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Abstract

In recent years, Wireless Sensor Networks(WSNs) have been widely used in various
fields because of their low cost, low power consumption, small size and easy deployment.
But its shortcomings are also obvious. Because each sensor transmits data wirelessly, the
source of power usually comes from the battery inside the sensor. Energy conservation

and power control in sensing networks becomes an extremely important issue.

In this paper we model this wireless network minimization problem as a mathematical
model, and the problem subjected to delay and throughput constraints. In the model we
need to determine the probability of the sensor being active, the distance to transmit and the
size of the transmitted packet to minimize energy consumption. There are different trade
offs among these decision variables, and we also find different relationships between them

through follow-up experiments.

This paper uses the Lagrangian relaxation method and decompose it into sub-problems
and solve them one by one, and find a lower bound that is tight with the upper bound value.
In the experiment, we also find out different use of the Lagrangian multipliers, and hope
to achieve the minimization of energy consumption, and at the same time to maintain the

network connection and data output.
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Chapter 1 Introduction

1.1 Background Overview

1.1.1 Characteristics of WSN

Wireless sensor network (WSN) consists of a large number of sensing nodes which
are responsible for monitoring or performing certain measurements, such as temperature,

humidity, vehicular movement, noise levels, pressure, soil makeup [1],etc.

Nodes in sensor networks are also mostly battery powered [2]. Because of this char-
acteristic, designing the networks with high energy efficiency becomes crucial in order to
maximize their lifetime [3]. Properties such as decentralized control, broadcast and chan-
nel to transmit , among others are derived from ad-hoc networks. However, WSN are still

different from traditional ad-hoc networks.

The way that ad-hoc networks communicates is any-to any because the nodes in ad-

hoc network are in general less energy constrained [4]. On the other hand,the paradigm
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of many-to-one communication is more common in sensor networks [5]. This is because

the collected data will be sent to the nearest base station for aggregating the resulting data

to a higher class for processing [6], which later forms different kinds of topology and will

be changed frequently [7].

1.1.2 Architecture of WSN

Figure 1.1 demonstrates the general architecture of a WSN. It can be observed from

the diagram that sensor nodes are randomly deployed which formed a coverage area. We

suppose that sensor nodes are all capable of collecting and sensing information in their

area of interest. Each nodes are also able to communicate with higher class nodes for

transmitting the collected data through network interfaces. Higher class nodes will be de-

termined from the range with the sink/base station, which are used to gather data from

lower class nodes. A sink/base station is a node that acts as a bond between the user’s

internet and the WSN. Network data are often processed by the sink/base station in prepa-

ration for sending only relevant data to the user. Requests to other nodes can also be sent

by the user via the sink/base station [8].

2 doi:10.6342/NTU202210101
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m\

Internet

Sensor nodes
Sensor nodes

Figure 1.1: Architecture of WSN

It is noticed that high level nodes closer to the base station or the sink are more easily
to exhaust their battery energy than other lower level nodes since they are in charge of
aggregating data [9]. Hence,sensor nodes should optimize several decisions ,including
the amount of data flow, transmission power level and the activeness of the sensor on

each link in order to avoid the over-utilization of energy in batteries [10].

1.2 Motivation

WSN plays an important role in the development for a wide range of application in
Internet of Things(IoT) [11]. It is also considered one of the emerging technologies that
will change the world [12], [13]. However, due to environmental constraints and other
factors that increases costs, changing the batteries of the sensor seems to be difficult. For

instance, it is not cost-effective and even impossible to replace the batteries of the nodes in

3 doi:10.6342/NTU202210101
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a WSN deployed underneath the ocean for observant purpose. Hence, energy efficiency is
one of the most crucial criteria while designing WSN [14] and has not stop being discussed
even in recent years [15]. In this research, we intend to propose a model to optimize the

energy efficiency of a WSN.

1.3 Objectives

Lifetime maximization of WSN has been addressed by substantial research works

[16], [17], [18], [19]. Energy conservation strategies are generally divided into several

types [20], [21]:
* Type 1 : Scheduling strategy on alternating states of nodes between sleep and active
modes.

* Type 2 : Power control aiming to optimize tradeoff between energy consumption

and connectivity.
* Type 3 : Best routes,cluster and aggregation for sensor nodes.
* Type 4 : Reduction or compression of transmitted data .

» Type 5 : Efficiency of retransmission and acknowledgements protocols on data link

layer.

4 doi:10.6342/NTU202210101


http://dx.doi.org/10.6342/NTU202210101

Most studies concern their power control mechanism on a certain type. It is shown

that [22] focuses their study on type 2, and [21] on the other hand extend their research on

type 1. [23] took both transmission power and packet size into consideration. When the

packet size is reduced, the overall impact of bit error rates on packet loss will also drop.

However, a smaller packet size will result in more packet transmission due to the fixed

header protocol. On the other hand, by increasing the transmission power of sensor nodes,

packet loss probability will decrease, but high transmission power will also result in high

energy dissipation. The tradoff between packet size and transmission power are discussed

specifically in [23]. Several researches also simplify assumptions such as assuming perfect

feedback channel and lossless channel [24], [25], [26]. However, in practical, it is known

that WSNs are subjected to packet errors so as acknowledgements sent by receivers.

1.3.1 Methods

In this research, we tend to include the studies on type 1 and 2. Therefore, in order

to address the issues of the states between nodes, the tradeoff between energy consump-

tion and connectivity will be discuss in our model. The efficiency of retransmission and

acknowledgements protocols on data link layer will also be considered. A mathemati-

cal formulation taking both packet size and transmission power into account as well as

different solution approaches will be introduced in the following chapters.

5 doi:10.6342/NTU202210101
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In the first part of our proposed model, we focus on formulating the relationship
between two sensor nodes, which forms an one-to-one link. In the second part, an many-
to-one relationship is considered, which will later form a star topology and an aggregate
point for gathering data from the lower class. At last, a tree structure will be discussed in

order to form a complete WSN.

1.4 Thesis Organization

This thesis is organized as follows. In Chapter 2, related works regarding this prob-
lem will be provided. A formal formulation of the problem, including text description as
well as in mathematical form, will be described in Chapter 3. Chapter 4 will provide the
solution approach for the problem stated in Chapter 3. Experimental results and discussion
on the previously proposed methods will be shown in Chapter 5 . Finally, a conclusion

will be drawn in Chapter 6.

6 doi:10.6342/NTU202210101
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Chapter 2 Literature Review

Mechanisms to reduce energy consumption in wireless sensor network has been stud-
ied extensively. By determining the states of nodes through its active and sleeping periods
brightly can help us avoid needless waste of energy. Power control techniques that seek to
optimal the tradeoff of energy consumption and connectivity are also crucial. Last but not
least, finding the best routes, cluster and aggregation points when designing networks will
also prevent energy waste. In this section, studies and technology related to these research

will be presented.

2.1 Duty Cycle

Duty cycle is one of the most effective operation in terms of increasing the energy ef-
ficiency of the sensor network. It managed the energy resource of the nodes by constantly
switching the states of the sensor nodes. There are different operation states of a node,

such as idle,sleep,listen and transmit. Distance-based Duty Cycle Assignment (DDCA)

7 doi:10.6342/NTU202210101
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and Traffic-Adaptive Distance-based Duty Cycle Assignment (TDDCA) are proposed in

[27]. Here it assumes that nodes closer to sink must transmit a larger size of packet than

those further from the sink. Hence , DDCA is used as a function to determine the duty

cycle with the distances of the nodes to the sink. Additionally, TDDCA is responsible for

adapting duty cycle later on according to the current traffic patterns observed by the nodes.

According to receiver-based protocols [28], the traffic of the network can be indicated by

the number of retransmitted RTS packets. If the retransmission of RTS increases dramat-

ically and eventually outnumbers the original RTS packet, it means that there might be

traffic congestion. TDDCA will then tune the duty cycle to mitigate congestion.

Coverage requirements are also related to the node duty cycle. Not only should we

minimize the consumption of energy, but the sensor nodes should also be able to cover

the targets that is monitored. Moreover,a disjoint set of nodes should be formed to cover

the monitored area in order to maximize the network’s lifetime. However,connectivity of

the network should also be considered. [29] focus on solving k-coverage problem while

ensuring the connectivity between all active nodes. K-coverage means that every location

is covered by at least k sensors in a sensor network. By solving this, [29] decomposes the

problem into field slicing and sensor selection. Field slicing first split the sensing region

into little pieces of a particular shape(Reuleaux Triangles), then sensor selection selects

as small subset of sensors as possible to cover it.

8 doi:10.6342/NTU202210101
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2.2 Control of Transmission Power

The control of transmission power aims to adjust the node’s transmission power at

appropriate levels due to factors such as the range between transmitter and receiver or the

current state of traffic. Researches about this topic has been conducted in [30], [31].1t is

shown that [31] classifies different approaches of power control the protocol layers em-

ployed: MAC, Network and Transport layer. A MAC layer approach aims to decrease

the chance of collision,in order to minimize the energy consumption used in transmission.

Network layer approach employed two basic scenes: Power-Aware Routing and Maxi-

mum Lifetime Routing. Both of the approach concentrates on network routing rather than

control in transmission power, which we will discuss in the next section.Transport layer

Protocol (TCP) is responsible for congestion control and retransmission in a network,so

approaches employed in transport layer can alter the retransmission behavior in order to

achieve lower energy consumption [32]. Power control in transmission problem are also

referred to as the Range Assignment(RA) or Strong Minimum Energy Topology(SMET),

which discusses the tradeofts of throughput,traffic and reliability.

In [30], an Adaptive Transmission Power Control(ATPC) model was proposed. In

ATPC, a model built in each nodes will adjust their power according to the link quality.

This model employs a feedback-based transmission power control algorithm to maintain

9 doi:10.6342/NTU202210101
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link quality dynamically. ATPC relies on pairwise adjustment to achieve energy saving
and furthermore shows the superiority of link level compared to the node level and network
level in terms of energy efficiency [33].1t is shown that [33] built a mathematical model to
investigate the impact of transmission power control to network lifetime. Higher transmis-
sion power will sure decrease the probability of handshake failure, but it may not lead to
maximizing the network’s lifetime since some links selection of maximum might increase
energy consumption. Lossless feedback channel are also investigated in [33]. [22] pro-
posed a hybrid model by considering both transmission power and the node’s address. The
transmission power will be optimized according to the distance between neighbor nodes
and through searching the table with the address of nodes for the next hop. Therefore,

transmission can be adjust with the information of the mapping table.

2.3 Topology Control and Routing

A decent node deployment in topology control can lead to reducing network traffic,
avoid packet collision , improving network throughput and save energy. The main part
of node deployment is to find a subset of nodes that is strongly connected to become the
backbone of the network. The rest of the nodes can be connected to the backbone. This
backbone topology not only guarantees the connectivity of the network but also allows

non-backbone nodes to be turned off to save energy. This kind of problem is often modeled

10 doi:10.6342/NTU202210101
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as Connected Dominating Set (CDS) mathematical problem. A CDS-based algorithm

is presented by [34] to construct the network with prolonging the network lifetime and

balancing energy consumption. But when it comes to fault tolerance, CDS problems won’t

be enough because it only preserves 1-connectivity. Therefore, kmCDS problem where

k-connectivity and m dominating sets are brought to consideration.

Routing, also known as the data transmission problem, is broadly studied in WSN. It

can be roughly divided into the group related to Shortest Path Tree (SPT) and Minimum

Spanning Tree (MST) based models and those centered around flow problems. SPT and

MST algorithms help us find the paths that consumes the minimum energy consumption to

achieve energy efficiency [35], [36]. Dijkstra’s or Bellman Ford algorithms are often used

in these models. Different situation of the nodes are took into consideration by [37] such as

some nodes may deplete energy faster than others. However, SPT may lead to unbalance

load between sensors since the model tends to choose certain routes, so residual energy,

buffer size or other factors are later took into account in [38]. Routing problems aim to

minimize total energy consumption or maximizing networks lifetime are also formulate

as Multi-Commodity Flow Problems. Commodity is a source-destination pair, and it is

shown in [39]that the multi-commodity flow problem is NP-hard. [40] formulates the

Multi-commodity flow problem into Integer Linear Programming and represents the flow

by the number of packets and the transmission energy. [41] proposed an energy-aware
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routing algorithm to prolong the network life time of wireless sensor network.
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Chapter 3 Problem Formulation

In this chapter, the optimization problem of power control mechanism for saving
energy in wireless sensor networks will be thoroughly described. The constraints as well
as the associated assumptions will also be covered. A mathematical formulation will be

presented at the end of this chapter.

