qi
m

+
Cτ

j (rj,m)qj

m
+
Cτ

a (ra,m)qa
m

+ ...+
Cτ

z (rz,m)qz
m

(3.14)

The objective function (3.14) aims to minimize the energy consumption by control-

ling qa to qz,which is the probability that node a to node z is active in a time slot. The first

row of the formula indicates the energy consumption where node a to node z is active. The

second row shows the energy consumption where node a to node z is inactive, and the last

row shows the energy consumption where nodes are transmitting data to relay node κ. The

energy consumption where nodes are transmitting data to relay node κ is the probability

when nodes are active times the the average power consumption rate. The reason to mul-

tiply the probability to transmit to the energy consumption where nodes are transmitting

data is because the nodes won’t always send data in every time slot, it also depends on the

probability of activeness. We also consider the packet size level that node i is transmitting

because it would influence the size of the time slot. Therefore, the bigger the packet size,
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the longer the time slot will be needed to transmit a packet. The probability of transmitting

a packet without error will also decrease when m increases, and we assume each packet

has a fixed size header, therefore the larger the packet size is, the larger the throughput

is. We take all the above mentioned factors into consideration to find the trade off of the

packet size and the power consumption in a single byte. So the objective function will be

divided by m to normalize by the length of time slot.

Based on fairness, we can also consider formula (3.15):

qi = qj ∀i ∈ S, j ∈ S (3.15)

Each qi can be different, and formula wise is absolutely feasible. But when solving

the problem, it will become very difficult to solve. After expansion, you will find that

there will be various combinations of terms multiplied together. Although it is doable,

the complexity of the problem will also increase rapidly. Therefore we consider formula

(3.15).

However for qκ, relay node κ is the aggregate node that is responsible for gathering

data from the lower level nodes, and so theoretically relay node κ will have a higher

probability to be active, which results in a higher qκ.

The new success rate for node i to transmit is shown as formula (3.16):

qi(1− qi)
(n−1)qκPiκ(ri,m) ∀i ∈ S,m ∈M (3.16)

The new objective function based on formula (3.15) is shown as formula (3.17):
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min
∑
i∈S

[Ca
i (ri,m)qi + Ca

κ(rκ,m)qκ + Cb
i (ri,m)(1− qi) + Cb

k(rκ,m)(1− qκ) + Cτ
i (ri,m)qi

m

]

(3.17)

Constraint (3.18) ensures that the time spent for a single successful transmission will

be smaller than the allowable delay from node i to relay node κ . We assume that queuing

delay is ignored, the delay over link (i,k) is the time spent for a single successful, which

is the number of transmission before getting the first success
[

1
qi(1−qi)n−1qκPiκ(ri,m)

− 1
]

times the timeout interval τi for each failure transmission plus one slot time for the success

transmission. It is expressed as

τi

[
1

qi(1− qi)n−1qκPiκ(ri,m)
− 1

]
+ 1 ≤ Tiκ ∀i ∈ S,m ∈M (3.18)

Constraint (3.19) and (3.20) ensures that the value of qi , qκ andPiκ(ri,m) fall within

a small number ϵ and 1. Since qi, qκ and Pij(ri,m) denotes the probability that node i is

active in a time slot, the probability that node j is active in a time slot and the probability

of node i to transmit packet to node j without error with transmission range radius of ri,

respectively, it is required that qi , qκ and Piκ(ri,m) fall in between a small number ϵ and

1. The constraints are expressed as :

ϵ ≤ qi, qκ ≤ 1 ∀i ∈ S (3.19)

ϵ ≤ Piκ(ri,m) ≤ 1 ∀i ∈ S,m ∈M (3.20)

Constraint (3.21) and (3.22) are expressed as

ri ∈ Ri ∀i ∈ S (3.21)
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rκ ∈ Rκ (3.22)

As for the definition of when the sensor network will paralyzed or is considered

unfunctional, we assume that when a single node is out of batteries, the wireless sensor

network will be considered as not working. From the energy consumption of each node

and the probability of being active, the time that a node can function can be calculated. We

assume that there is a goal of system life time that needs to acheive. In order to achieve

this goal, a conditional limit can be listed by the initial power of each sensor node to ensure

that every node can achieve the goal of the system life time. We define formula (3.23) and

(3.24)below to make sure the life time of the nodes will exceed the expected life time of

the sensor network.

[
Ca

i (ri,m)qi + Cb
i (ri,m)(1− qi) + Cτ

i (ri,m)qi
]
t ≤ Pi ∀i ∈ S (3.23)

[
Ca

κ(rκ,m)qκ + Cb
k(rκ,m)(1− qκ)

]
t ≤ Pκ (3.24)

3.4 Model 3 : Network Tree Structure Relationship

The given parameters as well as their descriptions are shown in Table 3.5:
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Table 3.5: Given Parameters

Notation Description

N The index set of all possible numbers of subtrees, which is
{1, 2, 3, . . . , n}

V The index set of all possible numbers of sensor nodes that a single
subtree contains, which is {1, 2, 3, . . . , v}

θij The number j ∈ V sensor node from subtree i ∈ N , responsible for
sensing and gathering data from different area

κi The relay node from subtree i ∈ N , responsible for aggregating data
sent from the lower level layer sensor nodes

ξ The sink node, responsible for aggregating data sent from the relay
nodes

Tθi,ξ The allowable end to end delay from sensor node to sink node for
subtree i ∈ N

dθi,κi
The distance between sensor nodes and relay node from subtree i ∈ N

Rθi Set of possible range for sensor nodes in subtree i ∈ N

Rκ Set of possible range for relay node in subtree i ∈ N

Rξ Set of possible range for sink node

τθi Timeout interval for sensor nodes from subtree i ∈ N (a given ♯ of
time slots)

τκi
Timeout interval for relay nodes from subtree i ∈ N (a given ♯ of time
slots)

tθi,κi
The transmission time from sensor nodes to relay node , e.g. 1 slot time

t The least expected time slots for the network to work

Pi The initial power storage for sensor node i ∈ S

Pκi
The initial power storage for relay node from subtree i ∈ N

Pξ The initial power storage for sink node ξ

The decision variables and their descriptions are are shown in Table 3.6:
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Also the functionsCa
θi
(rθi,m),Cb

θi
(rθi,m),Ca

κi
(rκi

,m),Cb
κi
(rκi

,m),Ca
ξ (rξ,m),Cb

ξ(rξ,m),

Cτ
θi
(rθi,m) andCτ

κi
(rκi

,m) are given, the parameters of the function are to be determined,

so the value of the function itself is a decision variable.

The next step we consider the whole network tree structure with sensor nodes denoted

as θ, relay nodes denoted as κ and sink node denoted as ξ. This Network Tree Structure

Relationship (Model 3)is an extension of Model 2 introduced in the previous chapter. The

tree structure is shown as Figure 3.3.

Figure 3.3: Network Tree Structure Relationship

We assume that the network tree structure is a data-centric network, and we take all

subtrees into consideration. Each subtree contains of v amount of sensor nodes and a relay
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Table 3.6: Decision Variables

Notation Description

rθi Transmission range of sensor nodes in subtree i ∈ N ,rθi ∈ Rθi

rκi
Transmission range of relay node in subtree i ∈ N ,rκi

∈ rκi

rξ Transmission range of sink node

M The index set of all possible packet size , which is {1, 2, 3, . . . , m}

qθi The probability that sensor nodes in subtree i ∈ N is active in a time
slot

qκRi
The probability that relay node in subtree i ∈ N is active to recieve
data in a time slot

qκSi
The probability that relay node in subtree i ∈ N is active to send data a
time slot

qξ The probability that sink node is active in a time slot

Pθi,κi
(rθi,m) The probability of sensor nodes to transmit packet withm ∈M size to

relay node in subtree i ∈ N when no error occurs with transmission
range radius of rθi ∈ Rθi

Pκi,ξ(rκi
,m) The probability of the relay node in subtree i ∈ N to transmit packet

withm ∈M size to sink node when no error occurs with transmission
range radius of rκi

∈ rκi

Ca
θi
(rθi,m) The average power consumption rate when sensor nodes in subtree

i ∈ N is active with transmission range rθi ∈ Rθi in 1 time
slot(influenced by m)

Cb
θi
(rθi,m) The average power consumption rate when sensor nodes in subtree

i ∈ N is inactive with transmission range rθi ∈ Rθi in 1 time
slot(influenced by m)

Ca
κi
(rκi

,m) The average power consumption rate when the relay node in subtree
i ∈ N is active with transmission range rκi

∈ rκi
in 1 time

slot(influenced by m)

Cb
κi
(rκi

,m) The average power consumption rate when the relay node in subtree
i ∈ N is inactive with transmission range rκi

∈ rκi
in 1 time

slot(influenced by m)

Ca
ξ (rξ,m) The average power consumption rate when the sink node is active with

transmission range rξ in 1 time slot(influenced by m)

Cb
ξ(rξ,m) The average power consumption rate when the sink is inactive with

transmission range rξ in 1 time slot(influenced by m)

Cτ
θi
(rθi,m) The average power consumption rate for sensor nodes in subtree i ∈ N

to transmit am ∈M size packet(in 1 time slot) with transmission
range rθi ∈ Rθi

Cτ
κi
(rκi

,m) The average power consumption rate for the relay node in subtree
i ∈ N to transmit am ∈M size packet(in 1 time slot) with
transmission range rκi

∈ rκi
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node. There are n subtrees and a sink node that comprises into a whole tree structure. A

single subtree is shown as Figure 3.4. We assume that based on fairness, sensor nodes in

a same subtree has the same probability to be active shown as below.

qθ11 = qθ12 = ... = qθ1v = qθ1 (3.25)

Due to different monitor areas of different sensor nodes, they can have different im-

portance and priorities. The goal is to aggregate data from all sensors into the sink in

minimum energy consumption, while satisfied to the average possible delay constraints in

all possible origin-destination pairs. This delay should be the maximum link delay of all

possible links.

Figure 3.4: Subtree 1

Sensor nodes are responsible for sensing purpose, therefore their job is to send data

to relay nodes, and we assume that they will send data as soon as they are active. Relay

nodes are responsible for both sending and receiving data. They will aggregate data from

sensor nodes and then transmit them to the sink. It is also assumed that relay nodes will

send data as soon as they are active and also receive data when they are active. Sink node
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is for aggregating data from relay nodes, so in this model its only purpose is to receive

data. In the scenario we consider, we assume that each point is parallel and competing for

an interface in a slotted time. Every sensor has information to send and will send when

there is a chance.
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The objective function is expressed as formula (3.26):

min
[(
Ca

θ1
(rθ1 ,m)qθ1v + Ca

θ2
(rθ2 ,m)qθ2v + ...+ Ca

θn(rθn ,m)qθnv

+ Cb
θ1
(rθ1 ,m)(1− qθ1)v + Cb

θ2
(rθ2 ,m)(1− qθ2)v + ...+ Cb

θn(rθn ,m)(1− qθn)v

+ Cτ
θ1
(rθ1 ,m)qθ1 × v + Cτ

θ2
(rθ2 ,m)qθ2 × v + ...+ Cτ

θn(rθn ,m)qθn × v

)

+

(
Ca

κ1
(rκ1 ,m)qκR1 + Ca

κ2
(rκ2 ,m)qκR2 + ...+ Ca

κn
(rκn ,m)qκRn

+ Cb
κ1
(rκ1 ,m)(1− qκR1) + Cb

κ2
(rκ2 ,m)(1− qκR2) + ...+ Cb

κn
(rκn ,m)(1− qκRn)

+ Cτ
κ1
(rκ1 ,m)qκS1 + Cτ

κ2
(rκ2 ,m)qκS2 + ...+ Cτ

κn
(rκn ,m)qκSn

)

+ Ca
ξ (rξ,m)qξ + Cb

ξ(rξ,m)(1− qξ)

]
(3.26)

Based on fairness, let each subtree contain the same probability of activeness. There-

fore we can also consider formula (3.27) ,formula (3.28) and formula (3.29) and we then

consider sensor nodes in the same subtree i as θi:

qθ1 = qθ2 = qθ3 = .... = qθn (3.27)

qκR1 = qκR2 = qκR3 = .... = qκRn (3.28)

qκS1 = qκS2 = qκS3 = .... = qκSn (3.29)

The new objective function based on formula (3.27) and formula (3.28) is shown

as formula (3.30) and we also consider the packet size level that node i is transmitting

because it would influence the size of the time slot. Therefore, the bigger the packet size,

the longer the time slot will be needed to transmit a packet. The probability of transmitting

a packet without error will also decrease when m increases, and we assume each packet
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has a fixed size header, therefore the larger the packet size is, the larger the throughput

is. We take all the above mentioned factors into consideration to find the trade off of the

packet size and the power consumption in a single byte. So the objective function will be

divided by m to normalize by the length of time slot. :

min
∑
i∈N

[
Ca

θi
(rθi ,m)qθiv + Cb

θi
(rθi ,m)(1− qθi)v + Cτ

θi
(rθi ,m)qθiv

m

+
Ca

κi
(rκi

,m)qκRi
+ Cb

κi
(rκi

,m)(1− qκRi
) + Cτ

κi
(rκi

,m)qκSi

m

+
Ca

ξ (rξ,m)qξ + Cb
ξ(rξ,m)(1− qξ)

m

]
(3.30)

Constraint (3.31) ensures that the time spent for a single successful transmission from

sensor nodes to sink node ξ will be smaller than the allowable delay. We assume that

queuing delay is ignored, the time spent from sink node to relay node is the time spent for

a single successful, which is the number of transmission before getting the first success

[
1

qθi (1−qθi )
(v−1)qκRi

Pθi,κi
(rθi ,m)

− 1
]
times the timeout interval for each transmission τθi and

plus one slot time for the success transmission. And we also have to add the time spent

from relay node to sink node, which is
[

1
qκSi

(1−qκSi
)(n−1)qξPκi,ξ

(rκi ,m)
− 1
]
times the timeout

interval for each transmission τκi
and plus one slot time for the success transmission. It is

expressed as

τθi

[
1

qθi(1− qθi)
(v−1)qκRi

Pθi,κi
(rθi ,m)

− 1

]
+ τκi

[
1

qκSi
(1− qκSi

)(n−1)qξPκi,ξ(rκi
,m)

− 1

]
+ 2 ≤ Tθi,ξ

∀i ∈ N,m ∈M (3.31)

Constraint (3.34) ensures that the output throughput of the relay node is greater than the
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input throughput so that overflowing won’t occur. This constraint is a distinguishing fea-

ture compared to Model 2. In Model 2, we assume that sensor nodes always have data

to send and is constantly collecting data. Therefore we assume that there is an internal

flow control mechanism for avoiding overflow in sensor nodes. That is to mark those

data that stays for too long and untransmitted as obsolete, so as to avoid overflowing in

sensor nodes. In model 3, there exist relay nodes and were responsible for transferring

data collected from the sensor nodes. Hence, relay nodes don’t have the ability to discard

packets, and that’s what make the throughput constraint important. We assume that relay

nodes have a certain amount of capacity to temporarily store those data that were unable

to be send and they will always send when there is a chance. Thus, the average output

throughput should be greater or equal to the average output throughput in order to avoid

buffer overflow.

Constraint (3.34) consists of two parts, the input throughput and the output through-

put. The input throughput of the relay node is composed of the summation output through-

put of all sensor nodes, which is the size of the packet sent by sensor nodes divided by the

amount of time slots needed for a single successful transmit to pass the data to relay node

times the amount of sensor nodes. It is shown as formula (3.32)

m÷ 1

qθi(1− qθi)
(v−1)qκRi

Pθi,κi
(rθi ,m)

× v (3.32)

The output throughput of the relay node is the size of the packet sent by relay node
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divided by the amount of time slots needed for a single successful transmit to pass the data

to sink node.It is shown as formula (3.33)

m÷ 1

qκSi
(1− qκSi

)(n−1)qξPκi,ξ(rκi
,m)

(3.33)

The complete throughput constraint is expressed as

mqκSi
(1− qκSi

)(n−1)qξPκi,ξ(rκi
,m) ≥ mvqθi(1− qθi)

(v−1)qκRi
Pθi,κi

(rθi ,m)

∀i ∈ N,m ∈M (3.34)

Constraint (3.35) ,(3.36),(3.37),(3.38) and (3.39) ensures that the value of qθi ,qκRi
,

qκSi
, qξ ,Pθi,κi

(rθi ,m) andPκi,ξ(rκi
,m) fall within a small number ϵ and 1. Since qθi ,qκRi

,

qκSi
, qξ , Pθi,κi

(rθi ,m) andPκi,ξ(rκi
,m) denotes the probability that node θi is active in a

time slot, the probability that node κi is active for receiving in a time slot, the probability

that node κi is active for sending in a time slot, the probability that node ξ is active in a time

slot, the probability of node θi to transmit packet to node κi without error with transmission

range radius of rθi and the probability of node κi to transmit packet to node ξ without error

with transmission range radius of rκi
, respectively, it is required that qθi ,qκRi

, qκSi
, qξ ,

Pθi,κi
(rθi ,m) andPκi,ξ(rκi

,m) fall in between a small number ϵ and 1. The constraints

are expressed as :

ϵ ≤ qθi ≤ 1 ∀i ∈ N (3.35)

ϵ ≤ qκRi
, qκSi

≤ 1 ∀i ∈ N (3.36)

ϵ ≤ qξ ≤ 1 (3.37)

36

http://dx.doi.org/10.6342/NTU202210101


doi:10.6342/NTU202210101

ϵ ≤ Pθi,κi
(rθi ,m) ≤ 1 ∀i ∈ N,m ∈M (3.38)

ϵ ≤ Pκi,ξ(rκi
,m) ≤ 1 ∀i ∈ N,m ∈M (3.39)

Constraint (3.40) ,(3.41)and (3.42) are expressed as

rθi ∈ Rθi ∀i ∈ N (3.40)

rκi
∈ Rκi

∀i ∈ N (3.41)

rξ ∈ Rξ (3.42)

As for the definition of when the sensor network will paralyzed or is considered

unfunctional, we assume that when a single node is out of batteries, the wireless sensor

network will be considered as not working. From the energy consumption of each node

and the probability of being active, the time that a node can function can be calculated. We

assume that there is a goal of system life time that needs to acheive. In order to achieve

this goal, a conditional limit can be listed by the initial power of each sensor node to ensure

that every node can achieve the goal of the system life time. We define formula (3.43),

(3.44) and (3.45)below to make sure the life time of the nodes will exceed the expected

life time of the sensor network.

[
Ca

θi
(rθi ,m)qθi + Cb

θi
(rθi ,m)(1− qθi) + Cτ

θi
(rθi ,m)qθi

]
t ≤ Pθi ∀i ∈ N (3.43)

[
Ca

κi
(rκi

,m)qκRi
+ Cb

κi
(rκi

,m)(1− qκRi
) + Cτ

κi
(rκi

,m)qκSi

]
t ≤ Pκi

∀i ∈ N (3.44)

[
Ca

ξ (rξ,m)qξ + Cb
ξ(rξ,m)(1− qξ)

]
t ≤ Pξ (3.45)
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Chapter 4 Solution Approach

In this chapter, the solution approach for the optimization-based power controlling

problem described in the previous chapter will be thoroughly explained. As described in

Chapter 3, the mathematical model of this problem is very intricate. Lagrangian Relax-

ation is a mature and widely used approach in this kind of complex constrained optimiza-

tion problem. We will explain its solution procedure thoroughly in the next section and

illustrate how the problem is solved using Lagrangian Relaxation.

4.1 Lagrangian Relaxation Method

Lagrangian Relaxation(LR) is a tool that is widely used in mathematical program-

ming applications. It was first proposed in the 1970s to solve general mixed integer pro-

gramswith ”complicated” constraints [42]. There are constraints that can be simply solved

and constraints that are difficult to solve or require exponential time to solve it. The con-

cept of Lagrangian Relaxation is to relax those constraints that are difficult to solve [43].
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By relaxing the constraints that are difficult to solve, the primal problem will then become

a Lagrangian Relaxation problem which is relatively easy to solve.

We create this Lagrangian Relaxation problem by moving the difficult constraints to

the primal objective function with respective coefficients, namely Lagrangian multipliers.

Lagrangian multipliers are considered penalties when constraints are violated [44]. After

relaxing all constraints that are considered difficult to solve, the LR problem can be de-

composed into several subproblems. By dividing into subproblems, it will be much easier

to solve. Subproblems are decomposed from the LR problem by separating the constraints

and the part of LR problems that contains the same decision variables. Each subproblem

will then be solved optimally by using the concept of divide and conquer. Also the sub-

problems will be solved according to their characteristics. We can then obtain the solution

to the LR problem with the regarding decision variable.

With the solution we obtained from the LR problem, it will form a lower bound(LB)

in a minimization problem. And if the solution is feasible to the primal objective function,

which means that it does not violate any constraints, an Upper bound(UB) will appear.

The primal optimal solution will be bounded by the lower bound and the upper bound. If

the solution to the LR problem is not feasible, we should tune the solution by heuristic

methods in order to convert the solution to a feasible solution.

The Lagrangian multipliers must be adjusted in order to find the tightest lower bound.
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The Subgradient method is a commonly used method when solving the dual problem.

After updating the Lagrangian multipliers, we will then solve the subproblems again to

gradually decrease the gap between the lower bound(LB) and upper bound(UB). This

process will continue to proceed until it meets the conditions such as iteration limit or

when the gap between the lower bound and upper bound is less than a specific threshold.