3.1 Problem Description

The aim of this research is to minimize the energy consumption of the WSN while
considering the connectivity and throughput. We proposed three models as a slotted time
system which discusses the optimal problem based on three perspective of the nodes: One-
to-One Relationship, Many-to-One Relationship and the whole Network Tree Structure
Relationship. In a slotted time system, collision will occur if more than 2 node pairs are
competing for a same slot. The bandwidth of each time slot is considered fixed. We will

discuss these three models sequentially. An overview of each model will be present in the
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following section.

3.2 Model 1: One-to-One Relationship

In this section, the mathematical form is given for the problem of One-to-One Rela-

tionship model where we take node 1 and node j into consideration.

The given parameters as well as their descriptions are shown in Table 3.1:

Table 3.1: Given Parameters

Notation Description
S The index set of sensors, which is {1,2,3,...,5}
L The index set of all possible links, which is {1,2,3,...,1}
T The allowable delay from ¢ € S to j € S (end to end)
Aij Data rate between ¢ € S'and j € S
d;;j The distance between i € Sand j € S
R; Set of possible range fori € S
T; Timeout interval for 7 € S (a given f of time slots)
tij The transmission time from ¢ € Sto j € S, e.g. slot time = 1
Gij The aggregate flow on link (z € 5,7 € S)€e L<(Ii;\ji;)ij
fij Retransmission
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The decision variables and their descriptions are are shown in Table 3.2:

Table 3.2: Decision Variables

Notation Description
re Transmission range of s € S,ry € Ry
M The index set of all possible packet size , which is {1,2,3,...,m}
Qi The probability that : € S is active in a time slot
Pi(ri,m) The probability of ¢ € S to transmit packet with m € M sizeto j € S

when no error occurs with transmission range radius of r; € R;

Also the function of j, which is the basic inherent channel quality
between i and j

Cé(ri,m) The average power consumption rate when ¢ € S is active with
transmission range ; in 1 time slot(influenced by m)

C?(rs,m) The average power consumption rate when i € S is inactive with
transmission range 7; in 1 time slot(influenced by m)

CI(ri,m) The average power consumption rate for ¢ € .S to transmita m € M
size packet(in 1 time slot) with transmission range r; € R;

Also the functions C%(r;, m),C%(r;, m) and C7 (r;, m) are given, the
parameters of the function are to be determined, so the value of the
function itself is a decision variable

The objective function is expressed as formula (3.1):

) [C’f(ri,m)qi + Cf(rj,m)q; + CP(ry,m)(1 — q) + C']I?(rj,m)(l —q;) + CT (14, m)qi}
min ZZ

m

icS jes

(3.1)

The objective function aims to minimize the energy consumption in a time slot by

controlling ¢; and ¢;, which is the probability that node i and node j is active in a time slot.

In C¢(r;,m) we consider the transmission range of node i to decide the power con-
sumption when the node is active and in C]l?(n-, m) we consider the transmission range of

node i to decide the power consumption when the node is inactive. When transmitting data,
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we consider the transmission range to determine the power consumption of C7 (7, m). We
also consider the packet size level that node i is transmitting because it would influence
the size of the time slot. Therefore, the bigger the packet size, the longer the time slot
will be needed to transmit a packet. The probability of transmitting a packet without error
will also decrease when m increases, and we assume each packet has a fixed size header,
therefore the larger the packet size is, the larger the throughput is. We take all the above
mentioned factors into consideration to find the trade off of the packet size and the power
consumption in a single byte. So the objective function will be divided by m to normalize

by the length of time slot.

The packet size is categorized into different level where high packet size level indi-
cates larger packet size. Ata same encapsulation mechanism, packets share the same over-
head. So alarger packet size indicates a larger payload size, which means more data will be
transmitted. On the other hand, with a fixed bit error rate, the larger of the packet size level,
the larger of the power consumption C7 (1;, m). As for the success probability(P;(r;, m))
of node i to transmit packet size level m to node j with transmission range radius 7; , the
larger of the packet size level, the smaller of P;;(r;, m). Hence there appears an interest-
ing tradeoff, which is when in a noiseless channel, larger packet size may lead to larger
throughput. But in a noisy channel, larger packet size may cause lower probability to

SucCcCcess.
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Figure 3.1 shows the relationship between node i and node j, with the success and er-
ror rate to transmit a packet of ¢;q; P;;(r;, m) and 1 —q;q; P;;(r;, m) respectively. A;;+ fi;is
the aggregate flow on link i, j. Each transmission is considered as a bernoulli trial as result
of the same probability to successfully transmit. We assume that we have to transmit k
times to success, each failure transmission will cost us a timeout interval of 7;. Hence,
the transmission time is a random variable governed by a geometric distribution. The ex-

pected value for the number of transmission to get the first success is a fraction of the

PR . . . l
probability to successfully transmit, which is R o o

95

The probability P;;(r;, m) con-
siders when both data and acknowledgement success. If the acknowledgement is received
by the transmitter before a timeout interval 7;, then it is considered a successful transmis-

sion.

Success rate:
qiq; Pij (1)

. Aij + fij ( Channel 7 Aij
L ) v

Node i Error rate:
fij 1-q;q; P ()

Figure 3.1: One-to-One Relationship

If the packet successfully transmit to node j, data rate of \;; will be transferred and

formula (3.2) will be derived as follow:

Nij = (Nij + fij)(@iq; Pij(ri;m)) VieS jeSmeM (3.2)

When the transmission failed, a retransmission will begin and f;; can be derived as follow
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formula (3.3):

fz'j = ()\z] + f”)(l — qiqu,-j(m,m)) Vi € S,] € S,m eM (33)

The value of f;; can also be derived from formula (3.2) as formula (3.4):

Aij(1 = qig; Pij(ri,m))
QinPz’j (7% m)

fij = VieS,jeSmeM (3.4)

The objective function is subject to the following constraints.

There are several ways to recover from error transmission which occurs retransmis-
sion delay. The first one we introduce is error detection. We assume that a successful
transmission includes the acknowledgement send from the receiver which shows that the
transmission is without error, otherwise the receiver will send a negative acknowledge-
ment. The second one is when the sender did not receive acknowledgement, there will be
a timeout interval denoted as 7; to keep the sender from infinite waiting for the acknowl-

edgement.

Constraint (3.5) ensures that the time spent for a single successful transmission will
be smaller than the allowable delay from node i to node j. We assume that queuing delay
is ignored, the delay over link (i,j) is the time spent for a single successful transmission,

which is the number of transmission before getting the first success (m - 1)
idy L5 \Tis

times the timeout interval 7; emerged for each failed transmission plus one slot time for

the success transmission. It is expressed as

1
T.

| 1| +1<Ty Vie S,jeSmeM (3.5)
¢iq; Pij(ri,m)
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7; is the smaller the better in a single slot. However there are other delays so we have

to precisely set up 7;.

Constraint (3.6), (3.7) and (3.8) ensures that the value of ¢;,, ¢; and P,;(r;, m) fall
within a small number € and 1. Since ¢;, ¢; and P;;(r;, m) denotes the probability that
node i is active in a time slot, the probability that node j is active in a time slot and the
probability of node i to transmit packet to node j without error with transmission range
radius of r;, respectively, it is required that ¢; , g; and P;;(r;, m) fall in between a small

number € and 1. The constraints are expressed as :

€e<qg <1 VieS (3.6)
e<qg <1 VjeS (3.7
e < Pj(r;,m) <1 Vie S,jes (3.8)

Constraint (3.9) and (3.10) are expressed as

r; € R, Vje s (3.10)
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3.3 Model 2 : Many-to-One Relationship

The given parameters as well as their descriptions are shown in Table 3.3:

Table 3.3: Given Parameters

Notation Description
S The index set of sensor nodes, which is {1,2,3,...,5}
L The index set of all possible links, which is {1,2,3,...,1}
K The relay node , responsible for aggregating data sent from the lower

level layer sensor nodes

T The allowable end to end delay from ¢ € S to relay node s

n The amount of nodes in the lower layer of Many-to-one structure
die The distance between i € S and relay node

R; Set of possible range fori € S
R, Set of possible range for relay node x

T; Timeout interval for z € S (a given f of time slots)

ix The transmission time from ¢ € .S to relay node « , e.g. 1 slot time
Jirs The aggregate flow on link (z € S,relay node k)& L(qi%1 )

t The least expected time slots for the network to work

= The initial power storage for sensor node i € S

P, The initial power storage for relay node
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The decision variables and their descriptions are are shown in Table 3.4:

Table 3.4: Decision Variables

Notation Description
Te Transmission range of s € S,ry € Ry
Tw Transmission range of relay node s, r, € R,
M The index set of all possible packet size , which is {1,2,3,...,m}
Qi The probability that ¢ € S is active in a time slot
Qs The probability that relay node « is active in a time slot
Py (r;,m) The probability of ¢ € S to transmit packet with m € M size to relay

node x when no error occurs with transmission range radius of r; € R;

Cé(ri,m) The average power consumption rate when ¢ € S is active with
transmission range r; € R; in 1 time slot(influenced by m)

C(r;,m) The average power consumption rate when ¢ € S is inactive with
transmission range r; € R; in 1 time slot(influenced by m)

C%re, m) The average power consumption rate when relay node « is active with
transmission range r,, € R, in 1 time slot(influenced by m)

C®(re,m) The average power consumption rate when relay node « is inactive
with transmission range 7, € R,; in 1 time slot(influenced by m)

CT(ri,m) The average power consumption rate for ¢ € S to transmitam € M
size packet(in 1 time slot) with transmission range r; € R;

Also the functions C¢(r;, m), C?(r;,m), C*(r., m), C’(r,,m) and
CT (r;,m) are given, the parameters of the function are to be
determined, so the value of the function itself is a decision variable

The Many-to-One Relationship model is an extension from the One-to-One Relation-
ship model. As shown in Figure 3.2, we assume that there are n nodes waiting to transmit
data to relay node ~ and they share the same interface to transmit. N nodes indicates that
each node’s probability to transmit will not exceed %, which constrained to the maximum
throughput. Moreover, the probability to transmit of each nodes might be less than % in

order to save energy. Relay node « is the aggregate node that is responsible for gathering
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data from the lower level nodes, and so theoretically relay node « will have a higher prob-

ability to be active, which is a higher ¢,. Therefore, we can consider this Many-to-One

Relationship model as a tree structure.

Node i

n nodes —

Relay Node K

Node j

- I
1

Figure 3.2: Many-to-One Relationship

In this tree structure, we first take only node i and node j into consideration. We
assume that node 1 and node j is in need to transmit data to relay node « , so node i and
node j is competing for relay node x . We can assume that node i and node j obtains
different average delay upper limit due to the importance of the data. The probability for 1
to successfully transmit to k is when node i and relay node & is active, but node j is inactive
in order to avoid collision. And we assume that lower level sensor nodes will always have
data to transmit to relay node . The formula indicating the possibility of sensor node i to

successfully transmit to relay node « is shown below as formula (3.11).

¢(1 — qj)q.Pir(ri,m) VieS,jeSmeM (3.11)
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When all the nodes finish transferring their data to relay node « , then it is consider

that relay node « has finish gathering all the data. In this scenario that we only consider

node i and node j, the time that relay node ~ will take to finish aggregating all the data

is the largest value between the time node 1 transmits and the time node j transmits. It is

shown as formula (3.12).

1 1
max{7; -1 —1—1,71{ -1 +1
{ ¢i(1 — q;)qx P (rs, M) ] ¢;(1 — ;)@ Pji(r;, M) J
VieS,jeSmeM (3.12)

Now we take all the n nodes in the lower layer into consideration, which is node a

to node z competing to transmit to relay node « . In this scenario we assume that there

are always data needed to be send in the lower layer, which is when node a to node z is

active, they will try to send data to relay node ~ . We focus on the possibility where node

1 successfully transmits data to relay node « . This system we designed is a slotted time

system, which means for every time slot, if there is only one node transmitting data then

it will success, else it will collide and fail to transmit. We also neglect the fact that nodes

are waiting for timeout interval to timeout or the situation that the previous time sending

the data is failure, which indicates that the probability of no one is using a time slot is low.

Therefore for 1 to successfully transmit, it happens at the scenario where all the nodes are

inactive except the transmitter node i1 and the receiver relay node . In the scenario we

consider, we assume that each point is parallel and competing for an interface in a slotted
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time. Every sensor has information to send and will send when there is a chance. The

probability for node i to successfully transmit to relay node ~ is shown as formula (3.13).

(1 —qa)(1 —q;) x ... x (1 = q2)qu Py (rs, M) (3.13)

The objective function is expressed as formula (3.14):
Ci(ri,m)q; + C¢(ri, m)q; + Cg(ra, m)qa + ... + CL(r.,m)q. + Ci(re, m)qs
m
N CP(ri,m)(1 — q;) + C’Jl?(m-,m)(l —qj) + . + C2(r,,m)(1 = q,) + C(re, m)(1 — g.)
m

min

CT(r;,m)qg; Cl(rj,m)g;  C7(re,m)q, CT(r,,m)q,
L Cilrimgs  Cilrm)a;  Ci(raym)qa  CI(rzym)g
m m m m

(3.14)

The objective function (3.14) aims to minimize the energy consumption by control-

ling g, to ¢.,which is the probability that node a to node z is active in a time slot. The first

row of the formula indicates the energy consumption where node a to node z is active. The

second row shows the energy consumption where node a to node z is inactive, and the last

row shows the energy consumption where nodes are transmitting data to relay node «. The

energy consumption where nodes are transmitting data to relay node  is the probability

when nodes are active times the the average power consumption rate. The reason to mul-

tiply the probability to transmit to the energy consumption where nodes are transmitting

data is because the nodes won’t always send data in every time slot, it also depends on the

probability of activeness. We also consider the packet size level that node 1 is transmitting

because it would influence the size of the time slot. Therefore, the bigger the packet size,
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the longer the time slot will be needed to transmit a packet. The probability of transmitting
a packet without error will also decrease when m increases, and we assume each packet
has a fixed size header, therefore the larger the packet size is, the larger the throughput
is. We take all the above mentioned factors into consideration to find the trade off of the
packet size and the power consumption in a single byte. So the objective function will be
divided by m to normalize by the length of time slot.

Based on fairness, we can also consider formula (3.15):

qi = qj VieS,5e€8 (3.15)

Each ¢; can be different, and formula wise is absolutely feasible. But when solving
the problem, it will become very difficult to solve. After expansion, you will find that
there will be various combinations of terms multiplied together. Although it is doable,
the complexity of the problem will also increase rapidly. Therefore we consider formula

(3.15).

However for ¢,, relay node « is the aggregate node that is responsible for gathering
data from the lower level nodes, and so theoretically relay node ~ will have a higher
probability to be active, which results in a higher ¢,.

The new success rate for node 1 to transmit is shown as formula (3.16):

(1 — ;)" VP (ri, m) Vie S,me M (3.16)

The new objective function based on formula (3.15) is shown as formula (3.17):
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(. . (e b(n. o b . (. .
min jzz[ck(n,anz+—c;0%,anﬁ4—cz(n,nw(1 @) + C2(r,., m)(1 qn)+-cg(n,anq

; m
€S

(3.17)

Constraint (3.18) ensures that the time spent for a single successful transmission will
be smaller than the allowable delay from node i to relay node « . We assume that queuing

delay is ignored, the delay over link (i,k) is the time spent for a single successful, which

is the number of transmission before getting the first success | ————p—ms—— — 1]
(Iz(l_(h) qRP’I,K,(T’L’m)

times the timeout interval 7; for each failure transmission plus one slot time for the success

transmission. It is expressed as

1
Ti
%(1 - Qi)"_lqnpm(ri, m)

—1| +1<T, Vie S,meM (3.18)

Constraint (3.19) and (3.20) ensures that the value of ¢; , ¢, and Py, (r;, m) fall within
a small number € and 1. Since ¢;, ¢,, and P;;(r;, m) denotes the probability that node i is
active in a time slot, the probability that node j is active in a time slot and the probability
of node 1 to transmit packet to node j without error with transmission range radius of r;,
respectively, it is required that ¢; , ¢, and P, (r;, m) fall in between a small number € and

1. The constraints are expressed as :

€<¢q,q. <1 Vie S (3.19)

€ < Py(riym) <1 VieSmeM (3.20)

Constraint (3.21) and (3.22) are expressed as
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T € Ry (3.22)

As for the definition of when the sensor network will paralyzed or is considered
unfunctional, we assume that when a single node is out of batteries, the wireless sensor
network will be considered as not working. From the energy consumption of each node
and the probability of being active, the time that a node can function can be calculated. We
assume that there is a goal of system life time that needs to acheive. In order to achieve
this goal, a conditional limit can be listed by the initial power of each sensor node to ensure
that every node can achieve the goal of the system life time. We define formula (3.23) and
(3.24)below to make sure the life time of the nodes will exceed the expected life time of
the sensor network.

(G (rs, m)gs + CF (ri;m) (1 — ¢;) + CF (r, m)g;] t < P Vie s (3.23)

[Crt(reym)a + Cy(re,m)(1 = go)] t < P (3.24)

3.4 Model 3 : Network Tree Structure Relationship

The given parameters as well as their descriptions are shown in Table 3.5:
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Table 3.5: Given Parameters

Notation Description
N The index set of all possible numbers of subtrees, which is
{1,2,3,...,n}
V The index set of all possible numbers of sensor nodes that a single
subtree contains, which is {1,2,3,...,7}
0, The number j € V sensor node from subtree ¢ € IV, responsible for

sensing and gathering data from different area

K The relay node from subtree ¢« € IV, responsible for aggregating data
sent from the lower level layer sensor nodes

13 The sink node, responsible for aggregating data sent from the relay
nodes
Th, ¢ The allowable end to end delay from sensor node to sink node for

subtree 1 € N

do, x, The distance between sensor nodes and relay node from subtree : € N
Ry; Set of possible range for sensor nodes in subtree i € N
R, Set of possible range for relay node in subtree : € N
R Set of possible range for sink node
To, Timeout interval for sensor nodes from subtree © € N (a given § of
time slots)
Tr; Timeout interval for relay nodes from subtree ¢ € N (a given § of time
slots)
10, 5, The transmission time from sensor nodes to relay node , €.g. 1 slot time
t The least expected time slots for the network to work
= The initial power storage for sensor node i € S
P, The initial power storage for relay node from subtree : € N
P The initial power storage for sink node £

The decision variables and their descriptions are are shown in Table 3.6:
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Also the functions Cf (rg;,m), Cp (r9;,m), C2 (1, m), CL (1, m), O (re, m), C’é’(rg, m),

Cj.(r9i,m) and C], (ry,, m) are given, the parameters of the function are to be determined,

i

so the value of the function itself is a decision variable.

The next step we consider the whole network tree structure with sensor nodes denoted
as 0, relay nodes denoted as ~ and sink node denoted as &. This Network Tree Structure
Relationship (Model 3)is an extension of Model 2 introduced in the previous chapter. The
tree structure is shown as Figure 3.3.

Sensor nodes
Relay nodes

011 () Ky
612 @ O
1

Hlv .
2@ ‘2 Sink

b2 @ O

] Kn
Figure 3.3: Network Tree Structure Relationship

We assume that the network tree structure is a data-centric network, and we take all

subtrees into consideration. Each subtree contains of v amount of sensor nodes and a relay
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Table 3.6: Decision Variables

Notation Description
Toi Transmission range of sensor nodes in subtree ¢ € N,ry; € Ry;
T, Transmission range of relay node in subtree ¢ € N,r,, € 7y,
Te Transmission range of sink node
M The index set of all possible packet size , which is {1,2,3,...,m}
qo, The probability that sensor nodes in subtree © € N is active in a time
slot
dxR; The probability that relay node in subtree ¢ € NV is active to recieve
data in a time slot
dxs; The probability that relay node in subtree ¢ € N is active to send data a
time slot
qe The probability that sink node is active in a time slot
Py, r;(roi,m) The probability of sensor nodes to transmit packet with m € M size to

relay node in subtree ¢ € N when no error occurs with transmission
range radius of 7y; € Ry;

P e(ry,,m) The probability of the relay node in subtree 7 € N to transmit packet
with m € M size to sink node when no error occurs with transmission
range radius of 7, € 7y,

C¢ (r9i, m) The average power consumption rate when sensor nodes in subtree
1 € N is active with transmission range ry; € Ry; in 1 time
slot(influenced by m)

Ch (1o, m) The average power consumption rate when sensor nodes in subtree
© € N is inactive with transmission range rg; € Ry; in 1 time
slot(influenced by m)

Ce (re;,m) The average power consumption rate when the relay node in subtree
¢ € N is active with transmission range r,;, € 7, in 1 time
slot(influenced by m)

Cf;i (re,,m) The average power consumption rate when the relay node in subtree
¢ € N is inactive with transmission range ., € 7., in 1 time
slot(influenced by m)

C¢(re,m) The average power consumption rate when the sink node is active with
transmission range 7¢ in 1 time slot(influenced by m)

Cg(rg, m) The average power consumption rate when the sink is inactive with
transmission range 7¢ in 1 time slot(influenced by m)

Cy.(19i,m) The average power consumption rate for sensor nodes in subtree i € N
to transmit a m € M size packet(in 1 time slot) with transmission
range rg; € Ry;

CT (rg,,m) The average power consumption rate for the relay node in subtree

l i € N to transmit a mag M size packet(in 1 time s|gf)- Wjth342/NTU202210101
transmission range r,, € 1,
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node. There are n subtrees and a sink node that comprises into a whole tree structure. A
single subtree is shown as Figure 3.4. We assume that based on fairness, sensor nodes in

a same subtree has the same probability to be active shown as below.

461, = Q612 = --- = Qo,, = qo, (3.25)

Due to different monitor areas of different sensor nodes, they can have different im-
portance and priorities. The goal is to aggregate data from all sensors into the sink in
minimum energy consumption, while satisfied to the average possible delay constraints in
all possible origin-destination pairs. This delay should be the maximum link delay of all

possible links.