The gap between the lower bound and upper bound can also help us measure the quality of

the solution. Smaller gaps indicates better solutions, and when the lower bound overlaps

with the upper bound, the best solution appears. Figure 4.1 shows the procedure of the

Lagrangian Relaxation method mentioned in this section.

Figure 4.1: The procedure of Lagrangian Relaxation
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4.2 Model 1 : One-to-One Relationship

4.2.1 Deal with Decision Variables

Constraint (3.5) contains of the product of decision variables (qi × qj × Pij(ri,m)).

With these three decision variables multiplying, two issues will occur. First, the convex-

ity of the function is being destroyed . Second, decision variables will not be able to ”

separate” or ”decomposed” when solving it. In order to deal with it,we let

qi × qj × Pij(ri,m) = Zij ∀i ∈ S, j ∈ S,m ∈M (4.1)

Apply logarithmic operation on both sides,

⇒ log qi + log qj + logPij(ri,m) = logZij ∀i ∈ S, j ∈ S,m ∈M (4.2)

so that we can avoid decision variables from multiplying.

We derived

⇒ϵ3 ≤ Zij ≤ 1 ∀i ∈ S, j ∈ S (4.3)

from formulation (4.2).

After the transposition in constraint (3.5) with the replacement of qi×qj×Pij(ri,m)

to Zij , we derive the formulation
1

Zij

≤ 1 +
1

τi
(Tij − 1) ∀i ∈ S, j ∈ S (4.4)

Let
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1

Zij

≤ 1 +
1

τi
(Tij − 1) = αij ∀i ∈ S, j ∈ S (4.5)

and derive

⇒ 1

αij

≤ Zij ∀i ∈ S, j ∈ S (4.6)

which max { ϵ3, 1
αij

} is the underbound of Zij .

A LR problem is derived as formula (4.7) and we can later apply to Lagrangian Re-

laxation:

min
∑
i∈S

∑
j∈S

[
Ca

i (ri,m)qi + Ca
j (rj,m)qj + Cb

i (ri,m)(1− qi) + Cb
j (rj,m)(1− qj) + Cτ

i (ri,m)qi
]

m

+
∑
i∈S

∑
j∈S

µ1
ij(log qi + log qj + logPij(ri,m)− logZij)

(4.7)

where µ1
ij can be negative or positive.

The objective function is subject to :

ϵ ≤ qi ≤ 1 ∀i ∈ S (4.8)

ϵ ≤ qj ≤ 1 ∀j ∈ S (4.9)

ϵ ≤ Pij(ri,m) ≤ 1 ∀i ∈ S, j ∈ S,m ∈M (4.10)

max{ϵ3, 1

αij

} ≤ Zij ≤ 1 ∀i ∈ S, j ∈ S (4.11)

ri ∈ Ri ∀i ∈ S (4.12)

If λij << 1, which makes 1
λij

a great number, we can see this as a M/G/1 system

where transmission time is a random variable governed by a geometric distribution.
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⇒ Prof : {k retransmission} = (1− Zij)
kZij ∀i ∈ S, j ∈ S,m ∈M (4.13)

Each retransmission will cost us a timeout interval of τi, and the last transmission

that succeed will cost a time slot. Based on these assumption we can consider queuing

delay in variable αij.

If ri is a continuous variable then Ca
i (ri,m) will become a decision variable and we

might also need to deal with Ca
i (ri,m)× qi .

In model one (One-to-One Relationship), we can consider ri as a fixed number with

limited amount of values in different situations. But it won’t be a good solution when

model one is extended to model two (Many-to-One Relationship) and model three (Net-

work Tree Structure Relationship), so we will try to solve this problem in this section.

In model two (Many-to-One Relationship) and model three (Network Tree Structure

Relationship), there are many-to-one relationships with hub and aggregation of data flow.

If we consider ri as a fixed number with limited amount of values as we did in model

one (One-to-One Relationship), there occurs a problem called combinatorial explosion.

A combinatorial explosion happens when the combinatorics of the problem is affected by

the input, constraints, and bounds of the problem which leads to the rapid growth of the

complexity of a problem.

Because of the combinatorial explosion, we can no longer see ri as a fixed number

with limited amount of values, we have to reformulate the objective function to keep de-
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cision variables from multiplying. We expand formula (4.7) and get formula (4.14) as

follows.

min
∑
i∈S

∑
j∈S

(
Ca

i (ri,m)qi + Ca
j (rj,m)qj + Cb

i (ri,m)− Cb
i (ri,m)qi + Cb

j (ri,m)− Cb
j (rj,m)qj

m

+
Cτ

i (ri,m)qi
m

)

+
∑
i∈S

∑
j∈S

µ1
ij(log qi + log qj + logPij(ri,m)− logZij)

(4.14)

In order to deal withCa
i (ri,m)×qi, Ca

j (rj,m)×qj, Cb
i (ri,m)×qi andCb

j (rj,m)×qj

, we let

Ca
i (ri,m)× qi = xi ∀i ∈ S (4.15)

Ca
j (rj,m)× qj = xj ∀j ∈ S (4.16)

Cb
i (ri,m)× qi = yi ∀i ∈ S (4.17)

Cb
j (rj,m)× qj = yj ∀j ∈ S (4.18)

Apply logarithmic operation on both sides,

⇒ logCa
i (ri,m) + log qi = logxi ∀i ∈ S (4.19)

⇒ logCa
j (rj,m) + log qj = logxj ∀j ∈ S (4.20)

⇒ logCb
i (ri,m) + log qi = log yi ∀i ∈ S (4.21)

⇒ logCb
j (rj,m) + log qj = log yj ∀j ∈ S (4.22)

A new LR function is derived as the formula below:

44

http://dx.doi.org/10.6342/NTU202210101


doi:10.6342/NTU202210101

min
∑
i∈S

∑
j∈S

(
xi + xj + Cb

i (ri,m)− yi + Cb
j (rj,m)− yj + Cτ

i (ri,m)qi
)

m

+
∑
i∈S

∑
j∈S

µ1
ij(log qi + log qj + logPij(ri,m)− logZij)

+
∑
i∈S

µ2
i (logCa

i (ri,m) + log qi − logxi)

+
∑
j∈S

µ3
j(logCa

j (rj,m) + log qj − logxj)

+
∑
i∈S

µ4
i (logCb

i (ri,m) + log qi − log yi)

+
∑
j∈S

µ5
j(logCb

j (rj,m) + log qj − log yj)

(4.23)

There still exists decision variables Cτ
i (ri,m) and qi multiplying, and we also have

to deal with it.

Let

Cτ
i (ri,m)qi = βij ∀i ∈ S,m ∈M (4.24)

Apply logarithmic operation on both sides,

⇒ logCτ
i (ri,m) + log qi = log βij ∀i ∈ S,m ∈M (4.25)

Multiply both side with Cτ
i (ri,m) and we obtain constraint(4.26)

ϵ× Cτ
i (minRi,m) ≤ βij ≤ Cτ

i (maxRi,m) ∀i ∈ S,m ∈M (4.26)

We relax formula (4.25) into the LR problem formula (4.23).
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The final form of LR problem in model 1(One-to-One Relationship) is shown as

formula (4.27):

min
∑
i∈S

∑
j∈S

(
xi + xj + Cb

i (ri,m)− yi + Cb
j (rj,m)− yj + βij

)
m

+
∑
i∈S

∑
j∈S

µ1
ij(log qi + log qj + logPij(ri,m)− logZij)

+
∑
i∈S

µ2
i (logCa

i (ri,m) + log qi − logxi)

+
∑
j∈S

µ3
j(logCa

j (rj,m) + log qj − logxj)

+
∑
i∈S

µ4
i (logCb

i (ri,m) + log qi − log yi)

+
∑
j∈S

µ5
j(logCb

j (rj,m) + log qj − log yj)

+
∑
i∈S

∑
j∈S

µ6
ij(logCτ

i (ri,m) + log qi − log βij)

(4.27)

The objective function is subject to :

ϵ ≤ qi ≤ 1 ∀i ∈ S (4.28)

ϵ ≤ qj ≤ 1 ∀j ∈ S (4.29)

ϵ ≤ Pij(ri,m) ≤ 1 ∀i ∈ S, j ∈ S,m ∈M (4.30)

max{ϵ3, 1

αij

} ≤ Zij ≤ 1 ∀i ∈ S, j ∈ S (4.31)

ϵ2 ≤ xi ≤ Ca
i (ri,m) ∀i ∈ S (4.32)

ϵ2 ≤ xj ≤ Ca
j (rj,m) ∀j ∈ S (4.33)

ϵ2 ≤ yi ≤ Cb
i (ri,m) ∀i ∈ S (4.34)
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ϵ2 ≤ yj ≤ Cb
j (rj,m) ∀j ∈ S (4.35)

ri ∈ Ri ∀i ∈ S (4.36)

ϵ× Cτ
i (minRi,m) ≤ βij ≤ Cτ

i (maxRi,m) ∀i ∈ S, j ∈ S,m ∈M (4.37)

Multipliers µ1, µ2, µ3, µ4, µ5andµ6respectively represents the vectors of {µ1
ij}, {µ2

i },

{µ3
j}, {µ4

i }, {µ5
j} and {µ6

ij}. These multipliers are either positive or negative due to re-

laxing equality constraints.

With the objective function and the constraints above, we can proceed to cut qi ,

qj andPij(ri,m) into 1000 pieces of equal segments. By using exhaust search we can

eventually exploit all possible solutions and try to get the primal solution.

4.2.2 The LR Subproblems

To solve this Lagrangian Relaxation problem easily and effectively, we can divide

the problem into subproblems and solve them respectively. The way of decomposing this

Lagrangian Relaxation problem is by separating the decision variables. Each decision

variable will form a subproblem and because the original problem is a minimization prob-

lem, the subproblems will also be a minimization problem. Each subproblems will then

be dealt with different solution approaches base on their characteristics. This divide and

conquer technique will be introduce and implement in this section.
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4.2.2.1 Subproblem 1(related to decision variable xi)

By extracting all decision variables xi in the LR problem, we will then obtain sub-

problem 1. In subproblem 1, µ2
i can be either positive or negative due to relaxing equality

constraints.

In order to determine the concavity or convexity of subproblem 1, we have to take the

sign of µ2
i into consideration. Linear term will not influence the concavity or convexity

of the formula, so µ2
i will singly decide whether it is concave or convex. A log function

by itself is a concave function, so when µ2
i is positive with a negative sign in front of it,

the formula will become a convex function. And when µ2
i is negative, the formula will

become a concave function.

The concavity or convexity of subproblem 1will lead to different solution approaches.

When µ2
i is positive and therefore changing the coefficient of log term into negative, find

the point of xi where the slope is 0, which will be the minimum point of the convex func-

tion. If the point of xi where the slope is 0 falls in the legal range, which is the upper

and lower bound of xi, then it is the solution to xi. However, if this point does not fall in

the legal range of xi, the upper and lower bound of xi will be substitute into the objective

function to see whichever is smaller, and it will be the solution to xi.

On the contrary, when µ2
i is negative and therefore changing the coefficient of log
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term into positive, then the function is concave. Hence, we can compare the objective

values of the boundary points and the one with smaller objective value will be our solution

to xi.

The minimum of xi occurs when both Ca
i (ri,m) and qi are at its minimum, which

is ϵ. The maximum on the other hand occurs when qi is 1. We separate xi from the

objective function and derive a subproblem shown as formula (4.38) and constraint shown

as formula (4.39).

Table 4.1: Subproblem 1(related to decision variable xi)

Objective function :

Zsub1 = min
∑
i∈S

(
xi
m

− µ2
i logxi) (4.38)

Subject to :

ϵ2 ≤ xi ≤ Ca
i (ri,m) ∀i ∈ S (4.39)
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Algorithm 1: Algorithm for Subproblem 1
for each node i do

Calculate the objective value at xi = ϵ2 denoted as V1
Calculate the objective value at xi = Ca

i (ri,m) denoted as V2
if µ2

i ≥ 0 then
partial differential to xi
1
m
− µ2

i
1

xi ln e = 0

xi = µ2
im

if xi is not feasible then
set x[i] to min(V1, V2), which is the boundary value with smaller
objective value

end
else

set x[i] to min(V1, V2), which is the boundary value with smaller
objective value

end
end

4.2.2.2 Subproblem 2(related to decision variable xj)

The procedure of dividing xj from the LR problem is similar with xi. By extracting all

decision variables xj in the LR problem, we will then obtain subproblem 2. In subproblem

2, µ3
j can be either positive or negative due to relaxing equality constraints.

In order to determine the concavity or convexity of subproblem 2, we have to take the

sign of µ3
j into consideration. Linear term will not influence the concavity or convexity

of the formula, so µ3
j will singly decide whether it is concave or convex. A log function

by itself is a concave function, so when µ3
j is positive with a negative sign in front of it,

the formula will become a convex function. And when µ3
j is negative, the formula will

become a concave function.

The concavity or convexity of subproblem 2will lead to different solution approaches.

50

http://dx.doi.org/10.6342/NTU202210101


doi:10.6342/NTU202210101

When µ3
j is positive and therefore changing the coefficient of log term into negative, find

the point of xj where the slope is 0, which will be the minimum point of the convex func-

tion. If the point of xj where the slope is 0 falls in the legal range, which is the upper and

lower bound of xj , then it is the solution to xj . However, if this point does not fall in the

legal range of xj , the upper and lower bound of xj will be substitute into the objective

function to see whichever is smaller, and it will be the solution to xj .

On the contrary, when µ3
j is negative and therefore changing the coefficient of log

term into positive, then the function is concave. Hence, we can compare the objective

values of the boundary points and the one with smaller objective value will be our solution

to xj .

The minimum of xj occurs when both Ca
j (rj,m) and qj are at its minimum, which

is ϵ. The maximum on the other hand occurs when qj is 1. We separate xj from the

objective function and derive a subproblem shown as formula (4.40) and constraint shown

as formula (4.41).

Table 4.2: Subproblem 2(related to decision variable xj)

Objective function :

Zsub2 = min
∑
j∈S

(
xj
m

− µ3
j logxj) (4.40)

Subject to :

ϵ2 ≤ xj ≤ Ca
j (rj,m) ∀j ∈ S (4.41)
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Algorithm 2: Algorithm for Subproblem 2
for each node j do

Calculate the objective value at xj = ϵ2 denoted as V1
Calculate the objective value at xj = Ca

j (rj,m) denoted as V2
if µ3

j ≥ 0 then
partial differential to xj
1
m
− µ3

j
1

xj ln e = 0

xj = µ3
jm

if xj is not feasible then
set x[j] to min(V1, V2), which is the boundary value with smaller
objective value

end
else

set x[j] to min(V1, V2), which is the boundary value with smaller
objective value

end
end

4.2.2.3 Subproblem 3(related to decision variable yi)

The procedure of dividing yi from the LR problem is similar with xi. By extracting all

decision variables yi in the LR problem, we will then obtain subproblem 3. In subproblem

3, µ4
i can be either positive or negative due to relaxing equality constraints.

In order to determine the concavity or convexity of subproblem 3, we have to take the

sign of µ4
i into consideration. Linear term will not influence the concavity or convexity

of the formula, so µ4
i will singly decide whether it is concave or convex. A log function

by itself is a concave function, so when µ4
i is positive with a negative sign in front of it,

the formula will become a convex function. And when µ4
i is negative, the formula will

become a concave function.

The concavity or convexity of subproblem 3will lead to different solution approaches.
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When µ4
i is positive and therefore changing the coefficient of log term into negative, find

the point of yi where the slope is 0, which will be the minimum point of the convex func-

tion. If the point of yi where the slope is 0 falls in the legal range, which is the upper

and lower bound of yi, then it is the solution to yi. However, if this point does not fall in

the legal range of yi, the upper and lower bound of yi will be substitute into the objective

function to see whichever is smaller, and it will be the solution to yi.

On the contrary, when µ4
i is negative and therefore changing the coefficient of log

term into positive, then the function is concave. Hence, we can compare the objective

values of the boundary points and the one with smaller objective value will be our solution

to yi.

The minimum of yi occurs when both Cb
i (ri,m) and qi are at its minimum, which

is ϵ. The maximum on the other hand occurs when qi is 1. We separate yi from the

objective function and derive a subproblem shown as formula (4.42) and constraint shown

as formula (4.43).
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Table 4.3: Subproblem 3(related to decision variable yi)

Objective function :

Zsub3 = min
∑
i∈S

(− yi
m

− µ4
i log yi) (4.42)

Subject to :

ϵ2 ≤ yi ≤ Cb
i (ri,m) ∀i ∈ S (4.43)

Algorithm 3: Algorithm for Subproblem 3
for each node i do

Calculate the objective value at yi = ϵ2 denoted as V1
Calculate the objective value at yi = Cb

i (ri,m) denoted as V2
if µ4

i ≥ 0 then
partial differential to yi
− 1

m
− µ4

i
1

yi ln e = 0

yi = −µ4
im

if yi is not feasible then
set y[i] to min(V1, V2), which is the boundary value with smaller
objective value

end
else

set y[i] to min(V1, V2), which is the boundary value with smaller
objective value

end
end

4.2.2.4 Subproblem 4(related to decision variable yj)

The procedure of dividing yj from the LR problem is similar with yj . By extracting all

decision variables yj in the LR problem, we will then obtain subproblem 4. In subproblem

4, µ5
j can be either positive or negative due to relaxing equality constraints.

In order to determine the concavity or convexity of subproblem 4, we have to take the
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sign of µ5
j into consideration. Linear term will not influence the concavity or convexity

of the formula, so µ5
j will singly decide whether it is concave or convex. A log function

by itself is a concave function, so when µ5
j is positive with a negative sign in front of it,

the formula will become a convex function. And when µ5
j is negative, the formula will

become a concave function.

The concavity or convexity of subproblem 4will lead to different solution approaches.

When µ5
j is positive and therefore changing the coefficient of log term into negative, find

the point of yj where the slope is 0, which will be the minimum point of the convex func-

tion. If the point of yj where the slope is 0 falls in the legal range, which is the upper

and lower bound of yj , then it is the solution to yj . However, if this point does not fall in

the legal range of yj , the upper and lower bound of yj will be substitute into the objective

function to see whichever is smaller, and it will be the solution to yj .

On the contrary, when µ5
j is negative and therefore changing the coefficient of log

term into positive, then the function is concave. Hence, we can compare the objective

values of the boundary points and the one with smaller objective value will be our solution

to yj .

The minimum of yj occurs when both Cb
j (rj,m) and qj are at its minimum, which

is ϵ. The maximum on the other hand occurs when qj is 1. We separate yj from the

objective function and derive a subproblem shown as formula (4.44) and constraint shown
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as formula (4.45).

Table 4.4: Subproblem 4(related to decision variable yj)

Objective function :

Zsub4 = min
∑
j∈S

(−yj
m

− µ5
j log yj) (4.44)

Subject to :

ϵ2 ≤ yj ≤ Cb
j (rj,m) ∀j ∈ S (4.45)

Algorithm 4: Algorithm for Subproblem 4
for each node j do

Calculate the objective value at yj = ϵ2 denoted as V1
Calculate the objective value at yj = Cb

j (rj,m) denoted as V2
if µ5

j ≥ 0 then
partial differential to yj
− 1

m
− µ5

j
1

yj ln e = 0

yj = −µ5
jm

if yj is not feasible then
set y[j] to min(V1, V2), which is the boundary value with smaller
objective value

end
else

set y[j] to min(V1, V2), which is the boundary value with smaller
objective value

end
end
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4.2.2.5 Subproblem 5(related to decision variable qi)

By extracting all decision variables qi in the LR problem, we will then obtain sub-

problem 5. In subproblem 5, there are 3 multipliers µ1
ij , µ2

i and µ4
i and all of them can be

either positive or negative due to relaxing equality constraints.

In order to determine the concavity or convexity of subproblem 5, we have to take

the sign of all 4 multipliers µ1
ij , µ2

i ,µ4
i and µ6

i into consideration. A log function by itself is

a concave function, so µ1
ij , µ2

i ,µ4
i and µ6

i can all play an important role in deciding whether

the function is concave or convex.

In this section, we developed a way to easily get the convexity or concavity of this

function. We first find the extreme point by finding points with derivative = 0 and will

obtain a objective value for it. Later we can compare the objective value with the point of

derivative = 0 with the objective value of the boundary points of qi. If the objective value

with the point of derivative = 0 is smaller than the objective values of the boundary points

of qi, then the function is a convex function. We can then examine whether the point with

derivative = 0 falls in the legal range of qi, if yes then we can return it as our solution to qi.

If the point with derivative = 0 doesn’t appears in the legal range of qi and is considered

infeasible, we will return the boundary point of qi with a smaller objective value as our

solution to qi.
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On the contrary, if the objective value with the point of derivative = 0 is bigger than

the objective value of the boundary points of qi, then the function is concave. Therefore,

we can compare the objective values of the boundary points and the one with smaller

objective value will be our solution to qi.

We separate qi from the objective function and derive a subproblem shown as formula

(4.46) and constraint shown as formula (4.47).