Sensor nodes Relay nodes

v hodes —

Figure 3.4: Subtree 1

Sensor nodes are responsible for sensing purpose, therefore their job is to send data

to relay nodes, and we assume that they will send data as soon as they are active. Relay

nodes are responsible for both sending and receiving data. They will aggregate data from

sensor nodes and then transmit them to the sink. It is also assumed that relay nodes will

send data as soon as they are active and also receive data when they are active. Sink node
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is for aggregating data from relay nodes, so in this model its only purpose is to receive

data. In the scenario we consider, we assume that each point is parallel and competing for

an interface in a slotted time. Every sensor has information to send and will send when

there is a chance.
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The objective function is expressed as formula (3.26):

min chl (19,,m)q9,v + Cg, (19, M) 9,0 + ... + Cy (re,,m)qp,v

+ Cgl (ro,, m)(1 — qo,)v + ng (roy, m)(1 — qg,)v + ... + an(rgn, m)(1 = gp, )v
+ Cy, (ro,,m)q9, X v+ Cg,(r9,,m)q9, X v + ... + Cy (79,,,m)q0, X v)
(a0, + CE s et ),

+ Cﬁl (e, m)(1 — qur,) + 022(7“@,771)(1 — QkRy) + .-+ C’zn(r,{n,m)(l — GxR,)
O s )+ CE P s+ o+ CE (s,

+ C¢(re, m)ge + CEre, m)(1 — ge) (3.26)

Based on fairness, let each subtree contain the same probability of activeness. There-
fore we can also consider formula (3.27) ,formula (3.28) and formula (3.29) and we then

consider sensor nodes in the same subtree i as 0;:

Qo = Qo = oy = - = o, (3.27)
4xR; = 9xRy = 4QkR3 = ---- = (kR, (328)
4kS; = 4kSy = 4kS3 = ---- = (xS, (329)

The new objective function based on formula (3.27) and formula (3.28) is shown

as formula (3.30) and we also consider the packet size level that node i is transmitting

because it would influence the size of the time slot. Therefore, the bigger the packet size,

the longer the time slot will be needed to transmit a packet. The probability of transmitting

a packet without error will also decrease when m increases, and we assume each packet
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has a fixed size header, therefore the larger the packet size is, the larger the throughput

is. We take all the above mentioned factors into consideration to find the trade off of the

packet size and the power consumption in a single byte. So the objective function will be

divided by m to normalize by the length of time slot. :

. |:ng (Teﬂ m)qeiv + Ogl (TGiv m)(l - QOi)U + CB:(THM m)QeiU
min Z

. m
iEN

+ Cgl (rﬂivm)QKRi + C;l; (Tliw m)(l - quz‘) + C,; (Tﬂz‘v m>q*€5i
m

N Ce(re,m)ge + C(re, m)(1 — ge)
m

(3.30)

Constraint (3.31) ensures that the time spent for a single successful transmission from

sensor nodes to sink node £ will be smaller than the allowable delay. We assume that

queuing delay is ignored, the time spent from sink node to relay node is the time spent for

a single successful, which is the number of transmission before getting the first success

1
asr; Po, i, (T, )

2 =2 — 1} times the timeout interval for each transmission 7, and
[ T

plus one slot time for the success transmission. And we also have to add the time spent

from relay node to sink node, which is [ (n}l) — 1| times the timeout
dksS; (1_‘]}451') Q£P&i,£(rmiam)

interval for each transmission 7,;, and plus one slot time for the success transmission. It is

expressed as

1

1
. —1
' q6i<1 - qei)(v_l)q"iRi‘Pei,"ii (TQH m) :|

4dks; (1 - QHSf,)(n_l)(EPm,E (Tlii ) m)

To

+Tﬁi|: —1 +2§T9“£

Vie Nyme M (3.31)

Constraint (3.34) ensures that the output throughput of the relay node is greater than the
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input throughput so that overflowing won’t occur. This constraint is a distinguishing fea-
ture compared to Model 2. In Model 2, we assume that sensor nodes always have data
to send and is constantly collecting data. Therefore we assume that there is an internal
flow control mechanism for avoiding overflow in sensor nodes. That is to mark those
data that stays for too long and untransmitted as obsolete, so as to avoid overflowing in
sensor nodes. In model 3, there exist relay nodes and were responsible for transferring
data collected from the sensor nodes. Hence, relay nodes don’t have the ability to discard
packets, and that’s what make the throughput constraint important. We assume that relay
nodes have a certain amount of capacity to temporarily store those data that were unable
to be send and they will always send when there is a chance. Thus, the average output
throughput should be greater or equal to the average output throughput in order to avoid

buffer overflow.

Constraint (3.34) consists of two parts, the input throughput and the output through-
put. The input throughput of the relay node is composed of the summation output through-
put of all sensor nodes, which is the size of the packet sent by sensor nodes divided by the
amount of time slots needed for a single successful transmit to pass the data to relay node

times the amount of sensor nodes. It is shown as formula (3.32)

1
m X v (3.32)
qei(l - qez‘)(vil)QNRiP&ﬁi(T@? m)

The output throughput of the relay node is the size of the packet sent by relay node
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divided by the amount of time slots needed for a single successful transmit to pass the data

to sink node.It is shown as formula (3.33)

1
_— 3.33
Qs (1 = qrs,) Ve Py, e (1, m) (3:33)

The complete throughput constraint is expressed as

mQHSZ(l - QHSZ->(”_1)QEPM,§ (,rlii? m) Z quei(l - QHi)(v_l)QnRi Pei,lii (T@Hm)

Vie Nyme M (3.34)

Constraint (3.35) ,(3.36),(3.37),(3.38) and (3.39) ensures that the value of gy, ,qxg,
Qus; »4e » Do, s (10, m) and Py, ¢(r,,, m) fall within a small number e and 1. Since gy, ,qxr, ,
Qrs; > 4e » Po, x,(19;,,m) and P, ¢(r,,, m) denotes the probability that node 6; is active in a
time slot, the probability that node «; is active for receiving in a time slot, the probability
that node «; is active for sending in a time slot, the probability that node £ is active in a time
slot, the probability of node 6; to transmit packet to node ~; without error with transmission
range radius of 1y, and the probability of node x; to transmit packet to node £ without error
with transmission range radius of r,,, respectively, it is required that gg, ,qxr, > Gxs, > G »
Py, v, (19,,m) and P, ¢(r,,, m) fall in between a small number € and 1. The constraints

are expressed as :

e<qp <1 Vie N (3.35)
€< dkR;5 xS, <1 Vie N (336)
e<q <1 (3.37)
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€ < Py, s, (r9,,m) <1 Vie NmeM

€ < Py e(ry,m) <1 Vie NmeM

Constraint (3.40) ,(3.41)and (3.42) are expressed as

Ty, € Rgi Vie N
Tr, € Ry, Vie N
Te € R&

As for the definition of when the sensor network will paralyzed

(3.38)

(3.39)

(3.40)

(3.41)

(3.42)

or is considered

unfunctional, we assume that when a single node is out of batteries, the wireless sensor

network will be considered as not working. From the energy consumption of each node

and the probability of being active, the time that a node can function can be calculated. We

assume that there is a goal of system life time that needs to acheive. In

order to achieve

this goal, a conditional limit can be listed by the initial power of each sensor node to ensure

that every node can achieve the goal of the system life time. We define formula (3.43),

(3.44) and (3.45)below to make sure the life time of the nodes will exceed the expected

life time of the sensor network.

[031 (Tei’ m)q9i + Cgi(TGiv m)<1 - @Mi) + CQTZ-(THN m)qei} t< P9i Vie N (343)

[C:i (Tﬁiv m)QKRi + Cgi(rﬁm m)<1 - qﬁRi) + Cf; (TNN m)q/«uSi] t< Pﬁi

[C¢(re,m)qe + Cg(re, m)(1 — g¢)| £ < Py

37

Vie N (3.44)

(3.45)
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Chapter 4 Solution Approach

In this chapter, the solution approach for the optimization-based power controlling
problem described in the previous chapter will be thoroughly explained. As described in
Chapter 3, the mathematical model of this problem is very intricate. Lagrangian Relax-
ation is a mature and widely used approach in this kind of complex constrained optimiza-
tion problem. We will explain its solution procedure thoroughly in the next section and

illustrate how the problem is solved using Lagrangian Relaxation.

4.1 Lagrangian Relaxation Method

Lagrangian Relaxation(LR) is a tool that is widely used in mathematical program-
ming applications. It was first proposed in the 1970s to solve general mixed integer pro-
grams with ”complicated” constraints [42]. There are constraints that can be simply solved
and constraints that are difficult to solve or require exponential time to solve it. The con-

cept of Lagrangian Relaxation is to relax those constraints that are difficult to solve [43].
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By relaxing the constraints that are difficult to solve, the primal problem will then become

a Lagrangian Relaxation problem which is relatively easy to solve.

We create this Lagrangian Relaxation problem by moving the difficult constraints to

the primal objective function with respective coefficients, namely Lagrangian multipliers.

Lagrangian multipliers are considered penalties when constraints are violated [44]. After

relaxing all constraints that are considered difficult to solve, the LR problem can be de-

composed into several subproblems. By dividing into subproblems, it will be much easier

to solve. Subproblems are decomposed from the LR problem by separating the constraints

and the part of LR problems that contains the same decision variables. Each subproblem

will then be solved optimally by using the concept of divide and conquer. Also the sub-

problems will be solved according to their characteristics. We can then obtain the solution

to the LR problem with the regarding decision variable.

With the solution we obtained from the LR problem, it will form a lower bound(LB)

in a minimization problem. And if the solution is feasible to the primal objective function,

which means that it does not violate any constraints, an Upper bound(UB) will appear.

The primal optimal solution will be bounded by the lower bound and the upper bound. If

the solution to the LR problem is not feasible, we should tune the solution by heuristic

methods in order to convert the solution to a feasible solution.

The Lagrangian multipliers must be adjusted in order to find the tightest lower bound.
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The Subgradient method is a commonly used method when solving the dual problem.

After updating the Lagrangian multipliers, we will then solve the subproblems again to

gradually decrease the gap between the lower bound(LB) and upper bound(UB). This

process will continue to proceed until it meets the conditions such as iteration limit or

when the gap between the lower bound and upper bound is less than a specific threshold.

The gap between the lower bound and upper bound can also help us measure the quality of

the solution. Smaller gaps indicates better solutions, and when the lower bound overlaps

with the upper bound, the best solution appears. Figure 4.1 shows the procedure of the

Lagrangian Relaxation method mentioned in this section.

‘ Primal problem ’

Relax constraints Obtain UB(primal
feasible solution)

Lagrangian Relaxation
‘ grang Multipliers(p)

Problem
Decompose into
Subproblems / \
( Subproblem 1 1 ...................... [ Subproblem n }
l Solve Subproblems l

’ Update Lagrangian

‘ Dual Problem

{ Optimal solution 1 ______________________ ( Optimal solution 1 » Obtain LB

for Subproblem 1 for Subproblem n

Figure 4.1: The procedure of Lagrangian Relaxation
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4.2 Model 1 : One-to-One Relationship

4.2.1 Deal with Decision Variables

Constraint (3.5) contains of the product of decision variables (g; x ¢; x P;;(r;, m)).
With these three decision variables multiplying, two issues will occur. First, the convex-
ity of the function is being destroyed . Second, decision variables will not be able to ”

separate” or ”decomposed” when solving it. In order to deal with it,we let

G X q; X Pyj(ri,m) = Zy; Vie S,jeS,meM 4.1)

Apply logarithmic operation on both sides,

= logg; + logq; + log P;;(r;,m) = log Z;; VieS,jeSmeM 4.2)

so that we can avoid decision variables from multiplying.

We derived

=< Z; <1 VieS,je€8 4.3)

from formulation (4.2).

After the transposition in constraint (3.5) with the replacement of ¢; x g; X P,;(r;, m)

to Z;;, we derive the formulation

<1+ —(T; -1 VieS,jeS (4.4)

Let
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<1+ =(T; —1) = oy VieS,jes (4.5)
Zij T;
and derive
1 . .
= — < Z; VicS,j€S (4.6)
Oé,;j

which max { €3, ai } 1s the underbound of Z;;.

A LR problem is derived as formula (4.7) and we can later apply to Lagrangian Re-

laxation:

: [Ce(ri,m)g; + C(rj,m)q; + C2(rs, m) (1 — ¢;) + C2(rj,m)(1 — q;) + CF (ri, m)q]
min ZZ m

i€S jes

+) 0> p;(log g + log g + log Py (ri,m) — log Z;;)

i€S jes

(4.7)
where ,uzlj can be negative or positive.
The objective function is subject to :
e<qg <1 VieS (4.8)
e<qg <1 VieS (4.9)
ESPij(T’i,m>§1 WGS,jGS,mEM (410)
1
max{e’, —} < Z;; < 1 VieS,jes (4.11)
Q5

If \j; << 1, which makes ﬁ a great number, we can see this as a M/G/1 system

where transmission time is a random variable governed by a geometric distribution.
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= Prof : {k retransmission} = (1 — Z;;)*Z;; Vi€ S,je€S,me M (4.13)

Each retransmission will cost us a timeout interval of 7;, and the last transmission
that succeed will cost a time slot. Based on these assumption we can consider queuing

delay in variable «aij.