Table 4.5: Subproblem 5(related to decision variable qi)

Objective function :

Zsub5 = min
∑
i∈S

∑
j∈S

(µ1
ij log qi + µ2

i log qi + µ4
i log qi + µ6

ij log qi) (4.46)

Subject to :

ϵ ≤ qi ≤ 1 ∀i ∈ S (4.47)
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Algorithm 5: Algorithm for Subproblem 5
for each node i do

Calculate the objective value at qi = ϵ denoted as V1
Calculate the objective value at qi = 1 denoted as V2
partial differential to qi
µ1
ij

1
qi ln e + µ2

i
1

qi ln e + µ4
i

1
qi ln e + µ6

ij
1

qi ln e = 0
µ1
ij+µ2

i+µ4
i+µ6

ij

qi
= 0

get solution to qi
if Zsub5(qi) ≤ min(V1, V2) then

Zsub5 = convex
if qi is feasible then

q[i] = qi
else

set q[i] to min(V1, V2), which is the boundary value with smaller
objective value

end
else

set q[i] to min(V1, V2), which is the boundary value with smaller
objective value

end
end

4.2.2.6 Subproblem 6(related to decision variable qj)

By extracting all decision variables qj in the LR problem, we will then obtain sub-

problem 6. In subproblem 6, there are 3 multipliers µ1
ij , µ3

j and µ5
j and all of them can be

either positive or negative due to relaxing equality constraints.

In order to determine the concavity or convexity of subproblem 6, we have to take

the sign of all 3 multipliers µ1
ij , µ3

j and µ5
j into consideration. A log function by itself is a

concave function, so µ1
ij , µ3

j and µ5
j can all play an important role in deciding whether the

function is concave or convex.

To get the convexity or concavity of this function, we first find the extreme point by
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finding points with derivative = 0 and will obtain a objective value for it. Later we can

compare the objective value with the point of derivative = 0 with the objective value of the

boundary points of qj . If the objective value with the point of derivative = 0 is smaller than

the objective values of the boundary points of qj , then the function is a convex function.

We can then examine whether the point with derivative = 0 falls in the legal range of qj ,

if yes then we can return it as our solution to qj . If the point with derivative = 0 doesn’t

appears in the legal range of qj and is considered infeasible, we will return the boundary

point of qj with a smaller objective value as our solution to qj .

On the contrary, if the objective value with the point of derivative = 0 is bigger than

the objective value of the boundary points of qj , then the function is concave. Therefore,

we can compare the objective values of the boundary points and the one with smaller

objective value will be our solution to qj .

We separate qj from the objective function and derive a subproblem shown as formula

(4.48) and constraint shown as formula (4.49).

Table 4.6: Subproblem 6(related to decision variable qj)

Objective function :

Zsub6 = min
∑
i∈S

∑
j∈S

(µ1
ij log qj + µ3

j log qj + µ5
j log qj) (4.48)

Subject to :

ϵ ≤ qj ≤ 1 ∀j ∈ S (4.49)
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Algorithm 6: Algorithm for Subproblem 6
for each node j do

Calculate the objective value at qj = ϵ denoted as V1
Calculate the objective value at qj = 1 denoted as V2
partial differential to qj
µ1
ij

1
qj ln e + µ3

j
1

qj ln e + µ5
j

1
qj ln e = 0

µ1
ij+µ3

j+µ5
j

qj
= 0

get solution to qj
if Zsub6(qj) ≤ min(V1, V2) then

Zsub6 = convex
if qj is feasible then

q[j] = qj
else

set q[j] to min(V1, V2), which is the boundary value with smaller
objective value

end
else

set q[j] to min(V1, V2), which is the boundary value with smaller
objective value

end
end

4.2.2.7 Subproblem 7(related to decision variable ri)

By extracting all decision variables ri in the LR problem, we will then obtain sub-

problem 7. In subproblem 7, there are 4 multipliers µ1
ij , µ2

i , µ4
i and µ6

ij . All of them can be

either positive or negative due to relaxing equality constraints,

In order to determine the concavity or convexity of subproblem 7, we have to take the

sign of all 4 multipliers µ1
ij , µ2

i , µ4
i and µ6

ij into consideration. A log function by itself is a

concave function, soµ1
ij , µ2

i , µ4
i and µ6

ij can all play an important role in deciding whether

the function is concave or convex.

To easily and effectively get the convexity or concavity of this function, we first find
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the extreme point by finding points with derivative = 0 and will obtain a objective value

for it. Later we can compare the objective value with the point of derivative = 0 with

the objective value of the boundary points of ri. If the objective value with the point of

derivative = 0 is smaller than the objective values of the boundary points of ri, then the

function is a convex function. We can then examine whether the point with derivative = 0

falls in the legal range of ri, if yes then we can return it as our solution to ri. If the point

with derivative = 0 doesn’t appears in the legal range of ri and is considered infeasible,

we will return the boundary point of ri with a smaller objective value as our solution to ri.

On the contrary, if the objective value with the point of derivative = 0 is bigger than

the objective value of the boundary points of ri, then the function is concave. Therefore,

we can compare the objective values of the boundary points and the one with smaller

objective value will be our solution to ri.

We separate ri from the objective function and derive a subproblem shown as formula

(4.50) and constraint shown as formula (4.51) and formula (4.52).
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Table 4.7: Subproblem 7(related to decision variable ri)

Objective function :

Zsub7 = min
∑
i∈S

∑
j∈S

[Cb
i (ri,m)

m
+ µ1

ij logPij(ri,m) + µ2
i logCa

i (ri,m) + µ4
i logCb

i (ri,m)

+ µ6
ijC

τ
i (ri,m)

]
(4.50)

Subject to :

ϵ ≤ Pij(ri,m) ≤ 1 ∀i ∈ S, j ∈ S (4.51)

ri ∈ Ri ∀i ∈ S (4.52)

Algorithm 7: Algorithm for Subproblem 7
for each node i do

Calculate the objective value at ri = maxRi denoted as V1
Calculate the objective value at ri = minRi denoted as V2
Get solution of ri where Zsub7 has the smallest value
if Zsub7(ri,m) ≤ min(V1, V2) then

Zsub7 = convex
if ri is feasible then

r[i] = ri
else

set r[i] to min(V1, V2), which is the boundary value with smaller
objective value

end
else

set r[i] to min(V1, V2), which is the boundary value with smaller
objective value

end
end

4.2.2.8 Subproblem 8(related to decision variable rj)

By extracting all decision variables rj in the LR problem, we will then obtain sub-

problem 8. In subproblem 8, there are 2 multipliers µ3
j and µ5

j . Both of them can be either
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positive or negative due to relaxing equality constraints.

In order to determine the concavity or convexity of subproblem 8, we have to take

both multipliers µ3
j and µ5

j into consideration. A log function by itself is a concave func-

tion, so µ3
j and µ5

j can both play an important role in deciding whether the function is

concave or convex.

To easily and effectively get the convexity or concavity of this function, we first find

the extreme point by finding points with derivative = 0 and will obtain a objective value

for it. Later we can compare the objective value with the point of derivative = 0 with

the objective value of the boundary points of rj . If the objective value with the point of

derivative = 0 is smaller than the objective values of the boundary points of rj , then the

function is a convex function. We can then examine whether the point with derivative = 0

falls in the legal range of rj , if yes then we can return it as our solution to rj . If the point

with derivative = 0 doesn’t appears in the legal range of rj and is considered infeasible,

we will return the boundary point of rj with a smaller objective value as our solution to

rj .

On the contrary, if the objective value with the point of derivative = 0 is bigger than

the objective value of the boundary points of rj , then the function is concave. Therefore,

we can compare the objective values of the boundary points and the one with smaller

objective value will be our solution to rj .
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We separate rj from the objective function and derive a subproblem shown as formula

(4.53) and constraint shown as formula (4.54) .

Table 4.8: Subproblem 8(related to decision variable rj)

Objective function :

Zsub8 = min
∑
j∈S

[
Cb

j (rj,m)

m
+ µ3

j logCa
j (rj,m) + µ5

j logCb
j (rj,m)] (4.53)

Subject to :

rj ∈ Rj ∀j ∈ S (4.54)

Algorithm 8: Algorithm for Subproblem 8
for each node j do

Calculate the objective value at rj = maxRj denoted as V1
Calculate the objective value at rj = minRj denoted as V2
partial differential to rj
Cb

j
′(rj,m) + µ3

j

Ca
j
′(rj ,m)

Ca
j (rj ,m) ln e + µ5

j

Ca
j
′(rj ,m)

Ca
j (rj ,m) ln e = 0

get solution to rj
if Zsub8(rj,m) ≤ min(V1, V2) then

Zsub8 = convex
if rj is feasible then

r[j] = rj
else

set r[j] to min(V1, V2), which is the boundary value with smaller
objective value

end
else

set r[j] to min(V1, V2), which is the boundary value with smaller
objective value

end
end
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4.2.2.9 Subproblem 9(related to decision variable Zij)

By extracting all decision variables Zij in the LR problem, we will then obtain sub-

problem 9. In subproblem 9, there exists multiplierµ1
ij . It can be either positive or negative

due to relaxing equality constraints.

In order to determine the concavity or convexity of subproblem 9, we have to take

multiplier µ1
ij into consideration. A log function by itself is a concave function, so µ1

ij play

an important role in deciding whether the function is concave or convex.

We separate Zij from the objective function and derive a subproblem shown as for-

mula (4.55) and constraint shown as formula (4.56) .

Table 4.9: Subproblem 9(related to decision variable Zij)

Objective function :

Zsub9 = min
∑
i∈S

∑
j∈S

(−µ1
ij logZij) (4.55)

Subject to :

max{ϵ3, 1

αij

} ≤ Zij ≤ 1 ∀i ∈ S, j ∈ S (4.56)
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Algorithm 9: Algorithm for Subproblem 9
for each node i do

for each node j do
Calculate the objective value at Zij = max{ϵ3, 1

αij
} denoted as V1

Calculate the objective value at Zij = 1 denoted as V2
partial differential to Zij

−µ1
ij

1
Zij ln e = 0

get solution to Zij

if Zsub9(Zij) ≤ min(V1, V2) then
Zsub9 = convex
if Zij is feasible then

Z[i][j] = Zij

else
set Z[i][j] to min(V1, V2), which is the boundary value with
smaller objective value

end
else

set Z[i][j] to min(V1, V2), which is the boundary value with smaller
objective value

end
end

end

4.2.2.10 Subproblem 10(related to decision variable βij)

By extracting all decision variables βij in the LR problem, we will then obtain sub-

problem 10. In subproblem 10, µ6
ijcan be either positive or negative due to relaxing equal-

ity constraints.

In order to determine the concavity or convexity of subproblem 10, we have to take

the sign ofµ6
ij into consideration. Linear termwill not influence the concavity or convexity

of the formula, so µ6
ij will singly decide whether it is concave or convex. A log function

by itself is a concave function, so when µ6
ij is positive with a negative sign in front of it,

the formula will become a convex function. And when µ6
ij is negative, the formula will
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become a concave function.

The concavity or convexity of subproblem 10 will lead to different solution ap-

proaches. When µ6
ij is positive and therefore changing the coefficient of log term into

negative, find the point of βij where the slope is 0, which will be the minimum point of

the convex function. If the point of βij where the slope is 0 falls in the legal range, which

is the upper and lower bound of βij , then it is the solution to βij . However, if this point

does not fall in the legal range of βij , the upper and lower bound of βij will be substitute

into the objective function to see whichever is smaller, and it will be the solution to βij .

On the contrary, when µ6
ij is negative and therefore changing the coefficient of log

term into positive, then the function is concave. Hence, we can compare the objective

values of the boundary points and the one with smaller objective value will be our solution

to βij .

The minimum of βij occurs when Cτ
i (ri,m) is at its minimum. The maximum on

the other hand occurs when Cτ
i (ri,m) is at its maximum. We separate βij from the objec-

tive function and derive a subproblem shown as formula (4.57) and constraint shown as

formula (4.58) .
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Table 4.10: Subproblem 10(related to decision variable βij)

Objective function :

Zsub10 = min
∑
i∈S

∑
j∈S

(
βij
m

− µ6
ij log βij)

(4.57)

Subject to :

ϵ× Cτ
i (minRi,m) ≤ βij ≤ Cτ

i (maxRi,m) ∀i ∈ S, j ∈ S (4.58)

Algorithm 10: Algorithm for Subproblem 10
for each node i do

for each node j do
Calculate the objective value at βij = minCτ

i (ri,m) denoted as V1
Calculate the objective value at βij = maxCτ

i (ri,m) denoted as V2
partial differential to βij
1
m
− µ6

ij
1

βij ln e = 0

βij = µ6
ijm

if Zsub10(βij) ≤ min(V1, V2) then
Zsub10 = convex
if Zij is feasible then

Z[i][j] = Zij

else
set Z[i][j] to min(V1, V2), which is the boundary value with
smaller objective value

end
else

set Z[i][j] to min(V1, V2), which is the boundary value with smaller
objective value

end
end

end
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4.3 Model 2 : Many-to-One Relationship

4.3.1 Deal with Decision Variables

Constraint (3.18) contains of the product of decision variables [qi × (1 − qi)
n−1 ×

qκ × Piκ(ri,m)]. With these decision variables multiplying, two issues will occur. First,

the convexity of the function is being destroyed. Second, decision variables will not be

able to ”separate” or ”decomposed” when solving it. In order to deal with it,we let

qi × (1− qi)
n−1 × qκ × Piκ(ri,m) = Ziκ ∀i ∈ S,m ∈M (4.59)

Apply logarithmic operation on both sides and we relax it to our LR problem with

Lagrangian multiplier (µ1
i ).

⇒ log qi + (n− 1) log(1− qi) + log qκ + logPiκ(ri,m) = logZiκ ∀i ∈ S,m ∈M

(4.60)

so that we can avoid decision variables from multiplying.

We derived

⇒ϵn+2 ≤ Ziκ ≤ 1 ∀i ∈ S (4.61)

from formulation (4.59).

After the transposition in constraint (4.59) with the replacement of qi× (1− qi)n−1×

qκ × Piκ(ri,m) to Ziκ, we derive the formulation
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1

Ziκ

≤ 1 +
1

τi
(Tik − 1) ∀i ∈ S (4.62)

Let

1

Ziκ

≤ 1 +
1

τi
(Tik − 1) = αiκ ∀i ∈ S (4.63)

and derive

⇒ 1

αiκ

≤ Ziκ ∀i ∈ S (4.64)

which max { ϵ3, 1
αiκ

} is the underbound of Ziκ.

A LR problem is derived as formula (4.65) andwe can later keep applying Lagrangian

Relaxation:

min
∑
i∈S

[
Ca

i (ri,m)qi + Ca
κ(rκ,m)qκ + Cb

i (ri,m)(1− qi) + Cb
κ(rκ,m)(1− qκ) + Cτ

i (ri,m)qi
m

+ µ1
i (log qi + n log(1− qi) + log qκ + logPiκ(ri,m)− logZiκ)

]

(4.65)

where µ1
ij can be negative or positive.

The objective function is subject to :

ϵ ≤ qi ≤ 1 ∀i ∈ S (4.66)

ϵ ≤ qκ ≤ 1 (4.67)

ϵ ≤ Piκ(ri,m) ≤ 1 ∀i ∈ S,m ∈M (4.68)

max{ϵn+2,
1

αiκ

} ≤ Ziκ ≤ 1 ∀i ∈ S (4.69)

ri ∈ Ri ∀i ∈ S (4.70)
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rκ ∈ Rκ (4.71)

If λik << 1, which makes 1
λik

a great number, we can see this as a M/G/1 system

where transmission time is a random variable governed by a geometric distribution.

⇒ Prof : {n retransmission} = (1− Ziκ)
nZiκ ∀i ∈ S,m ∈M (4.72)

Each retransmission will cost us a timeout interval of τi, and the last transmission

that succeed will cost a time slot. Based on these assumption we can consider queuing

delay in variable αiκ.

If ri is a continuous variable then Ca
i (ri,m) will become a decision variable and we

might also need to deal with Ca
i (ri,m)× qi .

In model one (One-to-One Relationship), we can consider ri as a fixed number with

limited amount of values in different situations. But it won’t be a good solution when

model one is extended to model two (Many-to-One Relationship) and model three (Net-

work Tree Structure Relationship), so we will try to solve this problem in this section.

In model two (Many-to-One Relationship) and model three (Network Tree Structure

Relationship), there are many-to-one relationships with hub and aggregation of data flow.

If we consider ri as a fixed number with limited amount of values as we did in model

one (One-to-One Relationship), there occurs a problem called combinatorial explosion.

A combinatorial explosion happens when the combinatorics of the problem is affected by

the input, constraints, and bounds of the problem which leads to the rapid growth of the
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complexity of a problem.

Because of the combinatorial explosion, we can no longer see ri as a fixed number

with limited amount of values, we have to reformulate the objective function to keep de-

cision variables from multiplying. We will expand formula (4.65). But before expanding

it, we first let

(1− qi) = Ii ∀i ∈ S (4.73)

Where

0 ≤ Ii ≤ 1− ϵ ∀i ∈ S (4.74)

And then we expand formula (4.65) and get formula (4.75)

min
∑
i∈S

[
Ca

i (ri,m)qi + Ca
κ(rκ,m)qκ + Cb

i (ri,m)Ii + Cb
κ(rκ,m)− Cb

κ(rκ,m)qκ + Cτ
i (ri,m)qi

m

+
∑
i∈S

µ1
i (log qi + n log Ii + log qκ + logPiκ(ri,m)− logZiκ)

]

(4.75)

In order to deal withCa
i (ri,m)×qi, Ca

κ(rκ,m)×qκ, Cb
i (ri,m)×Ii andCb

κ(rκ,m)×qκ

, we let

Ca
i (ri,m)× qi = xi ∀i ∈ S (4.76)

Ca
κ(rκ,m)× qκ = xκ (4.77)

Cb
i (ri,m)× Ii = yi ∀i ∈ S (4.78)

Cb
κ(rκ,m)× qκ = yκ (4.79)
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Apply logarithmic operation on both sides, and we relax these constraints into our

LR problem with respective Lagrangian multipliers(µ).

⇒ logCa
i (ri,m) + log qi = logxi ∀i ∈ S (4.80)

⇒ logCa
κ(rκ,m) + log qκ = logxκ (4.81)

⇒ logCb
i (ri,m) + log Ii = log yi ∀i ∈ S (4.82)

⇒ logCb
κ(rκ,m) + log qκ = log yκ (4.83)

A new LR function is derived as the formula below:

min
∑
i∈S

(
xi + xκ + yi + Cb

κ(rκ,m)− yκ + Cτ
i (ri,m)qi

m

)

+
∑
i∈S

µ1
i (log qi + (n− 1) log Ii + log qκ + logPiκ(ri,m)− logZiκ)

+
∑
i∈S

µ2
i (logCa

i (ri,m) + log qi − logxi)

+ µ3(logCa
κ(rκ,m) + log qκ − logxκ)

+
∑
i∈S

µ4
i (logCb

i (ri,m) + log Ii − log yi)

+ µ5(logCb
κ(rκ,m) + log qκ − log yκ)

(4.84)

There still exists decision variables Cτ
i (ri,m) and qi multiplying, and we also have

to deal with it.

Let

Cτ
i (ri,m)qi = βik ∀i ∈ S,m ∈M (4.85)
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Apply logarithmic operation on both sides,

⇒ logCτ
i (ri,m) + log qi = log βiκ ∀i ∈ S,m ∈M (4.86)

Multiply both side with the upper bound and lower bound of Cτ
i (ri,m) and qi and

we obtain the upper and lower bound of βiκ as shown as formula(4.87).

Cτ
i (minRi,m)× ϵ ≤ βiκ ≤ Cτ

i (maxRi,m) ∀i ∈ S,m ∈M (4.87)

And because constraint (4.73) contains of 2 decision variables, we also relax it to our

LR problem with a multiplier µ7. The final form of LR problem in model 2(Many-to-One

Relationship) is shown as formula (4.88):

min
∑
i∈S

(
xi + xκ + yi + Cb

κ(rκ,m)− yκ + βik
m

)

+
∑
i∈S

µ1
i (log qi + (n− 1) log Ii + log qκ + logPiκ(ri,m)− logZiκ)

+
∑
i∈S

µ2
i (logCa

i (ri,m) + log qi − logxi)

+
∑
i∈S

µ3(logCa
κ(rκ,m) + log qκ − logxκ)

+
∑
i∈S

µ4
i (logCb

i (ri,m) + log Ii − log yi)

+
∑
i∈S

µ5(logCb
κ(rκ,m) + log qκ − log yκ)

+
∑
i∈S

µ6
i (logCτ

i (ri,m) + log qi − log βik)

+
∑
i∈S

µ7
i (Ii + qi − 1)

(4.88)
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The objective function is subject to :

ϵ ≤ qi ≤ 1 ∀i ∈ S (4.89)

0 ≤ Ii ≤ 1− ϵ ∀i ∈ S (4.90)

ϵ ≤ qκ ≤ 1 (4.91)

ϵ ≤ Piκ(ri,m) ≤ 1 ∀i ∈ S,m ∈M (4.92)

max{ϵn+2,
1

αiκ

} ≤ Ziκ ≤ 1 ∀i ∈ S (4.93)

ϵ2 ≤ xi ≤ Ca
i (ri,m) ∀i ∈ S (4.94)

ϵ2 ≤ xκ ≤ Ca
κ(rκ,m) (4.95)

ϵ2 ≤ yi ≤ Cb
i (ri,m) ∀i ∈ S (4.96)

ϵ2 ≤ yκ ≤ Cb
κ(rκ,m) (4.97)

Cτ
i (minRi,m)× ϵ ≤ βiκ ≤ Cτ

i (maxRi,m) ∀i ∈ S,m ∈M (4.98)

ri ∈ Ri ∀i ∈ S (4.99)

rκ ∈ Rκ (4.100)

Multipliers µ1, µ2, µ3, µ4, µ5, µ6 and µ7 respectively represents the vectors of {µ1
i },

{µ2
i }, {µ3}, {µ4

i }, {µ5}, {µ6
i }and , {µ7

i }. They are either positive or negative due to re-

laxing equality constraints.
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4.3.2 The LR Subproblems

To solve this Lagrangian Relaxation problem easily and effectively, we can divide

the problem into subproblems and solve them respectively. The way of decomposing this

Lagrangian Relaxation problem is by separating the decision variables. Each decision

variable will form a subproblem and because the original problem is a minimization prob-

lem, the subproblems will also be a minimization problem. Each subproblems will then

be dealt with different solution approaches base on their characteristics. This divide and

conquer technique will be introduce and implement in this section.