If r; is a continuous variable then C?(r;, m) will become a decision variable and we

might also need to deal with C(r;, m) X ¢; .

In model one (One-to-One Relationship), we can consider r; as a fixed number with
limited amount of values in different situations. But it won’t be a good solution when
model one is extended to model two (Many-to-One Relationship) and model three (Net-

work Tree Structure Relationship), so we will try to solve this problem in this section.

In model two (Many-to-One Relationship) and model three (Network Tree Structure
Relationship), there are many-to-one relationships with hub and aggregation of data flow.
If we consider r; as a fixed number with limited amount of values as we did in model
one (One-to-One Relationship), there occurs a problem called combinatorial explosion.
A combinatorial explosion happens when the combinatorics of the problem is affected by
the input, constraints, and bounds of the problem which leads to the rapid growth of the

complexity of a problem.

Because of the combinatorial explosion, we can no longer see r; as a fixed number

with limited amount of values, we have to reformulate the objective function to keep de-
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cision variables from multiplying. We expand formula (4.7) and get formula (4.14) as

follows.

min ZZ

icS jes

C'T 79 7
n T(r m)q>

J

(C’ia(ri, m)q; + C§(rj,m)q; + Cl(ri,m) — Cb(ry,m)q; + C’;’(ri, m) — C(rj, m)q;
m

m

+) 0> pli(log g + log g + log Pyj(ri,m) — log Z;;)
€S jES

(4.14)

In order to deal with C{(r;, m) x g;, C (r;, m) x q;, CP(r;, m) x g; and C%(r;,m) X ¢;

, we let
Ci(ry,m) X ¢; = x; VieS (4.15)
Ci(rj,m) x qj = x; VjesS (4.16)
Cf(n-,m) X ¢ = Y Vie S (4.17)
Cj(rjsm) x q; = y; Vj€S (4.18)

Apply logarithmic operation on both sides,

= log C¢(r;,m) + log q; = logz; VieS (4.19)
= log Cf(rj, m) + logq; = log; Vje s (4.20)
= log C?(r;, m) + log ¢; = logy; Vie S 4.21)
= log le»’(rj, m) + loggq; = logy; VjeS (4.22)

A new LR function is derived as the formula below:
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min Z Z (xl a4+ Ci(riom) — g + Cf(rj,m) —y; + C7 (14, m)%)

m
€S jeSs

+ Z Z p1i;(log g + log g; + log Pyj(ri, m) — log Zy;)

icS jes

+ Z 113 (log C¢(r;,m) + log ¢; — log ;)

€S

- Z 115 (log C¢(r;, m) + log q; — log z;;)

jeSs

+ Z pi (log C7 (r;,m) + log g; — log y;)

€S

+ Y w5 (log CJ(r;,m) + log q; — logy;)

jeS

(4.23)

There still exists decision variables C7 (r;,m) and ¢; multiplying, and we also have

to deal with it.

Let

Ci(rism)gs = By Vie S,me M (4.24)

Apply logarithmic operation on both sides,

= log C] (r;,m) + log¢; = log f3;; Vie SsmeM (4.25)

Multiply both side with C7 (r;, m) and we obtain constraint(4.26)

e x C7 (min R;, m) < B;; < Cf (max R;,m) VieSmeM (4.26)
We relax formula (4.25) into the LR problem formula (4.23).
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formula (4.27):

The final form of LR problem in model 1(One-to-One Relationship) is shown as

(rjm) —y; + Bij)

min 33 (i + z; 4+ CP(ri,m) — y; + C*

m
1€S jES

+ 3 pli(logg; + log g; + log Py (ri, m) —

1€S jES

+ Z 113 (log C&(ry, m) + log q; — log ;)

€S

+ Z ,u?(log C§(rj,m) + logg; — log x;)

JjeS

+ Y i (log CP(ri,m) + log q; — log y;)
€S

+ Z,u?(log C';-’(Tj,m) + log ¢; — logy;)
jes

+ Z Z M?j(log Ci (ri,m) +logg; — log Bij)

icS jes

46

(4.27)

The objective function is subject to :
e<qg <1 VieS (4.28)
e<g; <1 vjes (4.29)
€ < Pyj(ri,m) <1 VicS,jeSmeM (4.30)
max{e’, —} < Z; <1 Vie S,jes (4.31)

ij

e < x; < Criy,m) VieS (4.32)
e <a; < C5(rj,m) VjesS (4.33)
e <y < Cl(rs,m) Vie S (4.34)
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e <y; < le-’(rj,m) VjeSs (4.35)
e R vies (4.36)

e x C7(min R;,m) < f3;; < C] (max R;, m) VieS,jeSmeM (4.37)

Multipliers i, p?, 1%, ju*, p°andp®respectively represents the vectors of {y1; }, {17},
3 4 5 6 . . . ., . .
{wi}s {mi}, {n3} and {13, }. These multipliers are either positive or negative due to re-

laxing equality constraints.

With the objective function and the constraints above, we can proceed to cut ¢;,
g; and P,;(r;,m) into 1000 pieces of equal segments. By using exhaust search we can

eventually exploit all possible solutions and try to get the primal solution.

4.2.2 The LR Subproblems

To solve this Lagrangian Relaxation problem easily and effectively, we can divide
the problem into subproblems and solve them respectively. The way of decomposing this
Lagrangian Relaxation problem is by separating the decision variables. Each decision
variable will form a subproblem and because the original problem is a minimization prob-
lem, the subproblems will also be a minimization problem. Each subproblems will then
be dealt with different solution approaches base on their characteristics. This divide and

conquer technique will be introduce and implement in this section.
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4.2.2.1 Subproblem 1(related to decision variable z;)

By extracting all decision variables z; in the LR problem, we will then obtain sub-
problem 1. In subproblem 1, u? can be either positive or negative due to relaxing equality

constraints.

In order to determine the concavity or convexity of subproblem 1, we have to take the
sign of 2 into consideration. Linear term will not influence the concavity or convexity
of the formula, so 12 will singly decide whether it is concave or convex. A log function
by itself is a concave function, so when p? is positive with a negative sign in front of it,
the formula will become a convex function. And when 1 is negative, the formula will

become a concave function.

The concavity or convexity of subproblem 1 will lead to different solution approaches.
When p? is positive and therefore changing the coefficient of log term into negative, find
the point of 2; where the slope is 0, which will be the minimum point of the convex func-
tion. If the point of x; where the slope is 0 falls in the legal range, which is the upper
and lower bound of x;, then it is the solution to x;. However, if this point does not fall in
the legal range of x;, the upper and lower bound of x; will be substitute into the objective

function to see whichever is smaller, and it will be the solution to x;.

On the contrary, when p? is negative and therefore changing the coefficient of log

48 doi:10.6342/NTU202210101


http://dx.doi.org/10.6342/NTU202210101

term into positive, then the function is concave. Hence, we can compare the objective
values of the boundary points and the one with smaller objective value will be our solution

to x;.

The minimum of x; occurs when both C¢(r;, m) and ¢; are at its minimum, which
is €. The maximum on the other hand occurs when ¢; is 1. We separate x; from the
objective function and derive a subproblem shown as formula (4.38) and constraint shown

as formula (4.39).

Table 4.1: Subproblem 1(related to decision variable z;)

Objective function :
:r,
Zoov1 = mi 2 . )
supl = Min Z(m w; log ;) (4.38)
€S
Subject to :
e < x; < Criy,m) Vie S (4.39)
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Algorithm 1: Algorithm for Subproblem 1

for each node i do
Calculate the objective value at z; = €? denoted as V;
Calculate the objective value at z; = C{(r;, m) denoted as V5
if 42 > 0 then
partial differential to x;
i = 0
T, = uim
if x; is not feasible then
set x[i] to min(Vy, Vy), which is the boundary value with smaller

objective value

end

else

set x[i] to min(V7, V3), which is the boundary value with smaller
objective value

end
end

4.2.2.2 Subproblem 2(related to decision variable )

The procedure of dividing x ; from the LR problem is similar with x;. By extracting all
decision variables ; in the LR problem, we will then obtain subproblem 2. In subproblem

2, ,u? can be either positive or negative due to relaxing equality constraints.

In order to determine the concavity or convexity of subproblem 2, we have to take the
sign of M? into consideration. Linear term will not influence the concavity or convexity
of the formula, so p? will singly decide whether it is concave or convex. A log function
by itself is a concave function, so when /L? is positive with a negative sign in front of it,
the formula will become a convex function. And when u? is negative, the formula will

become a concave function.

The concavity or convexity of subproblem 2 will lead to different solution approaches.
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When u? is positive and therefore changing the coefficient of log term into negative, find
the point of z; where the slope is 0, which will be the minimum point of the convex func-
tion. If the point of z; where the slope is 0 falls in the legal range, which is the upper and
lower bound of x;, then it is the solution to x;. However, if this point does not fall in the
legal range of z;, the upper and lower bound of x; will be substitute into the objective

function to see whichever is smaller, and it will be the solution to x;.

3 . . . .
On the contrary, when 1 is negative and therefore changing the coefficient of log
term into positive, then the function is concave. Hence, we can compare the objective
values of the boundary points and the one with smaller objective value will be our solution

to l’j.

The minimum of z; occurs when both C¢(r;,m) and g; are at its minimum, which
is . The maximum on the other hand occurs when ¢; is 1. We separate z; from the

objective function and derive a subproblem shown as formula (4.40) and constraint shown

as formula (4.41).
Table 4.2: Subproblem 2(related to decision variable x ;)
Objective function :
) x;
Zoubs = m1nZ(Ej — plogx;) (4.40)
JES
Subject to :
¢ <az; <Cf(rjm) VjeSs (4.41)
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Algorithm 2: Algorithm for Subproblem 2

for each node j do
Calculate the objective value at x; = € denoted as V;
Calculate the objective value at z; = C§(r;, m) denoted as V5
if ,u? > () then
partial differential to x;
1 3.1 _
m _ijjlne =0
Tj = pim
if 2; is not feasible then
set x[j] to min(Vy, Vy), which is the boundary value with smaller

objective value

end

else

set x[j] to min(Vy, Vy), which is the boundary value with smaller
objective value

end
end

4.2.2.3 Subproblem 3(related to decision variable ;)

The procedure of dividing y; from the LR problem is similar with z;. By extracting all
decision variables y; in the LR problem, we will then obtain subproblem 3. In subproblem

3, ju} can be either positive or negative due to relaxing equality constraints.

In order to determine the concavity or convexity of subproblem 3, we have to take the
sign of y} into consideration. Linear term will not influence the concavity or convexity
of the formula, so y;} will singly decide whether it is concave or convex. A log function
by itself is a concave function, so when p} is positive with a negative sign in front of it,
the formula will become a convex function. And when 4 is negative, the formula will

become a concave function.

The concavity or convexity of subproblem 3 will lead to different solution approaches.
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When 1} is positive and therefore changing the coefficient of log term into negative, find
the point of y; where the slope is 0, which will be the minimum point of the convex func-
tion. If the point of y; where the slope is 0 falls in the legal range, which is the upper
and lower bound of y;, then it is the solution to y;. However, if this point does not fall in
the legal range of y;, the upper and lower bound of y; will be substitute into the objective

function to see whichever is smaller, and it will be the solution to ;.

On the contrary, when p is negative and therefore changing the coefficient of log
term into positive, then the function is concave. Hence, we can compare the objective
values of the boundary points and the one with smaller objective value will be our solution

to Y.

The minimum of y; occurs when both C?(r;,m) and ¢; are at its minimum, which
is . The maximum on the other hand occurs when ¢; is 1. We separate y; from the
objective function and derive a subproblem shown as formula (4.42) and constraint shown

as formula (4.43).
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Table 4.3: Subproblem 3(related to decision variable ;)

Objective function :
Zous =miny_(—2 — it log y,) (4.42)
, m
€S
Subject to :
e <y < Clry,m) VieS (4.43)

Algorithm 3: Algorithm for Subproblem 3

for each node i do
Calculate the objective value at 35; = €2 denoted as V;
Calculate the objective value at y; = C?(r;, m) denoted as V;
if > 0 then
partial differential to y;
1 a1 _
_E_Miyilne =0
Yyi = —pim
if y; is not feasible then
set y[i] to min(Vy,V3), which is the boundary value with smaller
objective value
end

else
set y[i] to min(V7, V3), which is the boundary value with smaller
objective value

end
end

4.2.2.4 Subproblem 4(related to decision variable y;)

The procedure of dividing y; from the LR problem is similar with y;. By extracting all
decision variables y; in the LR problem, we will then obtain subproblem 4. In subproblem

4, ,u? can be either positive or negative due to relaxing equality constraints.