4.3.2.1 Subproblem 1(related to decision variable xi)

By extracting all decision variables xi in the LR problem, we will then obtain sub-

problem 1. In subproblem 1, µ2
i can be either positive or negative due to relaxing equality

constraints.

In order to determine the concavity or convexity of subproblem 1, we have to take the

sign of µ2
i into consideration. Linear term will not influence the concavity or convexity

of the formula, so µ2
i will singly decide whether it is concave or convex. A log function

by itself is a concave function, so when µ2
i is positive with a negative sign in front of it,

the formula will become a convex function. And when µ2
i is negative, the formula will

become a concave function.
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The concavity or convexity of subproblem 1will lead to different solution approaches.

When µ2
i is positive and therefore changing the coefficient of log term into negative, find

the point of xi where the slope is 0, which will be the minimum point of the convex func-

tion. If the point of xi where the slope is 0 falls in the legal range, which is the upper

and lower bound of xi, then it is the solution to xi. However, if this point does not fall in

the legal range of xi, the upper and lower bound of xi will be substitute into the objective

function to see whichever is smaller, and it will be the solution to xi.

On the contrary, when µ2
i is negative and therefore changing the coefficient of log

term into positive, then the function is concave. Hence, we can compare the objective

values of the boundary points and the one with smaller objective value will be our solution

to xi.

The minimum of xi occurs when both Ca
i (ri,m) and qi are at its minimum, which is

ϵ. The maximum on the other hand occurs when qi is 1. We separate xi from the objec-

tive function and derive a subproblem shown as formula (4.101) and constraint shown as

formula (4.102).
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Table 4.11: Subproblem 1(related to decision variable xi)

Objective function :

Zsub1 = min
∑
i∈S

(
xi
m

− µ2
i logxi) (4.101)

Subject to :

ϵ2 ≤ xi ≤ Ca
i (ri,m) ∀i ∈ S (4.102)

Algorithm 11: Algorithm for Subproblem 1
for each node i do

Calculate the objective value at xi = ϵ2 denoted as V1
Calculate the objective value at xi = Ca

i (ri,m) denoted as V2
if µ2

i ≥ 0 then
partial differential to xi
1
m
− µ2

i
1

xi ln e = 0

xi = µ2
im

if xi is not feasible then
set x[i] to min(V1, V2), which is the boundary value with smaller
objective value

end
else

set x[i] to min(V1, V2), which is the boundary value with smaller
objective value

end
end

4.3.2.2 Subproblem 2(related to decision variable xκ)

The procedure of dividing xκ from the LR problem is similar with xi. By extract-

ing all decision variables xκ in the LR problem, we will then obtain subproblem 2. In

subproblem 2, µ3 can be either positive or negative due to relaxing equality constraints.

In order to determine the concavity or convexity of subproblem 2, we have to take the

sign of µ3 into consideration. Linear term will not influence the concavity or convexity
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of the formula, so µ3 will singly decide whether it is concave or convex. A log function

by itself is a concave function, so when µ3 is positive with a negative sign in front of it,

the formula will become a convex function. And when µ3 is negative, the formula will

become a concave function.

The concavity or convexity of subproblem 2will lead to different solution approaches.

When µ3 is positive and therefore changing the coefficient of log term into negative, find

the point of xκ where the slope is 0, which will be the minimum point of the convex func-

tion. If the point of xκ where the slope is 0 falls in the legal range, which is the upper and

lower bound of xκ, then it is the solution to xκ. However, if this point does not fall in the

legal range of xκ, the upper and lower bound of xκ will be substitute into the objective

function to see whichever is smaller, and it will be the solution to xκ.

On the contrary, when µ3 is negative and therefore changing the coefficient of log

term into positive, then the function is concave. Hence, we can compare the objective

values of the boundary points and the one with smaller objective value will be our solution

to xκ.

The minimum of xκ occurs when both Ca
κ(rκ,m) and qκ are at its minimum, which

is ϵ. The maximum on the other hand occurs when qκ is 1. We separate xκ from the ob-

jective function and derive a subproblem shown as formula (4.103) and constraint shown

as formula (4.104).
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Table 4.12: Subproblem 2(related to decision variable xκ)

Objective function :

Zsub2 = min(
xκ
m

− µ3 logxκ) (4.103)

Subject to :

ϵ2 ≤ xκ ≤ Ca
κ(rκ,m) (4.104)

Algorithm 12: Algorithm for Subproblem 2
Calculate the objective value at xκ = ϵ2 denoted as V1
Calculate the objective value at xκ = Ca

k (rκ,m) denoted as V2
if µ3 ≥ 0 then

partial differential to xκ
1
m
− µ3 1

xκ ln e = 0

xκ = µ3m
if xκ is not feasible then

set x[k] to min(V1, V2), which is the boundary value with smaller
objective value

end
else

set x[k] to min(V1, V2), which is the boundary value with smaller objective
value

end

4.3.2.3 Subproblem 3(related to decision variable yi)

The procedure of dividing yi from the LR problem is similar with xi. By extracting all

decision variables yi in the LR problem, we will then obtain subproblem 3. In subproblem

3, µ4
i can be either positive or negative due to relaxing equality constraints.

In order to determine the concavity or convexity of subproblem 3, we have to take the

sign of µ4
i into consideration. Linear term will not influence the concavity or convexity
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of the formula, so µ4
i will singly decide whether it is concave or convex. A log function

by itself is a concave function, so when µ4
i is positive with a negative sign in front of it,

the formula will become a convex function. And when µ4
i is negative, the formula will

become a concave function.

The concavity or convexity of subproblem 3will lead to different solution approaches.

When µ4
i is positive and therefore changing the coefficient of log term into negative, find

the point of yi where the slope is 0, which will be the minimum point of the convex func-

tion. If the point of yi where the slope is 0 falls in the legal range, which is the upper

and lower bound of yi, then it is the solution to yi. However, if this point does not fall in

the legal range of yi, the upper and lower bound of yi will be substitute into the objective

function to see whichever is smaller, and it will be the solution to yi.

On the contrary, when µ4
i is negative and therefore changing the coefficient of log

term into positive, then the function is concave. Hence, we can compare the objective

values of the boundary points and the one with smaller objective value will be our solution

to yi.

The minimum of yi occurs when both Cb
i (ri,m) and qi are at its minimum, which is

ϵ. The maximum on the other hand occurs when qi is 1. We separate yi from the objec-

tive function and derive a subproblem shown as formula (4.105) and constraint shown as

formula (4.106).
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Table 4.13: Subproblem 3(related to decision variable yi)

Objective function :

Zsub3 = min
∑
i∈S

(
yi
m

− µ4
i log yi) (4.105)

Subject to :

ϵ2 ≤ yi ≤ Cb
i (ri,m) ∀i ∈ S (4.106)

Algorithm 13: Algorithm for Subproblem 3
for each node i do

Calculate the objective value at yi = ϵ2 denoted as V1
Calculate the objective value at yi = Cb

i (ri,m) denoted as V2
if µ4

i ≥ 0 then
partial differential to yi
1
m
− µ4

i
1

yi ln e = 0

yi = µ4
im

if yi is not feasible then
set y[i] to min(V1, V2), which is the boundary value with smaller
objective value

end
else

set y[i] to min(V1, V2), which is the boundary value with smaller
objective value

end
end

4.3.2.4 Subproblem 4(related to decision variable yκ)

The procedure of dividing yκ from the LR problem is similar with yκ. By extract-

ing all decision variables yκ in the LR problem, we will then obtain subproblem 4. In

subproblem 4, µ5 can be either positive or negative due to relaxing equality constraints.

In order to determine the concavity or convexity of subproblem 4, we have to take the

sign of µ5 into consideration. Linear term will not influence the concavity or convexity
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of the formula, so µ5 will singly decide whether it is concave or convex. A log function

by itself is a concave function, so when µ5 is positive with a negative sign in front of it,

the formula will become a convex function. And when µ5 is negative, the formula will

become a concave function.

The concavity or convexity of subproblem 4will lead to different solution approaches.

When µ5 is positive and therefore changing the coefficient of log term into negative, find

the point of yκ where the slope is 0, which will be the minimum point of the convex func-

tion. If the point of yκ where the slope is 0 falls in the legal range, which is the upper and

lower bound of yκ, then it is the solution to yκ. However, if this point does not fall in the

legal range of yκ, the upper and lower bound of yκ will be substitute into the objective

function to see whichever is smaller, and it will be the solution to yκ.

On the contrary, when µ5 is negative and therefore changing the coefficient of log

term into positive, then the function is concave. Hence, we can compare the objective

values of the boundary points and the one with smaller objective value will be our solution

to yκ.

The minimum of yκ occurs when both Cb
κ(rκ,m) and qκ are at its minimum, which

is ϵ. The maximum on the other hand occurs when qκ is 1. We separate yκ from the ob-

jective function and derive a subproblem shown as formula (4.107) and constraint shown

as formula (4.108).
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Table 4.14: Subproblem 4(related to decision variable yκ)

Objective function :

Zsub4 = min(−yκ
m

− µ5 log yκ) (4.107)

Subject to :

ϵ2 ≤ yκ ≤ Cb
κ(rκ,m) (4.108)

Algorithm 14: Algorithm for Subproblem 4
Calculate the objective value at yκ = ϵ2 denoted as V1
Calculate the objective value at yκ = Cb

k(rκ,m) denoted as V2
if µ5 ≥ 0 then

partial differential to yκ
− 1

m
− µ5 1

yκ ln e = 0

yκ = −µ5m
if yκ is not feasible then

set y[k] to min(V1, V2), which is the boundary value with smaller
objective value

end
else

set y[k] to min(V1, V2), which is the boundary value with smaller objective
value

end

4.3.2.5 Subproblem 5(related to decision variable qi)

By extracting all decision variables qi in the LR problem, we will then obtain sub-

problem 5. In subproblem 5, there are 4 multipliers µ1
i ,µ2

i ,µ6
i and µ7

i and all of them can

be either positive or negative due to relaxing equality constraints.

In order to determine the concavity or convexity of subproblem 5, we have to take

the sign of µ1
i ,µ2

i and µ6
i into consideration, but not µ7

i because qi is linear so it won’t affect
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the concavity or convexity of subproblem 5. A log function by itself is a concave function,

so µ1
i ,µ2

i and µ6
i can all play an important role in deciding whether the function is concave

or convex.

In this section, we developed a way to easily get the convexity or concavity of this

function. We first find the extreme point by finding points with derivative = 0 and will

obtain a objective value for it. Later we can compare the objective value with the point of

derivative = 0 with the objective value of the boundary points of qi. If the objective value

with the point of derivative = 0 is smaller than the objective values of the boundary points

of qi, then the function is a convex function. We can then examine whether the point with

derivative = 0 falls in the legal range of qi, if yes then we can return it as our solution to qi.

If the point with derivative = 0 doesn’t appears in the legal range of qi and is considered

infeasible, we will return the boundary point of qi with a smaller objective value as our

solution to qi.

On the contrary, if the objective value with the point of derivative = 0 is bigger than

the objective value of the boundary points of qi, then the function is concave. Therefore,

we can compare the objective values of the boundary points and the one with smaller

objective value will be our solution to qi.

We separate qi from the objective function and derive a subproblem shown as formula

(4.109) and constraint shown as formula (4.110).
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Table 4.15: Subproblem 5(related to decision variable qi)

Objective function :

Zsub5 = min
∑
i∈S

(µ1
i log qi + µ2

i log qi + µ6 log qi + µ7
i qi) (4.109)

Subject to :

ϵ ≤ qi ≤ 1 ∀i ∈ S (4.110)

Algorithm 15: Algorithm for Subproblem 5
for each node i do

Calculate the objective value at qi = ϵ denoted as V1
Calculate the objective value at qi = 1 denoted as V2
partial differential to qi
µ1
i

1
qi ln e + µ2

i
1

qi ln e + µ6
i

1
qi ln e + µ7

i = 0
µ1
i+µ2

i+µ6
i

qi
= −µ7

i

qi = −µ1
i+µ2

i+µ6
i

µ7
i

if Zsub5(qi) ≤ min(V1, V2) then
Zsub5 = convex
if qi is feasible then

q[i] = qi
else

set q[i] to min(V1, V2), which is the boundary value with smaller
objective value

end
else

set q[i] to min(V1, V2), which is the boundary value with smaller
objective value

end
end

4.3.2.6 Subproblem 6(related to decision variable qκ)

By extracting all decision variables qκ in the LR problem, we will then obtain sub-

problem 6. In subproblem 6, there are 3 multipliers µ1
i , µ3

k and µ5
k and all of them can be

either positive or negative due to relaxing equality constraints.
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In order to determine the concavity or convexity of subproblem 6, we have to take

the sign of all 3 multipliers µ1
i , µ3

k and µ5
k into consideration. A log function by itself is a

concave function, so µ1
i , µ3

k and µ5
k can all play an important role in deciding whether the

function is concave or convex.

To get the convexity or concavity of this function, we first find the extreme point by

finding points with derivative = 0 and will obtain a objective value for it. Later we can

compare the objective value with the point of derivative = 0 with the objective value of the

boundary points of qκ. If the objective value with the point of derivative = 0 is smaller than

the objective values of the boundary points of qκ, then the function is a convex function.

We can then examine whether the point with derivative = 0 falls in the legal range of qκ,

if yes then we can return it as our solution to qκ. If the point with derivative = 0 doesn’t

appears in the legal range of qκ and is considered infeasible, we will return the boundary

point of qκ with a smaller objective value as our solution to qκ.

On the contrary, if the objective value with the point of derivative = 0 is bigger than

the objective value of the boundary points of qκ, then the function is concave. Therefore,

we can compare the objective values of the boundary points and the one with smaller

objective value will be our solution to qκ.

We separate qκ from the objective function and derive a subproblem shown as formula

(4.111) and constraint shown as formula (4.112).
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Table 4.16: Subproblem 6(related to decision variable qκ)

Objective function :

Zsub6 = min
∑
i∈S

(µ1
i log qκ + µ3

k log qκ + µ5
k log qκ) (4.111)

Subject to :

ϵ ≤ qκ ≤ 1 (4.112)

Algorithm 16: Algorithm for Subproblem 6
Calculate the objective value at qκ = ϵ denoted as V1
Calculate the objective value at qκ = 1 denoted as V2
partial differential to qκ
µ1
i

1
qκ ln e + µ3

k
1

qκ ln e + µ5
k

1
qκ ln e = 0

µ1
i+µ3

k+µ5
k

qκ
= 0

get solution to qκ
if Zsub6(qκ) ≤ min(V1, V2) then

Zsub6 = convex
if qκ is feasible then

qk = qκ
else

set qk to min(V1, V2), which is the boundary value with smaller objective
value

end
else

set qk to min(V1, V2), which is the boundary value with smaller objective
value

end

4.3.2.7 Subproblem 7(related to decision variable ri)

By extracting all decision variables ri in the LR problem, we will then obtain sub-

problem 7. In subproblem 7, there are 4 multipliers µ1
i , µ2

i , µ4
i and µ6

i . All of them can be

either positive or negative due to relaxing equality constraints.

In order to determine the concavity or convexity of subproblem 7, we have to take
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the sign of all 4 multipliers µ1
i , µ2

i , µ4
i and µ6

i into consideration. A log function by itself is

a concave function, so µ1
i , µ2

i , µ4
i and µ6

i can all play an important role in deciding whether

the function is concave or convex.

To easily and effectively get the convexity or concavity of this function, we first find

the extreme point by finding points with derivative = 0 and will obtain a objective value

for it. Later we can compare the objective value with the point of derivative = 0 with

the objective value of the boundary points of ri. If the objective value with the point of

derivative = 0 is smaller than the objective values of the boundary points of ri, then the

function is a convex function. We can then examine whether the point with derivative = 0

falls in the legal range of ri, if yes then we can return it as our solution to ri. If the point

with derivative = 0 doesn’t appears in the legal range of ri and is considered infeasible,

we will return the boundary point of ri with a smaller objective value as our solution to ri.

On the contrary, if the objective value with the point of derivative = 0 is bigger than

the objective value of the boundary points of ri, then the function is concave. Therefore,

we can compare the objective values of the boundary points and the one with smaller

objective value will be our solution to ri.

We separate ri from the objective function and derive a subproblem shown as formula

(4.113) and constraint shown as formula (4.114) and formula (4.115).
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Table 4.17: Subproblem 7(related to decision variable ri)

Objective function :

Zsub7 = min
∑
i∈S

[
µ1
i logPiκ(ri,m) + µ2

i logCa
i (ri,m) + µ4

i logCb
i (ri,m) + µ6

iC
τ
i (ri,m)

]
(4.113)

Subject to :

ϵ ≤ Piκ(ri,m) ≤ 1 ∀i ∈ S (4.114)

ri ∈ Ri ∀i ∈ S (4.115)

Algorithm 17: Algorithm for Subproblem 7
for each node i do

Calculate the objective value at ri = maxRi denoted as V1
Calculate the objective value at ri = minRi denoted as V2
Get solution of ri where Zsub7 has the smallest value
if Zsub7(ri,m) ≤ min(V1, V2) then

Zsub7 = convex
if ri is feasible then

r[i] = ri
else

set r[i] to min(V1, V2), which is the boundary value with smaller
objective value

end
else

set r[i] to min(V1, V2), which is the boundary value with smaller
objective value

end
end

4.3.2.8 Subproblem 8(related to decision variable rκ)

By extracting all decision variables rκ in the LR problem, we will then obtain sub-

problem 8. In subproblem 8, there are 2 multipliers µ3
k and µ5

k. Both of them can be either

positive or negative due to relaxing equality constraints.
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In order to determine the concavity or convexity of subproblem 8, we have to take

both multipliers µ3
k and µ5

k into consideration. A log function by itself is a concave func-

tion, so µ3
k and µ5

k can both play an important role in deciding whether the function is

concave or convex.

To easily and effectively get the convexity or concavity of this function, we first find

the extreme point by finding points with derivative = 0 and will obtain a objective value

for it. Later we can compare the objective value with the point of derivative = 0 with

the objective value of the boundary points of rκ. If the objective value with the point of

derivative = 0 is smaller than the objective values of the boundary points of rκ, then the

function is a convex function. We can then examine whether the point with derivative = 0

falls in the legal range of rκ, if yes then we can return it as our solution to rκ. If the point

with derivative = 0 doesn’t appears in the legal range of rκ and is considered infeasible,

we will return the boundary point of rκ with a smaller objective value as our solution to

rκ.

On the contrary, if the objective value with the point of derivative = 0 is bigger than

the objective value of the boundary points of rκ, then the function is concave. Therefore,

we can compare the objective values of the boundary points and the one with smaller

objective value will be our solution to rκ.

We separate rj from the objective function and derive a subproblem shown as formula
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(4.116) and constraint shown as formula (4.117) .

Table 4.18: Subproblem 8(related to decision variable rκ)

Objective function :

Zsub8 = min
Cb

k(rκ,m)

m
+ µ3

k logCa
k (rκ,m) + µ5

k logCb
k(rκ,m) (4.116)

Subject to :

rκ ∈ Rκ (4.117)

Algorithm 18: Algorithm for Subproblem 8
Calculate the objective value at rκ = maxRκ denoted as V1
Calculate the objective value at rκ = minRκ denoted as V1
partial differential to rκ
Cb

k
′(rκ,m)

m
+ µ3

k
Ca

k
′(rκ,m)

Ca
k (rκ,m) ln e + µ5

k
Ca

k
′(rκ,m)

Ca
k (rκ,m) ln e = 0

get solution to rκ
if Zsub8(rκ,m) ≤ min(V1, V2) then

Zsub8 = convex
if rκ is feasible then

rk = rκ
else

set rk to min(V1, V2), which is the boundary value with smaller objective
value

end
else

set rk to min(V1, V2), which is the boundary value with smaller objective
value

end
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4.3.2.9 Subproblem 9(related to decision variable Ziκ)

By extracting all decision variables Ziκ in the LR problem, we will then obtain sub-

problem 9. In subproblem 9, there exists multiplier µ1
i . It can be either positive or negative

due to relaxing equality constraints.

In order to determine the concavity or convexity of subproblem 9, we have to take

multiplier µ1
i into consideration. A log function by itself is a concave function, so µ1

i can

both an important role in deciding whether the function is concave or convex.

We separate Ziκ from the objective function and derive a subproblem shown as for-

mula (4.118) and constraint shown as formula (4.119) .

Table 4.19: Subproblem 9(related to decision variable Ziκ)

Objective function :

Zsub9 = min
∑
i∈S

(−µ1
i logZiκ) (4.118)

Subject to :

max{ϵn+2,
1

αiκ

} ≤ Ziκ ≤ 1 ∀i ∈ S (4.119)
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Algorithm 19: Algorithm for Subproblem 9
for each node i do

Calculate the objective value at Ziκ = max{ϵn+2, 1
αiκ

} denoted as V1
Calculate the objective value at Ziκ = 1 denoted as V2
partial differential to Ziκ

−µ1
i

1
Ziκ ln e = 0

get solution to Ziκ

if Zsub9(Ziκ) ≤ min(V1, V2) then
Zsub9 = convex
if Ziκ is feasible then

Z[i] = Ziκ

else
set Z[i] to min(V1, V2), which is the boundary value with smaller
objective value

end
else

set Z[i] to min(V1, V2), which is the boundary value with smaller
objective value

end
end

4.3.2.10 Subproblem 10(related to decision variable βiκ)

The procedure of dividing βiκ from the LR problem is similar with xi. By extract-

ing all decision variables βiκ in the LR problem, we will then obtain subproblem 10. In

subproblem 10, µ6
i can be either positive or negative due to relaxing equality constraints.

In order to determine the concavity or convexity of subproblem 3, we have to take the

sign of µ6
i into consideration. Linear term will not influence the concavity or convexity

of the formula, so µ6
i will singly decide whether it is concave or convex. A log function

by itself is a concave function, so when µ6
i is positive with a negative sign in front of it,

the formula will become a convex function. And when µ6
i is negative, the formula will

become a concave function.
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The concavity or convexity of subproblem 10 will lead to different solution ap-

proaches. When µ6
i is positive and therefore changing the coefficient of log term into

negative, find the point of βiκ where the slope is 0, which will be the minimum point of

the convex function. If the point of βiκ where the slope is 0 falls in the legal range, which

is the upper and lower bound of βiκ, then it is the solution to βiκ. However, if this point

does not fall in the legal range of βiκ, the upper and lower bound of βiκ will be substitute

into the objective function to see whichever is smaller, and it will be the solution to βiκ.

On the contrary, when µ6
i is negative and therefore changing the coefficient of log

term into positive, then the function is concave. Hence, we can compare the objective

values of the boundary points and the one with smaller objective value will be our solution

to βiκ.

The minimum of βiκ occurs when both all Cτ
i (ri,m), 1

Ziκ
and qi are at its minimum,

which is Cτ
i (minRi,m)× ϵ. The maximum on the other hand occurs when Cτ

i (ri,m), 1
Ziκ

and qi are at its maximum. We separate βiκ from the objective function and derive a

subproblem shown as formula (4.120) and constraint shown as formula (4.121).
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Table 4.20: Subproblem 10(related to decision variable βiκ)

Objective function :

Zsub10 = min
∑
i∈S

(
βiκ
m

− µ6
i log βiκ) (4.120)

Subject to :

Cτ
i (minRi,m)× ϵ ≤ βiκ ≤ Cτ

i (maxRi,m) ∀i ∈ S,m ∈M (4.121)

Algorithm 20: Algorithm for Subproblem 10
for each node i do

Calculate the objective value at βiκ = Cτ
i (minRi,m)× ϵ denoted as V1

Calculate the objective value at βiκ = Cτ
i (maxRi,m) denoted as V2

if µ6
i ≥ 0 then
partial differential to βiκ
1
m
− µ6

i
1

βiκ ln e = 0

βiκ = µ6
im

if βiκ is not feasible then
set β[i] to min(V1, V2), which is the boundary value with smaller
objective value

end
else

set β[i] to min(V1, V2), which is the boundary value with smaller
objective value

end
end

4.3.2.11 Subproblem 11(related to decision variable Ii)

By extracting all decision variables Ii in the LR problem, we will then obtain sub-

problem 11. In subproblem 11, there are 2 multipliers µ1
i and µ4

i . µ1
i and µ4

i can both be

either positive or negative due to relaxing equality constraints.

In order to determine the concavity or convexity of subproblem 11, we have to take

both multipliers µ1
i and µ4

i into consideration. Linear term will not influence the concavity
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or convexity of the formula so we don’t have to look at µ7
i . A log function by itself is a

concave function, so µ1
i and µ4

i will both play an important role in deciding whether it is

concave or convex.

To easily and effectively get the convexity or concavity of this function, we first find

the extreme point by finding points with derivative = 0 and will obtain a objective value

for it. Later we can compare the objective value with the point of derivative = 0 with

the objective value of the boundary points of Ii. If the objective value with the point of

derivative = 0 is smaller than the objective values of the boundary points of Ii, then the

function is a convex function. We can then examine whether the point with derivative =

0 falls in the legal range of Ii, if yes then we can return it as our solution to Ii. If the point

with derivative = 0 doesn’t appears in the legal range of Ii and is considered infeasible,

we will return the boundary point of Ii with a smaller objective value as our solution to Ii.

The minimum of Ii occurs when qi is at its maximum, which is 0. The maximum

on the other hand occurs when qi is at its minimum, which is 1. We separate Ii from

the objective function and derive a subproblem shown as formula (4.122) and constraint

shown as formula (4.123) .
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Table 4.21: Subproblem 10(related to decision variable Ii)

Objective function :

Zsub11 = min
∑
i∈S

(µ1
i (n− 1) log Ii + µ4

i log Ii + µ7
i Ii) (4.122)

Subject to :

0 ≤ Ii ≤ 1− ϵ ∀i ∈ S (4.123)

Algorithm 21: Algorithm for Subproblem 11
for each node i do

Calculate the objective value at Ii = 0 denoted as V1
Calculate the objective value at Ii = 1− ϵ denoted as V2
partial differential to Ii
µ1
i
n−1
Ii ln e + µ4

i
1

Ii ln e + µ7
i = 0

Ii = − (n−1)µ1
i+µ4

i

µ7
i

if Zsub11(Ii) ≤ min(V1, V2) then
Zsub11 = convex
if Ii is feasible then

I[i] = Ii
else

set I[i] to min(V1, V2), which is the boundary value with smaller
objective value

end
else

set I[i] to min(V1, V2), which is the boundary value with smaller
objective value

end
end

4.4 Model 3 : Network Tree Structure Relationship

4.4.1 Deal with Decision Variables

Constraint (3.31) contains of the product of decision variables. We first take qθi(1−

qθi)
(v−1)qκRi

Pθi,κi
(rθi ,m) and qκSi

(1− qκSi
)(n−1)qξPκi,ξ(rκi

,m) into consideration. With
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these decision variables multiplying, two issues will occur. First, the convexity of the

function is being destroyed . Second, decision variables will not be able to ”separate” or

”decomposed” when solving it. In order to deal with it,we let

qθi(1− qθi)
(v−1)qκRi

Pθi,κi
(rθi ,m) = Zθi,κi

∀i ∈ N,m ∈M (4.124)

qκSi
(1− qκSi

)(n−1)qξPκi,ξ(rκi
,m) = Zκi,ξ ∀i ∈ N,m ∈M (4.125)

Apply logarithmic operation on both sides and we relax them to our LR problem with

Lagrangian multiplier (µ1
i and µ2

i ).

⇒ log qθi + (v − 1) log(1− qθi) + log qκRi
+ logPθi,κi

(rθi ,m) = logZθi,κi
∀i ∈ N,m ∈M

(4.126)⇒ log qκSi
+ (n− 1) log(1− qκSi

) + log qξ + logPκi,ξ(rκi
,m) = logZκi,ξ ∀i ∈ N,m ∈M

(4.127)

so that we can avoid decision variables from multiplying.

We derived

⇒ϵv+2 ≤ Zθi,κi
≤ 1 ∀i ∈ N (4.128)

from formulation (4.124).

We also derived

⇒ϵn+2 ≤ Zκi,ξ ≤ 1 ∀i ∈ N (4.129)

from formulation (4.125).

Before we deal with other decision variables multiplying, we first let
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(1− qθi) = Iθi ∀i ∈ N (4.130)

(1− qκRi
) = IκRi

∀i ∈ N (4.131)

(1− qκSi
) = IκSi

∀i ∈ N (4.132)

Where

0 ≤ Iθi ≤ 1− ϵ ∀i ∈ N (4.133)

0 ≤ IκRi
≤ 1− ϵ ∀i ∈ N (4.134)

0 ≤ IκSi
≤ 1− ϵ ∀i ∈ N (4.135)

In order to deal withCa
θi
(rθi ,m)×qθi , Ca

κi
(rκi

,m)×qκRi
, Ca

ξ (rξ,m)×qξ, Cb
θi
(rθi ,m)×

Iθi , C
b
κi
(rκi

,m)× Iκi
and Cb

ξ(rξ,m)× qξ , we let

Ca
θi
(rθi ,m)× qθi = xθi ∀i ∈ N,m ∈M (4.136)

Ca
κi
(rκi

,m)× qκRi
= xκi

∀i ∈ N,m ∈M (4.137)

Ca
ξ (rξ,m)× qξ = xξ ∀m ∈M (4.138)

Cb
θi
(rθi ,m)× Iθi = yθi ∀i ∈ N,m ∈M (4.139)

Cb
κi
(rκi

,m)× IκRi
= yκi

∀i ∈ N,m ∈M (4.140)

Cb
ξ(rξ,m)× qξ = yξ ∀m ∈M (4.141)

Where
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ϵ2 ≤ xθi ≤ Ca
θi
(rθi ,m) ∀i ∈ N,m ∈M (4.142)

ϵ2 ≤ xκi
≤ Ca

κi
(rκi

,m) ∀i ∈ N,m ∈M (4.143)

ϵ2 ≤ xξ ≤ Ca
ξ (rξ,m) ∀m ∈M (4.144)

ϵ2 ≤ yθi ≤ Cb
θi
(rθi ,m) ∀i ∈ N,m ∈M (4.145)

ϵ2 ≤ yκi
≤ Cb

κi
(rκi

,m) ∀i ∈ N,m ∈M (4.146)

ϵ2 ≤ yξ ≤ Cb
ξ(rξ,m) ∀m ∈M (4.147)

Apply logarithmic operation on both sides, and we relax these constraints into our

LR problem with respective Lagrangian multipliers(µ).

⇒ logCa
θi
(rθi ,m) + log qθi = logxθi ∀i ∈ N,m ∈M (4.148)

⇒ logCa
κi
(rκi

,m) + log qκRi
= logxκi

∀i ∈ N,m ∈M (4.149)

⇒ logCa
ξ (rξ,m) + log qξ = logxξ ∀m ∈M (4.150)

⇒ logCb
θi
(rθi ,m) + log Iθi = log yθi ∀i ∈ N,m ∈M (4.151)

⇒ logCb
κi
(rκi

,m) + log IκRi
= log yκi

∀i ∈ N,m ∈M (4.152)

⇒ logCb
ξ(rξ,m) + log qξ = log yξ ∀m ∈M (4.153)

A new LR function is derived as the formula below:
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min
∑
i∈N

(
xθi × v + yθi × v + Cτ

θi
(rθi ,m)qθi × v + xκi

+ yκi
+ Cτ

κi
(rκi

,m)qκSi
+ xξ + Cb

ξ(rξ,m)− yξ

m

)

+
∑
i∈N

µ1
i (log qθi + (v − 1) log Iθi + log qκRi

+ logPθi,κi
(rθi ,m)− logZθi,κi

)

+
∑
i∈N

µ2
i (log qκSi

+ (n− 1) log IκSi
+ log qξ + logPκi,ξ(rκi

,m)− logZκi,ξ)

+
∑
i∈N

µ3
i (logCa

θi
(rθi ,m) + log qθi − logxθi)

+
∑
i∈N

µ4
i (logCa

κi
(rκi

,m) + log qκi
− logxκi

)

+
∑
i∈N

µ5(logCa
ξ (rξ,m) + log qξ − logxξ)

+
∑
i∈N

µ6
i (logCb

θi
(rθi ,m) + log Iθi − log yθi)

+
∑
i∈N

µ7
i (logCb

κi
(rκi

,m) + log IκRi
− log yκi

)

+
∑
i∈N

µ8(logCb
ξ(rξ,m) + log qξ − log yξ)

(4.154)

There still existsCτ
θi
(rθi ,m)qθi andCτ

κi
(rκi

,m)qκSi
which contains decision variables

multiplying, so we also have to deal with it.

Let

Cτ
θi
(rθi ,m)qθi = βθi,κi

∀i ∈ N,m ∈M (4.155)

Cτ
κi
(rκi

,m)qκSi
= βκi,ξ ∀i ∈ N,m ∈M (4.156)

Apply logarithmic operation on both sides,

⇒ logCτ
θi
(rθi ,m) + log qθi = log βθi,κi

∀i ∈ N,m ∈M (4.157)
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⇒ logCτ
κi
(rκi

,m) + log qκSi
= log βκi,ξ ∀i ∈ N,m ∈M (4.158)

Multiply both side with the upper bound and lower bound ofCτ
θi
(rθi ,m), Cτ

κi
(rκi

,m)

and qθi , qκSi
and we obtain the upper and lower bound of βθi,κi

and βκi,ξ as shown as

formula(4.159) and (4.160).

Cτ
θi
(minRθi ,m)× ϵ ≤ βθi,κi

≤ Cτ
θi
(maxRθi ,m) ∀i ∈ N,m ∈M (4.159)

Cτ
κi
(minRκi

,m)× ϵ ≤ βκi,ξ ≤ Cτ
κi
(maxRκi

,m) ∀i ∈ N,m ∈M (4.160)

Now that we’ve dealt with the products of decision variables in the objective function,

we also have to deal with the one in constraint (3.31) . We replace qθi(1−qθi)(v−1)qκRi
Pθi,κi

(rθi ,m)

with Zθi,κi
and qκSi

(1− qκSi
)(n−1)qξPκi,ξ(rκi

,m) with Zκi,ξ in constraint (3.31) as shown

as formula(4.161)

τθi

[
1

Zθi,κi

− 1

]
+ τκi

[
1

Zκi,ξ

− 1

]
+ 2 ≤ Tθi,ξ ∀i ∈ N,m ∈M (4.161)

⇒ τθi
Zθi,κi

− τθi +
τκi

Zκi,ξ

− τκi
+ 2 ≤ Tθi,ξ ∀i ∈ N,m ∈M (4.162)

⇒ τθiZκi,ξ + τκi
Zθi,κi

Zθi,κi
× Zκi,ξ

− τθi − τκi
+ 2 ≤ Tθi,ξ ∀i ∈ N,m ∈M (4.163)

Let

Zθi,κi
× Zκi,ξ = Dθi,ξ ∀i ∈ N (4.164)

Apply logarithmic operation on both sides,

⇒ logZθi,κi
+ logZκi,ξ = logDθi,ξ ∀i ∈ N (4.165)

ϵn+v+4 ≤ Dθi,ξ ≤ 1 ∀i ∈ N (4.166)
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Replace Zθi,κi
× Zκi,ξ with Dθi,ξ in formula (4.163).

τθiZκi,ξ + τκi
Zθi,κi

Dθi,ξ

− τθi − τκi
+ 2 ≤ Tθi,ξ ∀i ∈ N (4.167)

⇒ τθiZκi,ξ + τκi
Zθi,κi

− τθiDθi,ξ − τκi
Dθi,ξ + 2Dθi,ξ ≤ Dθi,ξTθi,ξ ∀i ∈ N (4.168)

As for the throughput constraint (3.34), we replace qθi(1− qθi)(v−1)qκRi
Pθi,κi

(rθi ,m)

with Zθi,κi
and qκSi

(1− qκSi
)(n−1)qξPκi,ξ(rκi

,m) withZθi,κi
and Zκi,ξ. We get a new con-

straint as follow:

vZθi,κi
− Zκi,ξ ≤ 0 ∀i ∈ N (4.169)

After dealing with the decision variables that multiplies, we relax formula (4.130),

formula (4.131), formula (4.157), formula (4.158), formula (4.165), formula (4.168) and

formula (4.169) with respective lagrangian multipliers.

The final LR function is derived as the formula below:
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min
∑
i∈N

(
xθi × v + yθi × v + βθi,κi

× v + xκi
+ yκi

+ βκi,ξ + xξ + Cb
ξ(rξ,m)− yξ

m

)

+
∑
i∈N

µ1
i (log qθi + (v − 1) log Iθi + log qκRi

+ logPθi,κi
(rθi ,m)− logZθi,κi

)

+
∑
i∈N

µ2
i (log qκSi

+ (n− 1) log IκSi
+ log qξ + logPκi,ξ(rκi

,m)− logZκi,ξ)

+
∑
i∈N

µ3
i (logCa

θi
(rθi ,m) + log qθi − logxθi)

+
∑
i∈N

µ4
i (logCa

κi
(rκi

,m) + log qκRi
− logxκi

)

+
∑
i∈N

µ5(logCa
ξ (rξ,m) + log qξ − logxξ)

+
∑
i∈N

µ6
i (logCb

θi
(rθi ,m) + log Iθi − log yθi)

+
∑
i∈N

µ7
i (logCb

κi
(rκi

,m) + log IκRi
− log yκi

)

+
∑
i∈N

µ8(logCb
ξ(rξ,m) + log qξ − log yξ)

+
∑
i∈N

µ9
i (Iθi + qθi − 1)

+
∑
i∈N

µ10
i (IκRi

+ qκRi
− 1)

+
∑
i∈N

µ11
i (IκSi

+ qκSi
− 1)

+
∑
i∈N

µ12
i (logCτ

θi
(rθi ,m) + log qθi − log βθi,κi

)

+
∑
i∈N

µ13
i (logCτ

κi
(rκi

,m) + log qκSi
− log βκi,ξ)

+
∑
i∈N

µ14
i (logZθi,κi

+ logZκi,ξ − logDθi,ξ)

+
∑
i∈N

µ15
i (τθiZκi,ξ + τκi

Zθi,κi
− τθiDθi,ξ − τκi

Dθi,ξ + 2Dθi,ξ −Dθi,ξTθi,ξ)

+
∑
i∈N

µ16
i (vZθi,κi

− Zκi,ξ)

(4.170)
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The objective function is subject to :

ϵ ≤ qθi ≤ 1 ∀i ∈ N (4.171)

ϵ ≤ qκRi
, qκSi

≤ 1 ∀i ∈ N (4.172)

ϵ ≤ qξ ≤ 1 (4.173)

0 ≤ Iθi ≤ 1− ϵ ∀i ∈ N (4.174)

0 ≤ IκRi
≤ 1− ϵ ∀i ∈ N (4.175)

0 ≤ IκSi
≤ 1− ϵ ∀i ∈ N (4.176)

ϵ ≤ Pθi,κi
(rθi ,m) ≤ 1 ∀i ∈ N,m ∈M (4.177)

ϵ ≤ Pκi,ξ(rκi
,m) ≤ 1 ∀i ∈ N,m ∈M (4.178)

ϵv+2 ≤ Zθi,κi
≤ 1 ∀i ∈ N (4.179)

ϵn+2 ≤ Zκi,ξ ≤ 1 ∀i ∈ N (4.180)

ϵ2 ≤ xθi ≤ Ca
θi
(rθi ,m) ∀i ∈ N,m ∈M (4.181)

ϵ2 ≤ xκi
≤ Ca

κi
(rκi

,m) ∀i ∈ N,m ∈M (4.182)

ϵ2 ≤ xξ ≤ Ca
ξ (rξ,m) ∀m ∈M (4.183)

ϵ2 ≤ yθi ≤ Cb
θi
(rθi ,m) ∀i ∈ N,m ∈M (4.184)

ϵ2 ≤ yκi
≤ Cb

κi
(rκi

,m) ∀i ∈ N,m ∈M (4.185)

ϵ2 ≤ yξ ≤ Cb
ξ(rξ,m) ∀m ∈M (4.186)
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Cτ
θi
(minRθi ,m)× ϵ ≤ βθi,κi

≤ Cτ
θi
(maxRθi ,m) ∀i ∈ N,m ∈M (4.187)

Cτ
κi
(minRκi

,m)× ϵ ≤ βκi,ξ ≤ Cτ
κi
(maxRκi

,m) ∀i ∈ N,m ∈M (4.188)

ϵn+v+4 ≤ Dθi,ξ ≤ 1 ∀i ∈ N (4.189)

rθi ∈ Rθi ∀i ∈ N (4.190)

rκi
∈ Rκi

∀i ∈ N (4.191)

rξ ∈ Rξ (4.192)

Multipliersµ1, µ2, µ3, µ4, µ5, µ6, µ7, µ8, µ9, µ10, µ11, µ12, µ13, µ14 ,µ15 andµ16 respec-

tively represents the vectors of {µ1
i }, {µ2

i }, {µ3}, {µ4
i }, {µ5}, {µ6

i }, {µ7
i }, {µ8}, {µ9

i },

{µ10
i }, {µ11

i }, {µ12
i }, {µ13

i } {µ14
i }, {µ15

i },and {µ16
i }. They are either positive or negative

due to relaxing equality constraints except µ15 and µ16. µ15 and µ16 are greater or equal

to 0 due to relaxing inequality constraints.

4.4.2 The LR Subproblems

4.4.2.1 Subproblem 1(related to decision variable xθi)

By extracting all decision variables xθi in the LR problem, we will then obtain sub-

problem 1. In subproblem 1, µ3
i can be either positive or negative due to relaxing equality

constraints.

In order to determine the concavity or convexity of subproblem 1, we have to take the

sign of µ3
i into consideration. Linear term will not influence the concavity or convexity
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of the formula, so µ3
i will singly decide whether it is concave or convex. A log function

by itself is a concave function, so when µ3
i is positive with a negative sign in front of it,

the formula will become a convex function. And when µ3
i is negative, the formula will

become a concave function.

The concavity or convexity of subproblem 1will lead to different solution approaches.

When µ3
i is positive and therefore changing the coefficient of log term into negative, find

the point of xθi where the slope is 0, which will be the minimum point of the convex func-

tion. If the point of xθi where the slope is 0 falls in the legal range, which is the upper and

lower bound of xθi , then it is the solution to xθi . However, if this point does not fall in the

legal range of xθi , the upper and lower bound of xθi will be substitute into the objective

function to see whichever is smaller, and it will be the solution to xθi .