In order to determine the concavity or convexity of subproblem 4, we have to take the
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sign of u? into consideration. Linear term will not influence the concavity or convexity
of the formula, so u? will singly decide whether it is concave or convex. A log function
by itself is a concave function, so when [L? is positive with a negative sign in front of it,
the formula will become a convex function. And when u? is negative, the formula will

become a concave function.

The concavity or convexity of subproblem 4 will lead to different solution approaches.
When u? is positive and therefore changing the coefficient of log term into negative, find
the point of y; where the slope is 0, which will be the minimum point of the convex func-
tion. If the point of y; where the slope is 0 falls in the legal range, which is the upper
and lower bound of y;, then it is the solution to y;. However, if this point does not fall in
the legal range of y;, the upper and lower bound of y; will be substitute into the objective

function to see whichever is smaller, and it will be the solution to y;.

5 . . . .
On the contrary, when 4 is negative and therefore changing the coefficient of log
term into positive, then the function is concave. Hence, we can compare the objective

values of the boundary points and the one with smaller objective value will be our solution
to Yj-
The minimum of y; occurs when both le?(rj, m) and g; are at its minimum, which

is €. The maximum on the other hand occurs when ¢; is 1. We separate y; from the

objective function and derive a subproblem shown as formula (4.44) and constraint shown
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as formula (4.45).

Table 4.4: Subproblem 4(related to decision variable ;)

Objective function :
— i Yj 5
Zsubs = MiN Z(_E — u; log y;) (4.44)
JES
Subject to :
e <y; <CYrj,m) VjeES (4.45)

Algorithm 4: Algorithm for Subproblem 4

for each node j do

Calculate the objective value at y; = €* denoted as V;
Calculate the objective value at y; = C’Jl-’(rj, m) denoted as V;
if M? > ( then

partial differential to y;

1 5.1
m ujyjlne_

Yi = —M?m
if y; is not feasible then
set y[j] to min(Vy, V3), which is the boundary value with smaller
objective value
end

else
set y[j] to min(Vy, Vy), which is the boundary value with smaller
objective value

end
end
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4.2.2.5 Subproblem 5(related to decision variable ¢;)

By extracting all decision variables g; in the LR problem, we will then obtain sub-
problem 5. In subproblem 5, there are 3 multipliers 1;, 17 and 4} and all of them can be

either positive or negative due to relaxing equality constraints.

In order to determine the concavity or convexity of subproblem 5, we have to take
the sign of all 4 multipliers /;;, 417 ,4u; and pi into consideration. A log function by itself is
a concave function, so /1, 117, and z can all play an important role in deciding whether

the function is concave or convex.

In this section, we developed a way to easily get the convexity or concavity of this
function. We first find the extreme point by finding points with derivative = 0 and will
obtain a objective value for it. Later we can compare the objective value with the point of
derivative = 0 with the objective value of the boundary points of ¢;. If the objective value
with the point of derivative = 0 is smaller than the objective values of the boundary points
of ¢;, then the function is a convex function. We can then examine whether the point with
derivative = 0 falls in the legal range of ¢;, if yes then we can return it as our solution to ¢;.
If the point with derivative = 0 doesn’t appears in the legal range of ¢; and is considered
infeasible, we will return the boundary point of ¢; with a smaller objective value as our

solution to ¢;.
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On the contrary, if the objective value with the point of derivative = 0 is bigger than

the objective value of the boundary points of ¢;, then the function is concave. Therefore,

we can compare the objective values of the boundary points and the one with smaller

objective value will be our solution to g;.

We separate ¢; from the objective function and derive a subproblem shown as formula

(4.46) and constraint shown as formula (4.47).

Table 4.5: Subproblem 5(related to decision variable g;)

Objective function :

Zaws =min » > (uj;log g + 7 log g; + 11} log ; + u5; log ) (4.46)

i€S jes
Subject to :

e<qg <1 Vie S (4.47)
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Algorithm 5: Algorithm for Subproblem 5
for each node i do
Calculate the objective value at ¢; = € denoted as V;
Calculate the objective value at ¢; = 1 denoted as V5
partial differential to ¢;
1 1 1 1
'ulquilne +Nl2qilne _I_N;lqilne +N?jqilne =0
pag TR 0

get soﬁltion to g;
if Zu5(q;) < min(Vy, V) then
Z b5 = CONVET
if q; is feasible then
| qlil=g
else
set q[i] to min(V}, V3), which is the boundary value with smaller
objective value
end
else
set q[i] to min(V7, V4), which is the boundary value with smaller
objective value

end
end

4.2.2.6 Subproblem 6(related to decision variable g;)

By extracting all decision variables ¢; in the LR problem, we will then obtain sub-
P 1,3 5
problem 6. In subproblem 6, there are 3 multipliers 1;;, ¢ and p; and all of them can be

either positive or negative due to relaxing equality constraints.

In order to determine the concavity or convexity of subproblem 6, we have to take
the sign of all 3 multipliers 4;;, 42 and 15 into consideration. A log function by itself is a
concave function, so y;, 4«3 and 43 can all play an important role in deciding whether the

function is concave or convex.

To get the convexity or concavity of this function, we first find the extreme point by
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finding points with derivative = 0 and will obtain a objective value for it. Later we can

compare the objective value with the point of derivative = 0 with the objective value of the

boundary points of ¢;. If the objective value with the point of derivative = 0 is smaller than

the objective values of the boundary points of ¢;, then the function is a convex function.

We can then examine whether the point with derivative = 0 falls in the legal range of ¢;,

if yes then we can return it as our solution to g;. If the point with derivative = 0 doesn’t

appears in the legal range of ¢; and is considered infeasible, we will return the boundary

point of g; with a smaller objective value as our solution to g;.

On the contrary, if the objective value with the point of derivative = 0 is bigger than

the objective value of the boundary points of g;, then the function is concave. Therefore,

we can compare the objective values of the boundary points and the one with smaller

objective value will be our solution to g;.

We separate ¢; from the objective function and derive a subproblem shown as formula

(4.48) and constraint shown as formula (4.49).

Table 4.6: Subproblem 6(related to decision variable ¢;)

Objective function :

Zgus = min Y Y (p;logg; + 415 log q; + 15 log ;) (4.48)
i€S jeSs
Subject to :
e<gqg; <1 VjeS (4.49)
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Algorithm 6: Algorithm for Subproblem 6

for

end

each node j do

Calculate the objective value at g; = € denoted as V;
Calculate the objective value at ¢; = 1 denoted as V5

partial differential to g;

1 1 3_1 5_1 _
Mijqjlne+ﬂjqjlne+ﬂjqjlne =0

it
p
get solution to qj
if Zsup6(q;) < min(V3, V3) then
Z oube = CONVET
if q; is feasible then
| qlil=g;
else

objective value
end

else

objective value
end

set q[j] to min(V3, V3), which is the boundary value with smaller

set q[j] to min(V7, V4), which is the boundary value with smaller

4.2.2.7 Subproblem 7(related to decision variable ;)

By extracting all decision variables r; in the LR problem, we will then obtain sub-

problem 7. In subproblem 7, there are 4 multipliers 15, 17, p1jand pf;. All of them can be

either positive or negative due to relaxing equality constraints,

In order to determine the concavity or convexity of subproblem 7, we have to take the

sign of all 4 multipliers 1.5, 117, p1jand p; into consideration. A log function by itself is a

concave function, sos;;, 7, p1jand pf; can all play an important role in deciding whether

the function is concave or convex.

To easily and effectively get the convexity or concavity of this function, we first find
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the extreme point by finding points with derivative = 0 and will obtain a objective value

for it. Later we can compare the objective value with the point of derivative = 0 with

the objective value of the boundary points of r;. If the objective value with the point of

derivative = 0 is smaller than the objective values of the boundary points of r;, then the

function is a convex function. We can then examine whether the point with derivative = 0

falls in the legal range of r;, if yes then we can return it as our solution to ;. If the point

with derivative = 0 doesn’t appears in the legal range of r; and is considered infeasible,

we will return the boundary point of r; with a smaller objective value as our solution to r;.

On the contrary, if the objective value with the point of derivative = 0 is bigger than

the objective value of the boundary points of r;, then the function is concave. Therefore,

we can compare the objective values of the boundary points and the one with smaller

objective value will be our solution to 7;.

We separate r; from the objective function and derive a subproblem shown as formula

(4.50) and constraint shown as formula (4.51) and formula (4.52).
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Table 4.7: Subproblem 7(related to decision variable 7;)

Objective function :

Zsubr = mmZ Z [ ¢(ri,m + i35 log Pij(ri,m) + pi log Cf (ry, m) + 1 log CF (r;, ml)

€S jES

+ O (riym)|

(4.50)
Subject to :
e < Pj(r;,m) <1 VieSjes (4.51)

Algorithm 7: Algorithm for Subproblem 7
for each node i do
Calculate the objective value at r; = max R; denoted as V}
Calculate the objective value at r; = min R; denoted as V5
Get solution of r; where Z,,,;7 has the smallest value
if Zsub?(riy m) < min(VI, ‘/2) then
27 = convex
if r; is feasible then
| il =
else
set r[i] to min(V/7, V3), which is the boundary value with smaller
objective value
end

else
set r[i] to min(V7, V3), which is the boundary value with smaller
objective value

end
end

4.2.2.8 Subproblem 8(related to decision variable r;)

By extracting all decision variables 7; in the LR problem, we will then obtain sub-

problem 8. In subproblem 8, there are 2 multipliers ,uj and ,u5 Both of them can be either
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positive or negative due to relaxing equality constraints.

In order to determine the concavity or convexity of subproblem 8, we have to take
both multipliers u? and M? into consideration. A log function by itself is a concave func-
tion, so ,u? and ,u? can both play an important role in deciding whether the function is

concave or convex.

To easily and effectively get the convexity or concavity of this function, we first find
the extreme point by finding points with derivative = 0 and will obtain a objective value
for it. Later we can compare the objective value with the point of derivative = 0 with
the objective value of the boundary points of r;. If the objective value with the point of
derivative = 0 is smaller than the objective values of the boundary points of r;, then the
function is a convex function. We can then examine whether the point with derivative =0
falls in the legal range of r;, if yes then we can return it as our solution to r;. If the point
with derivative = 0 doesn’t appears in the legal range of r; and is considered infeasible,
we will return the boundary point of r; with a smaller objective value as our solution to

7“j.

On the contrary, if the objective value with the point of derivative = 0 is bigger than
the objective value of the boundary points of r;, then the function is concave. Therefore,
we can compare the objective values of the boundary points and the one with smaller

objective value will be our solution to 7;.
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We separate r; from the objective function and derive a subproblem shown as formula

(4.53) and constraint shown as formula (4.54) .

Table 4.8: Subproblem 8(related to decision variable 7)

Objective function :

Cb (rj,m
Zsups = mlnz ! + u? log Cf (rj,m) + ,u? log Cf(rj, m)] (4.53)

jES

Subject to :

T € Rj VjeS (4.54)

Algorithm 8: Algorithm for Subproblem 8

for each node j do
Calculate the objective value at r; = max R; denoted as V;

Calculate the objective value at r; = min R; denoted as 15

partial differential to r;
3 Cf'(rjm) 5 Cf'(rjm)

b : _
Cj/(rw ) + lu’j C“Zr ,m)Ine + 'uj C'J‘-‘er,m)lne =0

get solution to 7;
if Zsus(r;, m) < min(V;, V2) then
Z s = CONVEX
if 7} is feasible then
| tll=7y
else
set r[j] to min(V7, V3), which is the boundary value with smaller
objective value
end
else
set r[j] to min(V7, V3), which is the boundary value with smaller
objective value

end
end
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4.2.2.9 Subproblem 9(related to decision variable Z;;)

By extracting all decision variables Z;; in the LR problem, we will then obtain sub-
problem 9. In subproblem 9, there exists multiplier u}j. It can be either positive or negative

due to relaxing equality constraints.