On the contrary, when µ3
i is negative and therefore changing the coefficient of log

term into positive, then the function is concave. Hence, we can compare the objective

values of the boundary points and the one with smaller objective value will be our solution

to xθi .

The minimum of xθi occurs when both Ca
θi
(rθi ,m) and qθi are at its minimum, which

is ϵ. The maximum on the other hand occurs when qθi is 1. We separate xθi from the ob-

jective function and derive a subproblem shown as formula (4.193) and constraint shown

as formula (4.194).
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Table 4.22: Subproblem 1(related to decision variable xθi)

Objective function :

Zsub1 = min
∑
i∈N

(
xθi × v

m
− µ3

i logxθi) (4.193)

Subject to :

ϵ2 ≤ xθi ≤ Ca
θi
(rθi ,m) ∀i ∈ N (4.194)

Algorithm 22: Algorithm for Subproblem 1
for each node i do

Calculate the objective value at xθi = ϵ2 denoted as V1
Calculate the objective value at xθi = Ca

θi
(rθi ,m) denoted as V2

if µ3
i ≥ 0 then
partial differential to xθi
v
m
− µ3

i
1

xθi
ln e = 0

xθi =
µ3
im

v

if xθi is not feasible then
set xtheta[i] to min(V1, V2), which is the boundary value with
smaller objective value

end
else

set xtheta[i] to min(V1, V2), which is the boundary value with smaller
objective value

end
end

4.4.2.2 Subproblem 2(related to decision variable xκi
)

By extracting all decision variables xκi
in the LR problem, we will then obtain sub-

problem 2. In subproblem 2, µ4
i can be either positive or negative due to relaxing equality

constraints.

The way to determine the concavity or convexity of subproblem 2 and the solution
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is similar to subproblem 1, we have to take the sign of µ4
i into consideration. We separate

xκi
from the objective function and derive a subproblem shown as formula (4.195) and

constraint shown as formula (4.196).

Table 4.23: Subproblem 2(related to decision variable xκi
)

Objective function :

Zsub2 = min
∑
i∈N

(
xκi

m
− µ4

i logxκi
) (4.195)

Subject to :

ϵ2 ≤ xκi
≤ Ca

κi
(rκi

,m) ∀i ∈ N (4.196)

Algorithm 23: Algorithm for Subproblem 2
for each node i do

Calculate the objective value at xκi
= ϵ2 denoted as V1

Calculate the objective value at xκi
= Ca

κi
(rκi

,m) denoted as V2
if µ4

i ≥ 0 then
partial differential to xκi
1
m
− µ4

i
1

xκi ln e
= 0

xκi
= µ4

im
if xκi

is not feasible then
set xkappa[i] to min(V1, V2), which is the boundary value with
smaller objective value

end
else

set xkappa[i] to min(V1, V2), which is the boundary value with smaller
objective value

end
end
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4.4.2.3 Subproblem 3(related to decision variable xξ)

By extracting all decision variables xξ in the LR problem, we will then obtain sub-

problem 3. In subproblem 3, µ5
i can be either positive or negative due to relaxing equality

constraints.

The way to determine the concavity or convexity of subproblem 3 and the solution

is similar to subproblem 1, we have to take the sign of µ5
i into consideration. We separate

xξ from the objective function and derive a subproblem shown as formula (4.197) and

constraint shown as formula (4.198).

Table 4.24: Subproblem 3(related to decision variable xξ)

Objective function :

Zsub3 = min
∑
i∈N

(
xξ
m

− µ5 logxξ) (4.197)

Subject to :

ϵ2 ≤ xξ ≤ Ca
ξ (rξ,m) (4.198)
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Algorithm 24: Algorithm for Subproblem 3
for each node i do

Calculate the objective value at xξ = ϵ2 denoted as V1
Calculate the objective value at xξ = Ca

ξ (rξ,m) denoted as V2
if µ5

i ≥ 0 then
partial differential to xξ
1
m
− µ5 1

xξ ln e
= 0

xξ = µ5m
if xξ is not feasible then

set xxi[i] to min(V1, V2), which is the boundary value with smaller
objective value

end
else

set xxi[i] to min(V1, V2), which is the boundary value with smaller
objective value

end
end

4.4.2.4 Subproblem 4(related to decision variable yθi)

By extracting all decision variables yθi in the LR problem, we will then obtain sub-

problem 4. In subproblem 4, µ6
i can be either positive or negative due to relaxing equality

constraints.

The way to determine the concavity or convexity of subproblem 6 and the solution

is similar to subproblem 1, we have to take the sign of µ6
i into consideration. We separate

yθi from the objective function and derive a subproblem shown as formula (4.199) and

constraint shown as formula (4.200).
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Table 4.25: Subproblem 4(related to decision variable yθi)

Objective function :

Zsub4 = min
∑
i∈N

(
yθi × v

m
− µ6

i log yθi) (4.199)

Subject to :

ϵ2 ≤ yθi ≤ Cb
θi
(rθi ,m) ∀i ∈ N (4.200)

Algorithm 25: Algorithm for Subproblem 4
for each node i do

Calculate the objective value at yθi = ϵ2 denoted as V1
Calculate the objective value at yθi = Cb

θi
(rθi ,m) denoted as V2

if µ6
i ≥ 0 then
partial differential to yθi
v
m
− µ6

i
1

yθi ln e
= 0

yθi =
µ6
im

v

if yθi is not feasible then
set ytheta[i] to min(V1, V2), which is the boundary value with
smaller objective value

end
else

set ytheta[i] to min(V1, V2), which is the boundary value with smaller
objective value

end
end

4.4.2.5 Subproblem 5(related to decision variable yκi
)

By extracting all decision variables yκi
in the LR problem, we will then obtain sub-

problem 5. In subproblem 5, µ7
i can be either positive or negative due to relaxing equality

constraints.

The way to determine the concavity or convexity of subproblem 5 and the solution
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is similar to subproblem 1, we have to take the sign of µ7
i into consideration. We separate

yκi
from the objective function and derive a subproblem shown as formula (4.201) and

constraint shown as formula (4.202).

Table 4.26: Subproblem 5(related to decision variable yκi
)

Objective function :

Zsub5 = min
∑
i∈N

(
yκi

m
− µ7

i log yκi
) (4.201)

Subject to :

ϵ2 ≤ yκi
≤ Cb

κi
(rκi

,m) ∀i ∈ N (4.202)

Algorithm 26: Algorithm for Subproblem 5
for each node i do

Calculate the objective value at yκi
= ϵ2 denoted as V1

Calculate the objective value at yκi
= Cb

κi
(rκi

,m) denoted as V2
if µ7

i ≥ 0 then
partial differential to yκi
1
m
− µ7

i
1

yκi ln e
= 0

yκi
= µ7

im
if yκi

is not feasible then
set ykappa[i] to min(V1, V2), which is the boundary value with
smaller objective value

end
else

set ykappa[i] to min(V1, V2), which is the boundary value with smaller
objective value

end
end
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4.4.2.6 Subproblem 6(related to decision variable yξ)

By extracting all decision variables yξ in the LR problem, we will then obtain sub-

problem 6. In subproblem 6, µ8
i can be either positive or negative due to relaxing equality

constraints.

The way to determine the concavity or convexity of subproblem 6 and the solution

is similar to subproblem 1, we have to take the sign of µ8
i into consideration. We separate

yξ from the objective function and derive a subproblem shown as formula (4.203) and

constraint shown as formula (4.204).

Table 4.27: Subproblem 6(related to decision variable yξ)

Objective function :

Zsub6 = min
∑
i∈N

(−yξ
m

− µ8
i log yξ) (4.203)

Subject to :

ϵ2 ≤ yξ ≤ Cb
ξ(rξ,m) (4.204)
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Algorithm 27: Algorithm for Subproblem 6
for each node i do

Calculate the objective value at yξ = ϵ2 denoted as V1
Calculate the objective value at yξ = Cb

ξ(rξ,m) denoted as V2
if µ8

i ≥ 0 then
partial differential to yξ
− 1

m
− µ8

i
1

yξ ln e
= 0

yξ = −µ8
im

if yξ is not feasible then
set yxi[i] to min(V1, V2), which is the boundary value with smaller
objective value

end
else

set yxi[i] to min(V1, V2), which is the boundary value with smaller
objective value

end
end

4.4.2.7 Subproblem 7(related to decision variable qθi)

By extracting all decision variables qθi in the LR problem, we will then obtain sub-

problem 7. In subproblem 7, there are 4 multipliers µ1
i ,µ3

i ,µ9and µ12
i and all of them can

be either positive or negative due to relaxing equality constraints.

In order to determine the concavity or convexity of subproblem 7, we have to take

the sign of µ1
i ,µ3

i and µ12
i into consideration, but not µ9 because qθi is linear so it won’t

affect the concavity or convexity of subproblem 7. A log function by itself is a concave

function, so µ1
i ,µ3

i and µ12
i can all play an important role in deciding whether the function

is concave or convex.

In this section, we developed a way to easily get the convexity or concavity of this

function. We first find the extreme point by finding points with derivative = 0 and will
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obtain a objective value for it. Later we can compare the objective value with the point

of derivative = 0 with the objective value of the boundary points of qθi . If the objective

value with the point of derivative = 0 is smaller than the objective values of the boundary

points of qθi , then the function is a convex function. We can then examine whether the

point with derivative = 0 falls in the legal range of qθi , if yes then we can return it as our

solution to qθi . If the point with derivative = 0 doesn’t appears in the legal range of qθi and

is considered infeasible, we will return the boundary point of qθi with a smaller objective

value as our solution to qθi .

On the contrary, if the objective value with the point of derivative = 0 is bigger than

the objective value of the boundary points of qθi , then the function is concave. Therefore,

we can compare the objective values of the boundary points and the one with smaller

objective value will be our solution to qθi .

We separate qθi from the objective function and derive a subproblem shown as for-

mula (4.205) and constraint shown as formula (4.206).

Table 4.28: Subproblem 7(related to decision variable qθi)

Objective function :

Zsub7 = min
∑
i∈N

(µ1
i log qθi + µ3

i log qθi + µ9
i qθi + µ12

i log qθi) (4.205)

Subject to :

ϵ ≤ qθi ≤ 1 ∀i ∈ N (4.206)
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Algorithm 28: Algorithm for Subproblem 7
for each node i do

Calculate the objective value at qθi = ϵ denoted as V1
Calculate the objective value at qθi = 1 denoted as V2
partial differential to qθi
µ1
i

1
qθi ln e

+ µ3
i

1
qθi ln e

+ µ9
i + µ12

i
1

qθi ln e
= 0

µ1
i+µ3

i+µ12
i

qθi
= −µ9

i

qθi = −µ1
i+µ3

i+µ12
i

µ9
i

if Zsub7(qθi) ≤ min(V1, V2) then
Zsub7 = convex
if qθi is feasible then

qtheta[i] = qθi
else

set qtheta[i] to min(V1, V2), which is the boundary value with
smaller objective value

end
else

set qtheta[i] to min(V1, V2), which is the boundary value with smaller
objective value

end
end

4.4.2.8 Subproblem 8(related to decision variable qκRi
)

By extracting all decision variables qκRi
in the LR problem, we will then obtain sub-

problem 8. In subproblem 8, there are 3 multipliers µ1
i ,µ4

i and µ10 and all of them can be

either positive or negative due to relaxing equality constraints.

The way to determine the concavity or convexity and the solution to subproblem 8 is

similar to subproblem 7. We have to take the sign of µ1
i ,µ4

i and µ10into consideration, but

not µ10 because qκRi
is linear so it won’t affect the concavity or convexity of subproblem

8.

We separate qκRi
from the objective function and derive a subproblem shown as for-
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mula (4.207) and constraint shown as formula (4.208).

Table 4.29: Subproblem 8(related to decision variable qκRi
)

Objective function :

Zsub8 = min
∑
i∈N

(µ1
i log qκRi

+ µ4
i log qκRi

+ µ10
i qκRi

) (4.207)

Subject to :

ϵ ≤ qκRi
≤ 1 ∀i ∈ N (4.208)

Algorithm 29: Algorithm for Subproblem 8
for each node i do

Calculate the objective value at qκRi
= ϵ denoted as V1

Calculate the objective value at qκRi
= 1 denoted as V2

partial differential to qκRi

µ1
i

1
qκRi

ln e + µ4
i

1
qκRi

ln e + µ10
i = 0

µ1
i+µ4

i

qκRi
= −µ10

i

qκRi
= −µ1

i+µ4
i

µ10
i

if Zsub8(qκRi
) ≤ min(V1, V2) then

Zsub8 = convex
if qκRi

is feasible then
qkappaR[i] = qκRi

else
set qkappaR[i] to min(V1, V2), which is the boundary value with
smaller objective value

end
else

set qkappaR[i] to min(V1, V2), which is the boundary value with smaller
objective value

end
end
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4.4.2.9 Subproblem 9(related to decision variable qξ)

By extracting all decision variables qξ in the LR problem, we will then obtain sub-

problem 9. In subproblem 9, there are 3 multipliers µ2
i ,µ5and µ8

i and all of them can be

either positive or negative due to relaxing equality constraints.

The way to determine the concavity or convexity and the solution to subproblem 9 is

similar to subproblem 7. We have to take the sign of µ2
i ,µ5and µ8

i into consideration.

We separate qξ from the objective function and derive a subproblem shown as formula

(4.209) and constraint shown as formula (4.210).

Table 4.30: Subproblem 9(related to decision variable qξ)

Objective function :

Zsub9 = min
∑
i∈N

(µ2
i log qξ + µ5 log qξ + µ8 log qξ) (4.209)

Subject to :

ϵ ≤ qξ ≤ 1 (4.210)
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Algorithm 30: Algorithm for Subproblem 9
for each node i do

Calculate the objective value at qξ = ϵ denoted as V1
Calculate the objective value at qξ = 1 denoted as V2
partial differential to qξ
µ2
i

1
qξ ln e

+ µ5 1
qξ ln e

+ µ8 1
qξ ln e

= 0
µ2
i+µ5+µ8

qξ
= 0

get solution to qξ
if Zsub9(qξ) ≤ min(V1, V2) then

Zsub9 = convex
if qξ is feasible then

qxi[i] = qξ
else

set qxi[i] to min(V1, V2), which is the boundary value with smaller
objective value

end
else

set qxi[i] to min(V1, V2), which is the boundary value with smaller
objective value

end
end

4.4.2.10 Subproblem 10(related to decision variable rθi)

By extracting all decision variables rθi in the LR problem, we will then obtain sub-

problem 10. In subproblem 10, there are 4 multipliers µ1
i , µ3

i , µ6
i and µ12

i . All of them can

be either positive or negative due to relaxing equality constraints.

The way to determine the concavity or convexity and the solution to subproblem 10 is

similar to subproblem 7. We have to take the sign of µ1
i , µ3

i , µ6
i and µ12

i into consideration.

We separate rθi from the objective function and derive a subproblem shown as for-

mula (4.211) and constraint shown as formula (4.212) and formula (4.213).
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Table 4.31: Subproblem 10(related to decision variable rθ)

Objective function :

Zsub10 = min
∑
i∈N

[
µ1
i logPθi,κi

(rθi,m) + µ3
i logCa

θi
(rθi ,m) + µ6

i logCb
θi
(rθi ,m)

+ µ12
i logCτ

θi
(rθi ,m)

]
(4.211)

Subject to :

ϵ ≤ Pθi,κi
(rθi,m) ≤ 1 ∀i ∈ N (4.212)

rθi ∈ Rθi ∀i ∈ N (4.213)

Algorithm 31: Algorithm for Subproblem 10
for each node i do

Calculate the objective value at rθi = maxRθi denoted as V1
Calculate the objective value at rθi = minRθi denoted as V2
Get solution of rθi where Zsub10 has the smallest value
if Zsub10(rθi ,m) ≤ min(V1, V2) then

Zsub10 = convex
if rθi is feasible then

rtheta[i] = rθi
else

set rtheta[i] to min(V1, V2), which is the boundary value with
smaller objective value

end
else

set rtheta[i] to min(V1, V2), which is the boundary value with smaller
objective value

end
end

4.4.2.11 Subproblem 11(related to decision variable rκi
)

By extracting all decision variables rκi
in the LR problem, we will then obtain sub-

problem 11. In subproblem 11, there are 4 multipliers µ2
i , µ4

i , µ7
i and µ13

i . All of them can
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be either positive or negative due to relaxing equality constraints.

The way to determine the concavity or convexity and the solution to subproblem 11 is

similar to subproblem 7. We have to take the sign of µ2
i , µ4

i , µ7
i and µ13

i into consideration.

We separate rκi
from the objective function and derive a subproblem shown as for-

mula (4.214) and constraint shown as formula (4.215) and formula (4.216).

Table 4.32: Subproblem 11(related to decision variable rκ)

Objective function :

Zsub11 = min
∑
i∈N

[
µ2
i logPκi,ξ(rκi

,m) + µ4
i logCa

κi
(rκi

,m) + µ7
i logCb

κi
(rκi

,m)

+ µ13
i logCτ

κi
(rκi

,m)
]
(4.214)

Subject to :

ϵ ≤ Pκi,ξ(rκi
,m) ≤ 1 ∀i ∈ N (4.215)

rκi
∈ Rκi

∀i ∈ N (4.216)
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Algorithm 32: Algorithm for Subproblem 11
for each node i do

Calculate the objective value at rκi
= maxRκi

denoted as V1
Calculate the objective value at rκi

= minRκi
denoted as V2

Get solution of rκi
where Zsub11 has the smallest value

if Zsub11(rκi
,m) ≤ min(V1, V2) then

Zsub11 = convex
if rκi

is feasible then
rkappa[i] = rκi

else
set rkappa[i] to min(V1, V2), which is the boundary value with
smaller objective value

end
else

set rkappa[i] to min(V1, V2), which is the boundary value with smaller
objective value

end
end

4.4.2.12 Subproblem 12(related to decision variable rξ)

By extracting all decision variables rξ in the LR problem, we will then obtain sub-

problem 12. In subproblem 12, there are 2 multipliers µ5 and µ8. All of them can be either

positive or negative due to relaxing equality constraints.

The way to determine the concavity or convexity and the solution to subproblem 12

is similar to subproblem 7. We have to take the sign of µ5 and µ8 into consideration.

We separate rξ from the objective function and derive a subproblem shown as formula

(4.217) and constraint shown as formula (4.218).
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Table 4.33: Subproblem 12(related to decision variable rξ)

Objective function :

Zsub12 = min
∑
i∈N

[
Cb

ξ(rξ,m) + µ5 logCa
ξ (rξ,m) + µ8 logCb

ξ(rξ,m)
] (4.217)

Subject to :

rξ ∈ Rξ (4.218)

Algorithm 33: Algorithm for Subproblem 12
for each node i do

Calculate the objective value at rξ = maxRξ denoted as V1
Calculate the objective value at rξ = minRξ denoted as V2
Get solution of rξ where Zsub12 has the smallest value
if Zsub12(rξ) ≤ min(V1, V2) then

Zsub12 = convex
if rξ is feasible then

rxi = rξ
else

set rxi to min(V1, V2), which is the boundary value with smaller
objective value

end
else

set rxi to min(V1, V2), which is the boundary value with smaller
objective value

end
end

4.4.2.13 Subproblem 13(related to decision variable Zθi,κi
)

By extracting all decision variables Zθi,κi
in the LR problem, we will then obtain

subproblem 13. In subproblem 13, there are 4 multipliers µ1
i ,µ14

i ,µ14
i and µ16

i . µ1
i and

µ14
i can be either positive or negative due to relaxing equality constraints and µ15

i and µ16
i

should be greater or equal to positive due to relaxing inequality constraints.
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The way to determine the concavity or convexity and the solution to subproblem 13 is

similar to subproblem 7. We have to take the sign of µ1
i ,µ14

i ,µ15
i and µ16

i into consideration.

We separate Zθi,κi
from the objective function and derive a subproblem shown as

formula (4.219) and constraint shown as formula (4.220).

Table 4.34: Subproblem 13(related to decision variable Zθi,κi
)

Objective function :

Zsub13 = min
∑
i∈N

[
− µ1

i logZθi,κi
+ µ14

i logZθi,κi
+ µ15

i τκi
Zθi,κi

+ µ16
i vZθi,κi

]
(4.219)

Subject to :

ϵv+2 ≤ Zθi,κi
≤ 1 ∀i ∈ N (4.220)
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Algorithm 34: Algorithm for Subproblem 13
for each node i do

Calculate the objective value at Zθi,κi
= ϵv+2 denoted as V1

Calculate the objective value at Zθi,κi
= 1 denoted as V2

partial differential to Zθi,κi

−µ1
i

1
Zθi,κi

ln e + µ14
i

1
Zθi,κi

ln e + µ15
i τκi

+ µ16
i v = 0

−µ1
i + µ14

i + Zθi,κi
µ15
i τκi

+ Zθi,κi
µ16
i v = 0

Zθi,κi
=

µ1
i−µ14

i

µ15
i τκi+µ16

i v

if Zsub13(Zθi,κi
) ≤ min(V1, V2) then

Zsub13 = convex
if Zθi,κi

is feasible then
ztheta[i] = Zθi,κi

else
set ztheta[i] to min(V1, V2), which is the boundary value with
smaller objective value

end
else

set ztheta[i] to min(V1, V2), which is the boundary value with smaller
objective value

end
end

4.4.2.14 Subproblem 14(related to decision variable Zκi,ξ)

By extracting all decision variables Zκi,ξ in the LR problem, we will then obtain

subproblem 14. In subproblem 14, there are 4 multipliers µ2
i ,µ14

i ,µ15
i and µ16

i . µ2
i and

µ14
i can be either positive or negative due to relaxing equality constraints and µ15

i and µ16
i

should be greater or equal to positive due to relaxing inequality constraints.