In order to determine the concavity or convexity of subproblem 9, we have to take
multiplier ;L}j into consideration. A log function by itself is a concave function, so u}j play

an important role in deciding whether the function is concave or convex.

We separate Z;; from the objective function and derive a subproblem shown as for-

mula (4.55) and constraint shown as formula (4.56) .

Table 4.9: Subproblem 9(related to decision variable Z;;)

Objective function :
Zouo = min Y > " (—pj;log Zi;) (4.55)
i€S jes
Subject to :
max{e’, 1“} <Z;<1 VieSjeSs (4.56)
]

66 doi:10.6342/NTU202210101


http://dx.doi.org/10.6342/NTU202210101

Algorithm 9: Algorithm for Subproblem 9

for each node i do
for each node j do
Calculate the objective value at Z;; = max{e’, C%”} denoted as V;
Calculate the objective value at Z;; = 1 denoted as V;
partial differential to Z;;
_'ullj Zijllne =0
get solution to Z;;
if Zsu0(Z;;) < min(V;,V3) then
Z g9 = convex
if Z;; is feasible then

| Z0] = Z;;
else

set Z[i][j] to min(V3, V3), which is the boundary value with
smaller objective value

end

else
set Z[i][j] to min(V7, V), which is the boundary value with smaller
objective value

end
end

end

4.2.2.10 Subproblem 10(related to decision variable j;;)

By extracting all decision variables 3;; in the LR problem, we will then obtain sub-
problem 10. In subproblem 10, ufjcan be either positive or negative due to relaxing equal-

ity constraints.

In order to determine the concavity or convexity of subproblem 10, we have to take
the sign of ij into consideration. Linear term will not influence the concavity or convexity
of the formula, so ij will singly decide whether it is concave or convex. A log function
by itself is a concave function, so when ,u?j is positive with a negative sign in front of it,

the formula will become a convex function. And when u?j is negative, the formula will
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become a concave function.

The concavity or convexity of subproblem 10 will lead to different solution ap-
proaches. When ,u?j is positive and therefore changing the coefficient of log term into
negative, find the point of 3;; where the slope is 0, which will be the minimum point of
the convex function. If the point of 3;; where the slope is 0 falls in the legal range, which
is the upper and lower bound of f3;;, then it is the solution to 3;;. However, if this point
does not fall in the legal range of 3;;, the upper and lower bound of 3;; will be substitute

into the objective function to see whichever is smaller, and it will be the solution to 3;;.

On the contrary, when ufj is negative and therefore changing the coefficient of log
term into positive, then the function is concave. Hence, we can compare the objective

values of the boundary points and the one with smaller objective value will be our solution

to 61]

The minimum of 3;; occurs when C7 (ri, m) is at its minimum. The maximum on
the other hand occurs when C7 (77, m) is at its maximum. We separate [3;; from the objec-
tive function and derive a subproblem shown as formula (4.57) and constraint shown as

formula (4.58) .
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Table 4.10: Subproblem 10(related to decision variable 3;;)

Objective function :

Subject to :

e x Cf (min R;,m) < B;; < C7 (max R;, m)

- Bij
Zamo =min Y S o

i€S jeS

Vie S jeS (4.58)

(4.57)

Algorithm 10: Algorithm for Subproblem 10

for each node i do

1 1

Bij = :U’?jm

else

end
else

end
end

end

1 _ ,6
m Mijﬂzjlne

for each node j do
Calculate the objective value at 53;; = min C7 (i, m) denoted as V;
Calculate the objective value at 3;; = max C7 (14, m) denoted as V5
partial differential to 3;;

=0

if Zou10(6ij) < min(V, V5) then
Zoub10 = convex
if Z;; is feasible then

| Z[[] = Zi;

set Z[i][j] to min(V}, V3), which is the boundary value with
smaller objective value

set Z[i][j] to min(V7, V), which is the boundary value with smaller
objective value
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4.3 Model 2 : Many-to-One Relationship

4.3.1 Deal with Decision Variables

Constraint (3.18) contains of the product of decision variables [¢; x (1 — ¢;)" ! x
qx X Pi(r;, m)]. With these decision variables multiplying, two issues will occur. First,
the convexity of the function is being destroyed. Second, decision variables will not be

able to “’separate” or "decomposed” when solving it. In order to deal with it,we let

¢ x (1 —=¢)" ' X qo X Py(ri,m) = Z; Vie SSmeM (4.59)

Apply logarithmic operation on both sides and we relax it to our LR problem with
Lagrangian multiplier (u}).
=logq; + (n —1)log(1 — ¢;) + log g + log Py (r;,m) =log Z; Vi€ S,me M

(4.60)
so that we can avoid decision variables from multiplying.
We derived

=" < 7, <1 Vie S (4.61)

from formulation (4.59).

After the transposition in constraint (4.59) with the replacement of ¢; x (1 —¢;)" ! x

Gx X Py(r;,m) to Z;,, we derive the formulation
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<14 —(Ty —1 Vie S 4.62
L — " Ti( 1) ‘e (4.62)
Let
1 1 — )
<14+ —(Ti — 1) = ayy Vies (4.63)
Liw Ti
and derive
= < Zin Vie S (4.64)
(679

which max { ¢?, -1 } is the underbound of Z;.

A LR problem is derived as formula (4.65) and we can later keep applying Lagrangian

Relaxation:

i (i ; " b(r; — b — T(p .
min Z |:C7, (T“ m)ql + Cn(rf’w m)qH + CZ (TH m)(l Ql) + Cn<,rl€7 m)(l QH) + C’L (TH m)Qz
m

€S

+ i (logg; +nlog(1l — g;) + log g + log Py (r;, m) — log Z;,;)

(4.65)
where ,u%j can be negative or positive.
The objective function is subject to :
e<qg; <1 Vie S (4.66)
€< ¢ <1 (4.67)
€ < Py(riym) <1 VieSmeM (4.68)
n+2 1 :
max{e"™, —} < Z;, <1 Vie S (4.69)
Qg
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T € Ry (4.71)

If \;, << 1, which makes A—lk a great number, we can see this as a M/G/1 system

where transmission time is a random variable governed by a geometric distribution.

= Prof : {n retransmission} = (1 — Z;,)"Z; VieSmeM (4.72)

Each retransmission will cost us a timeout interval of 7;, and the last transmission
that succeed will cost a time slot. Based on these assumption we can consider queuing

delay in variable «,.

If r; is a continuous variable then C(r;, m) will become a decision variable and we

might also need to deal with C*(r;,m) X ¢; .

In model one (One-to-One Relationship), we can consider r; as a fixed number with
limited amount of values in different situations. But it won’t be a good solution when
model one is extended to model two (Many-to-One Relationship) and model three (Net-

work Tree Structure Relationship), so we will try to solve this problem in this section.

In model two (Many-to-One Relationship) and model three (Network Tree Structure
Relationship), there are many-to-one relationships with hub and aggregation of data flow.
If we consider r; as a fixed number with limited amount of values as we did in model
one (One-to-One Relationship), there occurs a problem called combinatorial explosion.
A combinatorial explosion happens when the combinatorics of the problem is affected by

the input, constraints, and bounds of the problem which leads to the rapid growth of the
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complexity of a problem.

Because of the combinatorial explosion, we can no longer see r; as a fixed number
with limited amount of values, we have to reformulate the objective function to keep de-
cision variables from multiplying. We will expand formula (4.65). But before expanding

it, we first let

(1-qg)=I1 VYies (4.73)

Where

0<L,<l-¢ Vies (4.74)

And then we expand formula (4.65) and get formula (4.75)

af,.. ) a b( . ) b el T (1. .
min Z [Ci (15, m)qi + C (1, m)qe + C7 (15, m) [; + C2 (1, m) — Co (1, m)q. + CF (ri, m)g;

) m
€S

+ ) i (logg; + nlog I + log g, + log Py (ri, m) — log Z;y,)
€S

(4.75)

In order to deal with C2(r;, m) X i, C(1, m) X @, C2 (13, m) x I; and C® (1., m) X q,¢

, we let
Ci(ri;m) X ¢; = x; Vie S (4.76)
Cr(re,m) X g = @, (4.77)
Co(ri,m) x I = y; Vies (4.78)
CPr,m) X g = Y (4.79)
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Apply logarithmic operation on both sides, and we relax these constraints into our

LR problem with respective Lagrangian multipliers(u).

= log C¢(r;,m) + log¢; = logz; Vie S (4.80)
= log C¢(r,, m) + logq, = logx, (4.81)
= log C?(r;,m) + log I; = logy; VieS (4.82)
= log C*(r.,m) + log g, = logys (4.83)

A new LR function is derived as the formula below:

7 K 7 Cb K - Yk O‘T (2 7
min Z(m +x.+y +Cre,m) —ys + CT(r m)q)

m

€S

+ 3 pi(logg; + (n — 1) log I; + log g, + log Py (r;, m) — log Ziy)

€S

+ Z 17 (log Cf (rs,m) + log ¢; — log ;)

€S

+ 1 (log C;i (1, m) + log g, — log )

+ Z 115 (log C?(rs,m) + log I, — logy;)

1€S

+ /~L5<10g CZ(T,Q, m) + lOg qx — IOg y/{)

(4.84)

There still exists decision variables C7 (r;,m) and ¢; multiplying, and we also have

to deal with it.

Let

Cl(ri,m)q = Bk Vie SsmeM (4.85)
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Apply logarithmic operation on both sides,

= log C7 (r;,m) + log g; = log Bix Vie SmeM (4.86)

Multiply both side with the upper bound and lower bound of C7 (r;, m) and ¢; and

we obtain the upper and lower bound of j3;,; as shown as formula(4.87).

CT(min R;,m) x € < f;, < CT(max R;, m) VieSmeM (4.87)

And because constraint (4.73) contains of 2 decision variables, we also relax it to our
LR problem with a multiplier ;”. The final form of LR problem in model 2(Many-to-One

Relationship) is shown as formula (4.88):

m

7 K 7 Cb K - Yk %

€S

+ Y pi(logg; + (n — 1) log I; + log g, + log Py (r;, m) — log Ziy)

€S

+ Z 113 (log C¢(ry,m) + log ¢; — log x;)

1€S

+ Y 1 (log Ce(ry, m) + log g — log z,,)

€S

+ Z 113 (log C? (r;, m) + log I; — logy;)

€8

+ Y i (log CY(re, m) + log g — log y,.)

1€S

+ ) i (log C (ri,m) + log g; — log Bix)

€S

+ > nili+a—1)

€S
(4.88)
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The objective function is subject to :

e<qg <1 Vie S (4.89)
0<L<1—¢ Vi€ S (4.90)
€<g. <1 (4.91)
€ < Py(ri,m) <1 Vie S,me M (4.92)
max{e"t?, i} < Zi <1 VieS (4.93)
e <z < C¥ri,m) VieS (4.94)
€ <1, < C%rw,m) (4.95)
e <y < Cry,m) VieS (4.96)
€ <y < Cp(r,m) (4.97)
Cl(min R;,m) x € < B;,, < C7 (max R;, m) Vie S;me M (4.98)
r; € R; Vie S (4.99)
re € Ry (4.100)

Multipliers b, g2, 13, p*, i, u® and 1" respectively represents the vectors of {u}},
{2}, {3y, Ly, {i}, {uland , {u!}. They are either positive or negative due to re-

laxing equality constraints.
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4.3.2 The LR Subproblems

To solve this Lagrangian Relaxation problem easily and effectively, we can divide
the problem into subproblems and solve them respectively. The way of decomposing this
Lagrangian Relaxation problem is by separating the decision variables. Each decision
variable will form a subproblem and because the original problem is a minimization prob-
lem, the subproblems will also be a minimization problem. Each subproblems will then
be dealt with different solution approaches base on their characteristics. This divide and

conquer technique will be introduce and implement in this section.