The way to determine the concavity or convexity and the solution to subproblem 14 is

similar to subproblem 7. We have to take the sign of µ2
i ,µ14

i ,µ15
i and µ16

i into consideration.

We separate Zκi,ξ from the objective function and derive a subproblem shown as

formula (4.221) and constraint shown as formula (4.222).
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Table 4.35: Subproblem 14(related to decision variable Zκi,ξ)

Objective function :

Zsub14 = min
∑
i∈N

[
− µ2

i logZκi,ξ + µ14
i logZκi,ξ + µ15

i τθiZκi,ξ − µ16
i Zκi,ξ

]
(4.221)

Subject to :

ϵn+2 ≤ Zκi,ξ ≤ 1 ∀i ∈ N (4.222)

Algorithm 35: Algorithm for Subproblem 14
for each node i do

Calculate the objective value at Zκi,ξ = ϵn+2 denoted as V1
Calculate the objective value at Zκi,ξ = 1 denoted as V2
partial differential to Zκi,ξ

−µ2
i

1
Zκi,ξ

ln e + µ14
i

1
Zκi,ξ

ln e + µ15
i τθi − µ16

i = 0

−µ2
i + µ14

i + Zκi,ξµ
15
i τθi − Zκi,ξµ

16
i = 0

Zκi,ξ =
µ2
i−µ14

i

µ15
i τθi−µ16

i

if Zsub14(Zκi,ξ) ≤ min(V1, V2) then
Zsub14 = convex
if Zκi,ξ is feasible then

zkappa[i] = Zκi,ξ

else
set zkappa[i] to min(V1, V2), which is the boundary value with
smaller objective value

end
else

set zkappa[i] to min(V1, V2), which is the boundary value with smaller
objective value

end
end

4.4.2.15 Subproblem 15(related to decision variable βθi,κi
)

The procedure of dividing βθi,κi
from the LR problem is similar with subproblem 1.

By extracting all decision variables βθi,κi
in the LR problem, we will then obtain subprob-
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lem 15. In subproblem 15, µ12
i can be either positive or negative due to relaxing equality

constraints.

In order to determine the concavity or convexity of subproblem 15, we have to take

the sign of µ12
i into consideration. Linear term will not influence the concavity or con-

vexity of the formula, so µ12
i will singly decide whether it is concave or convex. A log

function by itself is a concave function, so when µ12
i is positive with a negative sign in

front of it, the formula will become a convex function. And when µ12
i is negative, the

formula will become a concave function.

The concavity or convexity of subproblem 15 will lead to different solution ap-

proaches. When µ12
i is positive and therefore changing the coefficient of log term into

negative, find the point of βθi,κi
where the slope is 0, which will be the minimum point

of the convex function. If the point of βθi,κi
where the slope is 0 falls in the legal range,

which is the upper and lower bound of βθi,κi
, then it is the solution to βθi,κi

. However,

if this point does not fall in the legal range of βθi,κi
, the upper and lower bound of βθi,κi

will be substitute into the objective function to see whichever is smaller, and it will be the

solution to βθi,κi
.

On the contrary, when µ12
i is negative and therefore changing the coefficient of log

term into positive, then the function is concave. Hence, we can compare the objective

values of the boundary points and the one with smaller objective value will be our solution
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to µ12
i .

We separate βθi,κi
from the objective function and derive a subproblem shown as

formula (4.223) and constraint shown as formula (4.224).

Table 4.36: Subproblem 15(related to decision variable βθi,κi
)

Objective function :

Zsub15 = min
∑
i∈N

(
βθi,κi

v

m
− µ12

i log βθi,κi
) (4.223)

Subject to :

Cτ
θi
(minRi,m)× ϵ ≤ βθi,κi

≤ Cτ
θi
(maxRi,m) ∀i ∈ N,m ∈M (4.224)

Algorithm 36: Algorithm for Subproblem 15
for each node i do

Calculate the objective value at βθi,κi
= Cτ

θi
(minRi,m)× ϵ denoted as V1

Calculate the objective value at βθi,κi
= Cτ

θi
(maxRi,m) denoted as V2

if µ12
i ≥ 0 then
partial differential to βθi,κi
v
m
− µ12

i
1

βθi,κi
ln e = 0

βθi,κi
=

µ12
i m

v

if βθi,κi
is not feasible then

set betatheta[i] to min(V1, V2), which is the boundary value with
smaller objective value

end
else

set betatheta[i] to min(V1, V2), which is the boundary value with smaller
objective value

end
end
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4.4.2.16 Subproblem 16(related to decision variable βκi,ξ)

The procedure of dividing βκi,ξ from the LR problem and the way to determine the

concavity or covexity is similar to subproblem 1. By extracting all decision variables βκi,ξ

in the LR problem, wewill then obtain subproblem 16. In subproblem 16, µ13
i can be either

positive or negative due to relaxing equality constraints.

We separate βκi,ξ from the objective function and derive a subproblem shown as

formula (4.225) and constraint shown as formula (4.226).

Table 4.37: Subproblem 16(related to decision variable βκi,ξ)

Objective function :

Zsub16 = min
∑
i∈N

(
βκi,ξ

m
− µ13

i log βκi,ξ) (4.225)

Subject to :

Cτ
κi
(minRi,m)× ϵ ≤ βκi,ξ ≤ Cτ

κi
(maxRi,m) ∀i ∈ N,m ∈M (4.226)
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Algorithm 37: Algorithm for Subproblem 16
for each node i do

Calculate the objective value at βκi,ξ = Cτ
κi
(minRi,m)× ϵ denoted as V1

Calculate the objective value at βκi,ξ = Cτ
κi
(maxRi,m) denoted as V2

if µ13
i ≥ 0 then
partial differential to βκi,ξ
1
m
− µ13

i
1

βκi,ξ
ln e = 0

βκi,ξ = µ13
i m

if βκi,ξ is not feasible then
set betakappa[i] to min(V1, V2), which is the boundary value with
smaller objective value

end
else

set betakappa[i] to min(V1, V2), which is the boundary value with
smaller objective value

end
end

4.4.2.17 Subproblem 17(related to decision variable Iθi)

By extracting all decision variables Iθi in the LR problem, we will then obtain sub-

problem 17. In subproblem 17, there are 3 multipliers µ1
i ,µ6

i and µ9
i . µ1

i ,µ6
i and µ9

i can all

be either positive or negative due to relaxing equality constraints.

In order to determine the concavity or convexity of subproblem 17, we have to take

all multipliers µ1
i and µ6

i into consideration. Linear term will not influence the concavity

or convexity of the formula so we don’t have to look at µ9
i . A log function by itself is a

concave function, so µ1
i and µ6

i will both play an important role in deciding whether it is

concave or convex.

To easily and effectively get the convexity or concavity of this function, we first find

the extreme point by finding points with derivative = 0 and will obtain a objective value
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for it. Later we can compare the objective value with the point of derivative = 0 with

the objective value of the boundary points of Iθi . If the objective value with the point of

derivative = 0 is smaller than the objective values of the boundary points of Iθi , then the

function is a convex function. We can then examine whether the point with derivative = 0

falls in the legal range of Iθi , if yes then we can return it as our solution to Iθi . If the point

with derivative = 0 doesn’t appears in the legal range of Iθi and is considered infeasible,

we will return the boundary point of Iθi with a smaller objective value as our solution to

Iθi .

We separate Iθi from the objective function and derive a subproblem shown as for-

mula (4.227) and constraint shown as formula (4.228) .

Table 4.38: Subproblem 17(related to decision variable Iθi)

Objective function :

Zsub17 = min
∑
i∈N

(µ1
i (v − 1) log Iθi + µ6

i log Iθi + µ9
i Iθi) (4.227)

Subject to :

0 ≤ Iθi ≤ 1− ϵ ∀i ∈ N (4.228)

4.4.2.18 Subproblem 18(related to decision variable IκRi
)

By extracting all decision variables IκRi
in the LR problem, we will then obtain sub-

problem 18. In subproblem 18, there are 2 multipliers µ7
i and µ10

i . µ7
i and µ10

i can both be
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Algorithm 38: Algorithm for Subproblem 17
for each node i do

Calculate the objective value at Iθi = 0 denoted as V1
Calculate the objective value at Iθi = 1− ϵ denoted as V2
partial differential to Iθi
µ1
i

v−1
Iθi ln e

+ µ6
i

1
Iθi ln e

+ µ9
i = 0

Iθi = − (v−1)µ1
i+µ6

i

µ9
i

if Zsub17(Iθi) ≤ min(V1, V2) then
Zsub17 = convex
if Iθi is feasible then

Itheta[i] = Iθi
else

set Itheta[i] to min(V1, V2), which is the boundary value with smaller
objective value

end
else

set Itheta[i] to min(V1, V2), which is the boundary value with smaller
objective value

end
end

either positive or negative due to relaxing equality constraints.

The way to determine the concavity or convexity of subproblem 18 and the solution

is similar to subproblem 17. We separate IκRi
from the objective function and derive a

subproblem shown as formula (4.229) and constraint shown as formula (4.230) .

Table 4.39: Subproblem 18(related to decision variable IκRi
)

Objective function :

Zsub18 = min
∑
i∈N

(µ7
i log IκRi

+ µ10
i IκRi

) (4.229)

Subject to :

0 ≤ IκRi
≤ 1− ϵ ∀i ∈ N (4.230)
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Algorithm 39: Algorithm for Subproblem 18
for each node i do

Calculate the objective value at IκRi
= 0 denoted as V1

Calculate the objective value at IκRi
= 1− ϵ denoted as V2

partial differential to IκRi

µ7
i

1
IκRi

ln e + µ10
i = 0

IκRi
= − µ7

i

µ10
i

if Zsub18(IκRi
) ≤ min(V1, V2) then

Zsub18 = convex
if IκRi

is feasible then
IkappaR[i] = IκRi

else
set IkappaR[i] to min(V1, V2), which is the boundary value with
smaller objective value

end
else

set IkappaR[i] to min(V1, V2), which is the boundary value with smaller
objective value

end
end

4.4.2.19 Subproblem 19(related to decision variable Dθi,ξ)

By extracting all decision variables Dθi,ξ in the LR problem, we will then obtain

subproblem 19. In subproblem 19, there are 2 multipliers µ15
i and µ16

i . µ15
i and µ16

i should

be greater or equal to positive due to relaxing inequality constraints.

We separate Dθi,ξ from the objective function and derive a subproblem shown as

formula (4.231) and constraint shown as formula (4.232).
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Table 4.40: Subproblem 19(related to decision variable Dθi,ξ)

Objective function :

Zsub19 = min
∑
i∈N

[
− µ14

i logDθi,ξ − µ15
i τθiDθi,ξ − µ15

i τκi
Dθi,ξ + 2µ15

i Dθi,ξ

− µ15
i Dθi,ξTθi,ξ

] (4.231)

Subject to :

ϵn+v+2 ≤ Dθi,ξ ≤ 1 ∀i ∈ N (4.232)

Algorithm 40: Algorithm for Subproblem 19
for each node i do

Calculate the objective value at Dθi,ξ = ϵn+v+2 denoted as V1
Calculate the objective value at Dθi,ξ = 1 denoted as V2
partial differential to Dθi,ξ

−µ14
i

1
Dθi,ξ

ln e − µ15
i τθi − µ15

i τκi
+ 2µ15

i − µ15
i Tθi,ξ = 0

−µ14
i +Dθi,ξ(−µ15

i τθi − µ15
i τκi

+ 2µ15
i − µ15

i Tθi,ξ) = 0

Dθi,ξ =
µ14

−µ15
i τθi−µ15

i τκi+2µ15
i −µ15

i Tθi,ξ

if µ14 ≥ 0 then
Zsub19 = convex
if Dθi,ξ is feasible then

Dtheta[i] = Dθi,ξ

else
set Dtheta[i] to min(V1, V2), which is the boundary value with
smaller objective value

end
else

set Dtheta[i] to min(V1, V2), which is the boundary value with smaller
objective value

end
end
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4.4.2.20 Subproblem 20(related to decision variable qκSi
)

By extracting all decision variables qκSi
in the LR problem, we will then obtain sub-

problem 20. In subproblem 20, there are 3 multipliers µ2
i ,µ11

i and µ13 and all of them can

be either positive or negative due to relaxing equality constraints.

The way to determine the concavity or convexity and the solution to subproblem 20 is

similar to subproblem 7. We have to take the sign of µ2
i ,µ11

i and µ13into consideration, but

not µ11 because qκSi
is linear so it won’t affect the concavity or convexity of subproblem

20.

We separate qκSi
from the objective function and derive a subproblem shown as for-

mula (4.233) and constraint shown as formula (4.234).

Table 4.41: Subproblem 20(related to decision variable qκSi
)

Objective function :

Zsub20 = min
∑
i∈N

(µ2
i log qκSi

+ µ11
i qκSi

+ µ13 log qκSi
) (4.233)

Subject to :

ϵ ≤ qκSi
≤ 1 ∀i ∈ N (4.234)
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Algorithm 41: Algorithm for Subproblem 20
for each node i do

Calculate the objective value at qκSi
= ϵ denoted as V1

Calculate the objective value at qκSi
= 1 denoted as V2

partial differential to qκSi

µ2
i

1
qκSi

ln e + µ11
i

1
qκSi

ln e + µ13 = 0

µ2
i+µ11

i

qκSi
= −µ13

qκSi
= −µ2

i+µ11
i

µ13

if Zsub8(qκSi
) ≤ min(V1, V2) then

Zsub20 = convex
if qκSi

is feasible then
qkappa[i] = qκSi

else
set qkappa[i] to min(V1, V2), which is the boundary value with
smaller objective value

end
else

set qkappa[i] to min(V1, V2), which is the boundary value with smaller
objective value

end
end

4.4.2.21 Subproblem 21(related to decision variable IκSi
)

By extracting all decision variables IκSi
in the LR problem, we will then obtain sub-

problem 21. In subproblem 21, there exists multiplier µ2
i and µ11

i . µ2
i and µ11

i can both be

either positive or negative due to relaxing equality constraints.

The way to determine the concavity or convexity of subproblem 21 and the solution

is similar to subproblem 1. We separate IκSi
from the objective function and derive a

subproblem shown as formula (4.235) and constraint shown as formula (4.236) .
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Table 4.42: Subproblem 21(related to decision variable IκRi
)

Objective function :

Zsub21 = min
∑
i∈N

(µ2
i (n− 1) log IκSi

+ µ11
i IκSi

) (4.235)

Subject to :

0 ≤ IκSi
≤ 1− ϵ ∀i ∈ N (4.236)

Algorithm 42: Algorithm for Subproblem 21
for each node i do

Calculate the objective value at IκSi
= 0 denoted as V1

Calculate the objective value at IκSi
= 1− ϵ denoted as V2

partial differential to IκSi

µ2
i

(n−1)
IκSi

ln e + µ11
i = 0

IκSi
= −µ2

i (n−1)

µ11
i

if Zsub21(IκSi
) ≤ min(V1, V2) then

Zsub21 = convex
if IκSi

is feasible then
IkappaS[i] = IκSi

else
set IkappaS[i] to min(V1, V2), which is the boundary value with
smaller objective value

end
else

set IkappaS[i] to min(V1, V2), which is the boundary value with smaller
objective value

end
end

4.5 LagrangianDual ProblemandThe SubgradientMethod

In thisminimization problem, themain purpose of the LR problem (ZLR) is to provide

us a bound to the optimal solution. By keep decreasing the gap between the upper bound

and lower bound, we can obtain a better solution throughout the process. The optimal
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solutions of the subproblems will form the optimal value of the LR problem, which is the

lower bound of the primal problem. And the feasible solutions to the primal problem will

form an upper bound.

The lower bound have to keep increase for the purpose of to approach the optimal

solution of the primal problem. In order to achieve that, a dual problem (ZD) will be

formed. The aim of the dual problem is to maximize the objective value of the LR problem

so as to find the tightest lower bound. The dual problem is subjected to the Lagrangian

multipliers (µ), and by adjusting multipliers, we can achieve smaller duality gap to find the

maximum value of the dual problem. Table (4.43),(4.44) and (4.45) respectively shows the

dual problem of Model 1 (One-to-one relationship), Model 2 (Many-to-one relationship)

and Model 3 (Network Tree Structure) .

Table 4.43: The dual problem of Model 1(One-to-one relationship)

Objective function :

ZD = maxZLR(µ
1, µ2, µ3, µ4, µ5, µ6, µ7) (4.237)

Table 4.44: The dual problem of Model 2(Many-to-one relationship)

Objective function :

ZD = maxZLR(µ
1, µ2, µ3, µ4, µ5, µ6, µ7) (4.238)
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Table 4.45: The dual problem of Model 3(Network Tree Structure)

Objective function :

ZD = maxZLR(µ
1, µ2, µ3, µ4, µ5, µ6, µ7, µ8, µ9, µ10, µ11, µ12, µ13, µ14, µ15, µ16)

(4.239)

Subject to :

µ15, µ16 ≥ 0 (4.240)

When solving non-differential optimization problem, there are two conditions to

make sure the subgradient method is guaranteed to optimally solve the problem [43]. The

stepsize in the subgradient method should converge to 0, but not too quickly or else the

subgradient method will converge to a point other than the optimal solution. The second

condition is the sum of the stepsize sequence should be infinity, which means the sequence

of the stepsize should be a divergent series. These two conditions are shown as formula

(4.241) below where tk is the stepsize parameter and k is the iteration count.

When k → ∞ :

tk → 0 and

k∑
i=1

ti → ∞ (4.241)

We use The Subgradient Method to solve the dual problem in this research. The

Subgradient Method is proposed by Held and Karp [45] [46] and is a effective way to

solve the Lagrangian dual problem. The Lagrangianmultipliers are updated by the formula

(4.242) shown as below.
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µk+1 = max(0, µk + tkgk) (4.242)

µk is a vector that contains all the multipliers, and tk is used to determine the stepsize

in order to update the multipliers. gk is the subgradient of the dual problem. We use

formula (4.243) shown as below to determine the stepsize parameter tk in this research.

tk =
λk(Z

∗ − ZD(µ
k))

||gk||
(4.243)

In formula (4.243), Z∗ is the objective value of the best known feasible solution that

we have obtained so far. λk is the coefficient of the stepsize which is often initially step to

2. When ZD(µ
k) has failed to increase in a certain number of iteration that we set, λk will

be reduced by a factor of two. The objective value of the feasible solution Z∗ sometimes

can be initially set to 0 and can be updated when solutions to the LR problem turns out to

be feasible, or we can tune the solutions that aren’t feasible by proposed heuristics.

As the number of adjustment of the multipliers increases, the duality gap between

the lower bound and the upper bound will gradually reduce. There are few criteria for the

solution process to terminate. The first one is when we obtain a µk for which ZD(µ
k) (LB)

overlaps Z∗(UB), and then it means the problem is optimally solved. The second one is

when the duality gap size is less than the threshold value we set and a fairly high-quality

solution will be obtained. The last one is when the number of iterations reached the limit

we set. The pseudo code (Algorithm 43) of the Lagrangian Relaxation method with The

Subgradient Method is shown as below.
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Algorithm 43: Lagrangian Relaxation method with The Subgradient
Method
Input : N : max number of iterations;

target gap : target optimization gap;
Initialization: x0 : any feasible solution;

Z∗(xk) : primal feasible solution value for x
Z0

LB : −inf ;
Z0

UB : best known feasible solution for objective function,
objective value for x0
µ : initial multiplier value = 0
current best solution : x0
current best objective value : Z0

UB

k : iteration count = 0
i : improvement count = 0
λ : initial step size coefficient = 2

for k ≤ N do
Solve ZLR :
Get Solution xk ;
Compute current objective value ZD(µk, x

k);
Compute subgradient gk = g(xk);
if xk is feasible then

Z∗(xk) is an upper bound
else

tune xk with proposed heuristic
end
Zk+1

LB = max(Zk
LB, ZD(µ

k, xk));
if Z∗ ≤ Zk

UB then
current best solution = xk

current best objective value = Z∗(xk)
end
Zk+1

UB = min(Zk
UB, Z

∗)
if ZD(µ

k, xk) ≤ Zk
LB then

i = i+ 1
end
gapk+1 =

Zk+1
UB −Zk+1

LB

Zk+1
LB

if i reaches improvement counter limit then
λ = λ/2
i = 0

end
Compute tk (step size of subgradient descent)
tk = λk(Z

∗(xk)−ZD(µk,xk))
||gk||2

µk+1 = max(0, µk + tkgk)
if gapk+1 ≤ target gap then

return current best solution , current best objective value , gapk+1

end
end
return current best solution , current best objective value , gapk+1
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4.6 Getting Primal Feasible Solution

After solving each subproblems that were formed, we then obtain set of decision

variables. The next step is to check whether the decision variables are feasible. If so, then

an UB is formed by the objective value of the primal problem. However, if the decision

variables were not feasible, heuristic methods would become crucial in order to tune the

decision variables into feasible solutions. In this study, we propose different getting primal

feasible solutions for each models due to their characteristics and features.

4.6.1 Model 1(One-to-one relationship)

In model 1, we first take this constraint(4.244) into consideration.

τi

[
1

qiqjPij(ri,m)
− 1

]
+ 1 ≤ Tij ∀i ∈ S, j ∈ S,m ∈M (4.244)

If we are going to find the initial primal feasible solution for the primal problem, the

easiest way is to set all qi, qj and ri to the max. That way the time slots needed to transmit

a single packet will be minimized. In this model we assume that whenever a node is active

it will send data, so in such way the delay constraint(4.244) will be satisfied even though

it will consume more energy.

After the constraint is satisfied, we can adjust each decision variables to minimize the

energy consumption and at the same time satisfy the constraint. Lagrangian multipliers
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can play an important role for distinguishing which decision variable is more significant to

the model and should have the higher priority to adjustment. Further and detailed studies

about the use of Lagrangian multipliers will be provided and demonstrated in the next

section.

4.6.2 Model 2(Many-to-one relationship)

In model 2, the method to get the primal feasible solution is more complicated than

model 1. We take constraint(4.245) into consideration.

τi

[
1

qi(1− qi)n−1qκPiκ(ri,m)
− 1

]
+ 1 ≤ Tiκ ∀i ∈ S,m ∈M (4.245)

There are three variables qi, qκ and ri to be adjust. The time slots before the first

successful transmission appears when qi = 1
n
, qκ and Piκ(ri,m) = 1.

As for qi, there exists no advantage when qi is greater than 1
n
for both the delay

constraint(4.245) or the minimization of the primal problem. When qi is greater than 1
n
,

the time slots needed before the first successful transmissionwill increase andmay become

infeasible. Also when qi is greater than 1
n
, it will increase the energy consumption of the

primal problem.

Therefore, when the decision variables we obtain is infeasible, we set qi to 1
n
, qκ and

Piκ(ri,m) to 1. However, when qi is smaller than 1
n
, it might reduce the power consump-

tion. Hence, when the decision variables are satisfied, we can adjust them respectively so
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as the constraint won’t be break and the power consumption can be minimized.

Lagrangian multipliers can play an important role for distinguishing which decision

variable is more significant to the model and should have the higher priority to adjustment.

It can be used as the sensibility or the penalty coefficient of the model. It can show some

hints on whether a constraint or a variable is important for the model. With this kind of

hint, we can decide which decision variable to adjust first so it will benefit the model most.

Decision variable qi and ri exists different multipliers for each i, and qκ exist a single

multiplier. In the next chapter we will discuss and analyze whether using the summation,

the largest or the average of the multipliers in the set i is the most appropriate and effective.

4.6.3 Model 3(Network Tree Structure)

In model 3, not only we have to consider the delay constraint(4.246), we also have

to consider the newly added throughput constraint(4.247) as shown as followed.

τθi

[
1

qθi(1− qθi)
(v−1)qκRi

Pθi,κi
(rθi ,m)

− 1

]
+ τκi

[
1

qκSi
(1− qκSi

)(n−1)qξPκi,ξ(rκi
,m)

− 1

]
+ 2 ≤ Tθi,ξ

∀i ∈ N,m ∈M (4.246)

mqκSi
(1− qκSi

)(n−1)qξPκi,ξ(rκi
,m) ≥ mvqθi(1− qθi)

(v−1)qκRi
Pθi,κi

(rθi ,m)

∀i ∈ N,m ∈M (4.247)

As for the delay constraint, more factors and decision variables appears compared

to model 1 and model 2. And in model 3, we assume that the relay nodes κ have two
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subsystems. One in charge of the activeness of receiving (qκRi
) and another one is in

charge of the activeness of sending (qκSi
).

We first analyze the delay constraint(4.246) and it appears that when qθi = 1
v
, qκSi

=

1
n
, qκRi

, Pθi,κi
(rθi ,m), qξ and Pκi,ξ(rκi

,m) = 1, the time slots needed for a successful

transmission is minimized. It is similar with model 1 and model 2.

On the other hand, when the throughput constraint(4.247) is violated, setting qκSi
to

1
n
and qξ, Pκi,ξ(rκi

,m) to 1 is the first step to tune the decision variables. It will make

the left side of the throughput constraint(4.247) as big as possible. The reason why we

choose to first tune qκSi
, qξ and Pκi,ξ(rκi

,m) is that tuning these decision variables is

more effective than tuning qθi , qκRi
and Pθi,κi

(rθi ,m) because by tuning qκSi
to 1

n
and qξ,

Pκi,ξ(rκi
,m) to 1, it not only helps obey the delay constraint(4.246) but also the throughput

constraint(4.247).

After that, we check the delay constraint(4.246) whether it is violated or not. If so,

we set qθi to 1
v
and qκRi

, Pθi,κi
(rθi ,m) to 1 and then gradually decrease them so as both the

delay constraint(4.246) and the throughput constraint(4.247) can be satisfied. From the

perspective of throughput, qθi , qκRi
and Pθi,κi

(rθi ,m) will be forced to decrease to satisfy

the throughput constraint(4.247) in order to avoid the problem of overflowing.

At last when both constraints are satisfied, we gradually decrease qκSi
, qξ and rκi

to

get a better objective value to the primal problem and still remain the feasibility of the
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solution.
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Chapter 5 Experimental Results and

Discussion

In this chapter, several experiments regarding wireless sensor network are conducted

to verify the validity and the performance of our proposed method. The main goal of this

research is to minimize the energy consumption of the wireless sensor network in different

scenarios. Hence, results of different experiment cases and discussions will be presented

in the following section.

5.1 Experimental Environment

The experiments conducted in this research are implement by Python language on

Jupyter notebook IDE with version 3.8.5. We use a desktop as the execution environment.

The system parameters are shown in detailed in Table 5.1. The parameters related to the

LR method are shown in Table 5.2.
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Table 5.1: System Parameters

Parameters Value

Computer Type Desktop

Central Processing Unit Intel Core i5-6400 2.70 GHz

System Type x64-based pc

Random Access Memory 32GB

Programming Language Python

Integrated Development Environment Jupyter notebook

Table 5.2: Lagrangian Relaxation Parameters

Parameters Value

Iteration Count Limit 300

Improvement Count Limit 10

Initial Lambda 2

Initial Multipliers 0.00001

Initial UB ∞

Initial LB -∞
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5.2 Experiments and Results

5.2.1 The Design of Probability and Energy Consumption Functions

Piκ(ri,m), Pθi,κi
(rθi,m) and Pκi,ξ(rκi

,m) (P) are the probability functions used to

transmit a packet with m ∈ M size with transmission range radius of ri ∈ Ri, rθi ∈ Rθi

and rκi
∈ Rκi

. We take Piκ(ri,m) as an example. When we set the transmission range

radius ri to fixed, the higher the packet sizem is, the lower the probability of transmitting

a packet is. However, when we set the packet sizem to fixed, the higher the transmission

range radius ri is , the stronger the signal, the higher the Signal-to-noise ratio(SNR) rate

and therefore the higher the probability of transmitting a packet is. And in our design,

function P is a concave function which will saturated or asymptotically converge to 1 .

In order to implement this function P, we employ the energy consumption characteris-

tics of Mica2 motes [47] equipped with CC1000 [48]. Mica2 motes is the most commonly

utilized sensor nodes in experimental WSN research due to their well-characterized en-

ergy dissipation properties [33] and CC1000 is a RF Module, which is a small electronic

device used to transmit and/or receive radio signals between two devices.

The transmission power consumption (P crc
tx ) and output antenna power (P ant

tx ) at each

power level(l)[48] is shown as Figure 5.1.
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Figure 5.1: Power Consumption of Mica2 motes

The received signal power (Poantrx,ij) due to a transmission at power level-l over link-

(i, j) is shown as formula(5.1).

Poantrx,ij(l) = P ant
tx (l)− γij (5.1)

γij = γ0 + 10a log(
dij
d0

) +Xσ (5.2)

Where γij is the path loss value occurred over link-(i, j), based on the log-normal

shadowing path loss model [49]. dij is the distance between transmitter and receiver, γ0 is

the path loss at the reference distance, a is the path loss exponent and Xσ is a zero-mean

Gaussian random variable with the standard deviation σ dB to model large-scale fading

(shadowing) effects. We adopt the parameter values provided forMica2 motes as n = 3.69,

σ = 1.42 dB, d0 = 1 m, and Υ0 = 31 dB [50].

SNR is defined as
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ψij(l) = Poantrx,ij(l)− Pon (5.3)

The noise power (Pon) is–115 dBm at the temperature of 300Kelvin forMica2motes

[51]. The probability of a successful packet reception of a m-Byte packet transmitted at

power level-l over the link-(i, j) [51] is shown as formula(5.4)

psij(l,m) =

(
1− 1

2
exp

(
−ψij(l)

2

1

0.64

))8m

(5.4)

The distance over the link-(i, j) versus the probability of successfully transmitting a

packet is shown as Figure 5.2.

Figure 5.2: Distance between i and j vs. Prob of success

We then implement the probability function P with the characteristics of Mica mote2

and replace power level-l with transmission range radius ri. The figure of the probability

of node i to transmit packet with m size when no error occurs with transmission range

radius of ri is shown as Figure 5.3.
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Figure 5.3: Probability function

As for energy consumption functions Ca(ri,m), Cb(ri,m) and Cτ (ri,m), we im-

plement them respectively with the power consumption for reception of Mica mote 2[23],

the power consumption in the sleep mode and the power consumption shown as Figure

5.1. The relationship of power consumption and the transmission range radius of ri is

shown as Figure 5.4.

Figure 5.4: Cτ
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5.2.2 Experiment 1

In experiment 1, we conducted an experiment to testify the performance of our pro-

posed method introduced in Many-to-One model. We set the distance between sensor

nodes and relay node to 30 meters. The number of sensor nodes is set to 10. The time-

out interval τi is set to 10 time slots. In terms of timeout interval, time and the factors of

environment will influence it, but we assume that our environment is a quasistatic envi-

ronment. In such way we can assume that the timeout interval τi is fixed. When a packet is

transmitted, if the expected acknowledgement isn’t received before τi time slots, it is con-

sidered a failure transmission. It is composed of a packet transmission delay, propagation

delay, receiver’s processing delay, the time needed for forming the acknowledgement, the

transmission delay for the acknowledgement, the propagation delay for the acknowledge-

ment and the processing delay for the source node to receive the acknowledgement. We

assume that each of them need 1 time slot, therefore it needs at least 7 time slots to proceed

the mentioned process.

The setting of Tiκ is crucial. When Tiκ is set too small, sensor nodes will not be able

to transmit data in time. If Tiκ is set too big, the delay constraint will be considered as

useless. We first observe and analyze the relationship between the number of sensor(n)

nodes and Tiκ. We take delay constraint(5.5) below into consideration. The least amount

of delay Tiκ = 249.37585528 happens when qi = 1
n
, qκ = 1 and Piκ = 1.
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τi

[
1

qi(1− qi)n−1qκPiκ(ri,m)
− 1

]
+ 1 ≤ Tiκ ∀i ∈ S,m ∈M (5.5)

Let qi = 1
n
, qκ = 1, Piκ = 1 :

τi

[
1

qi(1− qi)n−1qκPiκ(ri,m)
− 1

]
+ 1 = τi

[
1

1
n
(1− 1

n
)n−1

− 1

]
+ 1 (5.6)

When n→ ∞ :

lim
n→∞

τi

[
1

1
n
(1− 1

n
)n−1

− 1

]
+ 1 ≤ Tiκ (5.7)

= lim
n→∞

τi

[
1

1
n
e−1

− 1

]
+ 1 ≤ Tiκ (5.8)

= lim
n→∞

τi [n× e− 1] + 1 ≤ Tiκ (5.9)

From the equations above, we can find out that the number of sensor(n) nodes is

proportional to Tiκ. We then set Tiκ to 260, which is considered extremely tight in order

to make the feasible region very small and test if our method can find the expected answer

for the decision variables.The result is shown as Figure 5.5.

From Figure 5.5, we can see that the getting primal feasible solution gets the optimal

solution throughout the first few iterations. When iteration continues to increase, the lower

bound gradually approaches the upper bound causing the gap between them to shrink.

After 100 iterations, the gap between the lower bound and upper bound is 4.7 % and the

time spent is 20.44 seconds. It is shown as Table 5.3.
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Figure 5.5: Many-to-One LR Result

Table 5.3: Many-to-One LR Result

LB UB Gap Time

60.56 63.45 4.7 % 20.4

5.2.3 Experiment 2

In experiment 2, we set the delay constraint Tiκ even tighter (249.37585529) to con-

duct an experiment to testify the performance of our proposed method. We set the distance

between nodes to 30 meters. The timeout interval τi is set to 10 time slots as explained

in the previous section. The number of sensor nodes is set to 10.The result is shown as

Figure 5.6 and Table 5.4 .
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Figure 5.6: Many-to-One LR Result 2

Table 5.4: Many-to-One LR Result 2

LB UB Gap Time

71.9 74.82 4.08 % 15.8

We then also conduct an experiment when sensor nodes is set to 5, and set the delay

constraint Tiκ very tight (113.1925051) to conduct the experiment. The number of sensor

nodes is set to 10.The result is shown as Figure 5.7 and Table 5.5 .
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Figure 5.7: Many-to-One LR Result 3

Table 5.5: Many-to-One LR Result 3

LB UB Gap Time

73.3 74.84 2.04 % 4.8

From the experiments shown above, we can find out that the probability of the sensor

node to be active when n = 5 is two times as large as when n = 10. The reason is that when

the delay constraint is extremely strict, in order to get the optimal solution, the probability

of the sensor node to be active will approach to 1
n
. The probability of the relay node to be

active and the probability to transmit a packet without error will approach to 1. Therefore,

the total power consumption when n = 5 is similar to n = 10 because the number of nodes

when n = 10 is two times as large as when n = 5, and the probability of the sensor node to

be active when n = 5 is two times as large as when n = 10.
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5.2.4 Experiment 3

In experiment 3, we conducted an experiment to testify the performance of our pro-

posed method introduced in the Network Tree Structure model. We set the distance be-

tween nodes to 30meters. The number of sensor nodes in each subtree(v) is set to 2 and the

number of subtree(n) is set to 5. The timeout interval τi is set to 10 time slots as explained

in the previous section. Tθi,ξ is set to 1001 which is also tight to testify the performance

of our proposed model. The result is shown as Figure 5.8 and Table 5.6 .

Figure 5.8: Network Tree Structure Experiment 1

Table 5.6: Network Tree Structure Experiment 1

LB UB Gap Time

332.75 349.38 4.9 % 308.6
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We then increase the number of sensor nodes in each subtree(v) into 3 and the number

of subtree(n) into 8 and do the experiment in a bigger scale. Tθi,ξ is set to 3000. The result

is shown as Figure 5.9 and Table 5.7 .

Figure 5.9: Network Tree Structure Experiment 2

Table 5.7: Network Tree Structure Experiment 2

LB UB Gap Time

498.06 522.76 4.96 % 4662.7

From the results shown above, we found out that at the beginning, the model will tend

to adjust qκSi
, qξ and Pκi,ξ(rκi

,m) as much as possible to satisfy both the delay constraint

and the throughput constraint. After that, if the throughput constraint is not satisfied,

qθi , qκRi
and Pθi,κi

(rθi ,m) will be decreased according to the size of multipliers to make

it feasible. At last when solutions are feasible, decision variables will be slightly adjust
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to try to find a better solution. The results also shows that compared to model 2, qθi , qκRi

and Pθi,κi
(rθi ,m) will be forced to set to a smaller value in order to satisfy the throughput

constraint and to avoid overflow.

5.2.5 Experiment 4

In experiment 4, we conducted an experiment to observe the effect of different packet

sizes(m). Packet sizes(m) is also considered as a decision variable. However, m and ri

often coupled together and is difficult to decompose. Therefore, we use exhausted solution

to see which packet size m has the better solution.

There are three aspect that were influenced by m. First, the larger m is, the longer the

time slot is for transmitting a packet. In this research, we use time slot as the unit, so we

will also take the influence of packet size into consideration. Secondly, the probability of

transmitting a packet without error will decrease when m increases. Thirdly, we assume

each packet has a fixed size header of 50 bytes, therefore the larger the packet size is,

the larger the throughput is. We take all the mentioned factors into consideration and

conducted an experiment to see which m has the best performance. We use the same

setting as experiment 2 and enumerate through 64 byte to 255 byte.

The result is shown as Figure 5.10 .

We can see that there exists a trade off. When m is too big, it could cause the prob-
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Figure 5.10: Packet Size Experiment

ability of transmitting a packet without error decrease, therefore the delay constraint will

not be satisfied and also cause the absolute time interval of the time slot to increase and

eventually increase the power consumption.

However, if m is too small, the real throughput will decrease. The reason is that the

real throughput will be the packet size minus the header size. Therefore when m is too

small, the power consumption of a single byte of the real throughput will be too high.

5.2.6 Experiment 5

In experiment 5, we conducted an experiment to observe and compare the usage of the

multipliers in Many-to-One model. In the getting primal feasible solutions we proposed,

we decide the adjustment order of the decision variables by comparing the multipliers. We
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compare using the multipliers by choosing the maximum in the set i, the summation of

the set i and the average of the set i to see which way perform well in the getting primal

feasible solution. We use the same setting as experiment 2 and enumerate through 64 byte

to 255 byte. The result is shown as Table 5.8 .

Table 5.8: Multipliers Experiment 1

Maximum Summation Average

Objective value 63.45 70.59 63.45

When comparing the usage of multipliers, we found out that by choosing the maxi-

mum multiplier in the set i and the average of the set i have the better performance than

choosing the summation of the set i. It is because when the delay constraint is set tight,

the multipliers of qκ tend to become bigger than qi, therefore the model tend to adjust qκ

first. However, when we use the summation of the set i, the model will then adjust qi first.

When the delay constraint is set tight, the adjustment of qi will not be enough for satisfying

it, so making qi important by choosing the summation of the set i will lead to the worst

performance. Also, choosing the maximum multiplier in the set i and the average of the

set i does not affect the result because when choosing the the maximum multiplier in the

set i, the multiplier is not big enough to influence the adjustment order of qi, qκ and ri.

We then also set the adjustment order to fixed rather than using the multipliers to

165

http://dx.doi.org/10.6342/NTU202210101


doi:10.6342/NTU202210101

decide the adjustment order to see which perform better. There are three decision variables

remain adjusting, so there will be 6 combinations of adjustment orders, which are [qi > qκ

> ri], [qi > ri > qκ], [qκ > qi > ri], [qκ > ri > qi ], [ri > qi > qκ], [ri > qκ > qi].The result is

shown as Table 5.9 .

Table 5.9: Multipliers Experiment 2

qi > qκ > ri qi > ri > qκ qi > qκ > ri qκ > ri > qi ri > qi > qκ ri > qκ > qi

Objective

value

70.258 70.229 64.913 63.828 70.029 63.456

We compared the above methods with the one using multipliers, and it shows that

by choosing the adjustment order dynamically with multipliers has the best performance,

which gets the smallest objective value. The result is shown as Figure 5.11 .

Figure 5.11: Multipliers Experiment 2
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5.2.7 Experiment 6

In experiment 6, we conducted an experiment to compare the performance and ef-

ficiency of our proposed method and Exhausted Search 1. We first conduct Exhausted

Search 1 by searching all the possible answers of qi and qκ from 0.01 to 0.99. The result

is shown as Table 5.10 .

Table 5.10: Exhausted Search 1 vs. Proposed Method

Exhausted Search 1 Proposed Method

Objective value 64.458 63.453

Time 315.5 19.6

From the result above, we can see that the time that Exhausted Search 1 spent is

ten times more longer than our proposed method. Moreover, the performance is worst

than our proposed method. We then increase the precision of the Exhausted Search. We

conducted Exhausted Search 2 by searching all the possible answers of qi and qκ from

0.001 to 0.999.The result is shown as Table 5.11 .
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Table 5.11: Exhausted Search 2 vs. Proposed Method

Exhausted Search 2 Proposed Method

Objective value 63.189 63.453

Time 7527.8 19.6

From the result above, we can see that the performance of Exhausted Search 2 is

better than our proposed method due to the precision increase. However, the time spent

for Exhausted Search 2 is 300 times more than our proposed method.
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Chapter 6 Conclusions and Future

Work

6.1 Conclusions

In this thesis, we proposed an optimization-based power control mechanism for sav-

ing energy in green wireless sensor networks. In order to minimize the energy consump-

tion of the wireless sensor network and also satisfy the delay and throughput constraints,

we developed a series of getting primal feasible solution and LR based algorithms. One-

to-One model is first proposed theoretically and we later expand and implement it into

Many-to-Onemodel. At last, a complete andmore practical Network Tree structure model

is proposed by considering more scenarios and was implemented in a larger scale. After

modeling, we apply LR method’s divide-and-conquer characteristics to help us simplify

the primal problem. By dividing the primal problems into subproblems, we can solve

them individually in an easier way. We then conducted a series of experiments to testify
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the validity of our proposed method. The experiments shows different insights of saving

energy in wireless sensor network and also demonstrates that the method we proposed

performs better than other heuristics.

6.2 Future Work

There are some issues and works that could be done in the future to further improve

this research.

In Network Tree structure model, we assume the relay node is consists of 2 subsys-

tem, which can allow it to separately control the probability of activeness when receiving

from the probability of activeness when sending. The connection between these 2 subsys-

tems may exist some difficulties and extra energy consumption. After taking the above

mentioned factor into consideration, we can then compare it with assuming that it only

exist a single system responsible for controlling both the probability of activeness when

receiving and the probability of activeness when sending. We presume that the model will

be more flexible when we separate the relay node into 2 subsystem and the getting primal

feasible solution will be able to adjust more easily to the throughput constraint. Therefore,

research regarding the issues mentioned above could give us more insights and is worth

deep discussion.
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