4.3.2.1 Subproblem 1(related to decision variable z;)

By extracting all decision variables z; in the LR problem, we will then obtain sub-
problem 1. In subproblem 1, u? can be either positive or negative due to relaxing equality

constraints.

In order to determine the concavity or convexity of subproblem 1, we have to take the
sign of 42 into consideration. Linear term will not influence the concavity or convexity
of the formula, so p? will singly decide whether it is concave or convex. A log function
by itself is a concave function, so when 12 is positive with a negative sign in front of it,
the formula will become a convex function. And when 1 is negative, the formula will

become a concave function.
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The concavity or convexity of subproblem 1 will lead to different solution approaches.
When 12 is positive and therefore changing the coefficient of log term into negative, find
the point of z; where the slope is 0, which will be the minimum point of the convex func-
tion. If the point of x; where the slope is 0 falls in the legal range, which is the upper
and lower bound of z;, then it is the solution to x;. However, if this point does not fall in
the legal range of x;, the upper and lower bound of z; will be substitute into the objective

function to see whichever is smaller, and it will be the solution to x;.

On the contrary, when 2 is negative and therefore changing the coefficient of log
term into positive, then the function is concave. Hence, we can compare the objective
values of the boundary points and the one with smaller objective value will be our solution

to x;.

The minimum of x; occurs when both C¢(r;, m) and ¢; are at its minimum, which is
€. The maximum on the other hand occurs when ¢; is 1. We separate x; from the objec-
tive function and derive a subproblem shown as formula (4.101) and constraint shown as

formula (4.102).
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Table 4.11: Subproblem I(related to decision variable x;)

Objective function :
.Z‘.
VA = mi 2 A /
subl = Min Z(m i log ;) (4.101)
€S
Subject to :
&<z <C¥ri,m) VieS (4.102)

Algorithm 11: Algorithm for Subproblem 1

for each node i do
Calculate the objective value at z; = ¢* denoted as 1}
Calculate the objective value at z; = C¢(r;, m) denoted as V5
if 42 > 0 then
partial differential to x;
m Himme = 0
T; = uim
if x; is not feasible then
set x[i] to min(Vy, V3), which is the boundary value with smaller
objective value
end

else
set x[i] to min(V7, V3), which is the boundary value with smaller
objective value

end
end

4.3.2.2 Subproblem 2(related to decision variable z,)

The procedure of dividing x,, from the LR problem is similar with z;. By extract-
ing all decision variables x, in the LR problem, we will then obtain subproblem 2. In

subproblem 2, ;3 can be either positive or negative due to relaxing equality constraints.

In order to determine the concavity or convexity of subproblem 2, we have to take the

sign of 43 into consideration. Linear term will not influence the concavity or convexity
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of the formula, so p® will singly decide whether it is concave or convex. A log function
by itself is a concave function, so when p? is positive with a negative sign in front of it,
the formula will become a convex function. And when 3 is negative, the formula will

become a concave function.

The concavity or convexity of subproblem 2 will lead to different solution approaches.
When 13 is positive and therefore changing the coefficient of log term into negative, find
the point of z,, where the slope is 0, which will be the minimum point of the convex func-
tion. If the point of x,, where the slope is 0 falls in the legal range, which is the upper and
lower bound of z,, then it is the solution to x,,. However, if this point does not fall in the
legal range of x,, the upper and lower bound of x,, will be substitute into the objective

function to see whichever is smaller, and it will be the solution to x,.

On the contrary, when 43 is negative and therefore changing the coefficient of log
term into positive, then the function is concave. Hence, we can compare the objective
values of the boundary points and the one with smaller objective value will be our solution

to z..

The minimum of x,, occurs when both C%(r,, m) and g, are at its minimum, which
is €. The maximum on the other hand occurs when ¢, is 1. We separate z,, from the ob-
jective function and derive a subproblem shown as formula (4.103) and constraint shown

as formula (4.104).
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Table 4.12: Subproblem 2(related to decision variable z,)

Objective function :

Zouto = min(* — 13 log ;) (4.103)
m

Subject to :

€ <, < Creym) (4.104)

Algorithm 12: Algorithm for Subproblem 2

Calculate the objective value at z,, = €2 denoted as V;
Calculate the objective value at z,, = C{(r,, m) denoted as V5
if 42 > 0 then

partzal dzﬁ’erentzal to x,

=0

m 'u T lne
T, = pim
if x,. is not feasible then
set x[k] to min(Vy, V), which is the boundary value with smaller
objective value

end

else

set x[k] to min(Vy, V5), which is the boundary value with smaller objective
value

end

4.3.2.3 Subproblem 3(related to decision variable v,)

The procedure of dividing y; from the LR problem is similar with z;. By extracting all
decision variables y; in the LR problem, we will then obtain subproblem 3. In subproblem

3, p1} can be either positive or negative due to relaxing equality constraints.

In order to determine the concavity or convexity of subproblem 3, we have to take the

sign of y} into consideration. Linear term will not influence the concavity or convexity

81 doi:10.6342/NTU202210101


http://dx.doi.org/10.6342/NTU202210101

of the formula, so i} will singly decide whether it is concave or convex. A log function
by itself is a concave function, so when p} is positive with a negative sign in front of it,
the formula will become a convex function. And when 4 is negative, the formula will

become a concave function.

The concavity or convexity of subproblem 3 will lead to different solution approaches.
When 4 is positive and therefore changing the coefficient of log term into negative, find
the point of y; where the slope is 0, which will be the minimum point of the convex func-
tion. If the point of y; where the slope is 0 falls in the legal range, which is the upper
and lower bound of y;, then it is the solution to y;. However, if this point does not fall in
the legal range of y;, the upper and lower bound of y; will be substitute into the objective

function to see whichever is smaller, and it will be the solution to ;.

On the contrary, when 1 is negative and therefore changing the coefficient of log
term into positive, then the function is concave. Hence, we can compare the objective
values of the boundary points and the one with smaller objective value will be our solution

to Yi-

The minimum of y; occurs when both C’f’(ri, m) and g¢; are at its minimum, which is
¢. The maximum on the other hand occurs when ¢; is 1. We separate y; from the objec-
tive function and derive a subproblem shown as formula (4.105) and constraint shown as

formula (4.106).
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Table 4.13: Subproblem 3(related to decision variable ;)

Objective function :
Zyus = min Y (L — it logy,) (4.105)
—"m,
€S
Subject to :
<y <C(ry,m) VieS (4.106)

Algorithm 13: Algorithm for Subproblem 3

for each node i do
Calculate the objective value at y; = €2 denoted as 1}
Calculate the objective value at y; = C?(r;, m) denoted as V;
if 1} > 0 then
partial differential to y;
1 41
m M yilne 0
Yi = pgm
if y; is not feasible then
set y[i] to min(Vy, Vy), which is the boundary value with smaller
objective value
end

else
set y[i] to min(V7, V3), which is the boundary value with smaller
objective value

end
end

4.3.2.4 Subproblem 4(related to decision variable y,)

The procedure of dividing y,, from the LR problem is similar with y,,. By extract-
ing all decision variables 3, in the LR problem, we will then obtain subproblem 4. In

subproblem 4, ;° can be either positive or negative due to relaxing equality constraints.

In order to determine the concavity or convexity of subproblem 4, we have to take the

sign of 1 into consideration. Linear term will not influence the concavity or convexity

83 doi:10.6342/NTU202210101


http://dx.doi.org/10.6342/NTU202210101

of the formula, so p® will singly decide whether it is concave or convex. A log function
by itself is a concave function, so when 1° is positive with a negative sign in front of it,
the formula will become a convex function. And when 1° is negative, the formula will

become a concave function.

The concavity or convexity of subproblem 4 will lead to different solution approaches.
When 4.° is positive and therefore changing the coefficient of log term into negative, find
the point of y,, where the slope is 0, which will be the minimum point of the convex func-
tion. If the point of y,, where the slope is 0 falls in the legal range, which is the upper and
lower bound of y,, then it is the solution to y,,. However, if this point does not fall in the
legal range of y,, the upper and lower bound of y,. will be substitute into the objective

function to see whichever is smaller, and it will be the solution to .

On the contrary, when ° is negative and therefore changing the coefficient of log
term into positive, then the function is concave. Hence, we can compare the objective
values of the boundary points and the one with smaller objective value will be our solution

to Y.

The minimum of y, occurs when both Cz(rn, m) and g, are at its minimum, which
is . The maximum on the other hand occurs when g, is 1. We separate y,, from the ob-
jective function and derive a subproblem shown as formula (4.107) and constraint shown

as formula (4.108).
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Table 4.14: Subproblem 4(related to decision variable ;)

Objective function :

Zeum = min(—= — i logy,) 4.107)

Subject to :

€ <y < Clfry,m) (4.108)

Algorithm 14: Algorithm for Subproblem 4

Calculate the objective value at y,, = €2 denoted as V;
Calculate the objective value at y,, = C?(r,, m) denoted as V5
if 11° > 0 then
partial differential to vy,

1 1 — O

“m 'u'5 Y Ine

Yr = _MSm

if y, is not feasible then

set y[k] to min(Vy, V3), which is the boundary value with smaller
objective value

end

else
set y[k] to min(Vy, V3), which is the boundary value with smaller objective
value

end

4.3.2.5 Subproblem 5(related to decision variable ¢;)

By extracting all decision variables g; in the LR problem, we will then obtain sub-
problem 5. In subproblem 5, there are 4 multipliers p},u?,1¢ and p! and all of them can

be either positive or negative due to relaxing equality constraints.

In order to determine the concavity or convexity of subproblem 5, we have to take

the sign of ) ,p?and pSinto consideration, but not 11! because g; is linear so it won’t affect
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the concavity or convexity of subproblem 5. A log function by itself is a concave function,
so y17 ,u?and ¢ can all play an important role in deciding whether the function is concave

Oor Convex.

In this section, we developed a way to easily get the convexity or concavity of this
function. We first find the extreme point by finding points with derivative = 0 and will
obtain a objective value for it. Later we can compare the objective value with the point of
derivative = 0 with the objective value of the boundary points of ¢;. If the objective value
with the point of derivative = 0 is smaller than the objective values of the boundary points
of ¢;, then the function is a convex function. We can then examine whether the point with
derivative = 0 falls in the legal range of ¢;, if yes then we can return it as our solution to ¢;.
If the point with derivative = 0 doesn’t appears in the legal range of ¢; and is considered
infeasible, we will return the boundary point of ¢; with a smaller objective value as our

solution to ¢;.

On the contrary, if the objective value with the point of derivative = 0 is bigger than
the objective value of the boundary points of ¢;, then the function is concave. Therefore,
we can compare the objective values of the boundary points and the one with smaller

objective value will be our solution to g;.

We separate ¢; from the objective function and derive a subproblem shown as formula

(4.109) and constraint shown as formula (4.110).
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Table 4.15: Subproblem 5(related to decision variable ¢;)

Objective function :

Zaws = min Y _(u} log g; + 17 log q; + p° log ¢; + 1] ;) (4.109)

€8
Subject to :

e<q <l VYieS (4.110)

Algorithm 15: Algorithm for Subproblem 5

for each node i do
Calculate the objective value at ¢; = € denoted as V
Calculate the objective value at ¢; = 1 denoted as 5
partial differential to ¢;
Wi gme 1 Gine T M e il =0
1 2 6
B -H;z- A A qu?
R,
if Zsub5(Qi) < min(Vl, ‘/'2) then
Z s = convex
if q; is feasible then
| qli] =g
else
set q[i] to min(V7, V5), which is the boundary value with smaller
objective value
end

else
set q[i] to min(V3, V,), which is the boundary value with smaller
objective value

end
end

4.3.2.6 Subproblem 6(related to decision variable ¢,.)

By extracting all decision variables ¢, in the LR problem, we will then obtain sub-
problem 6. In subproblem 6, there are 3 multipliers p}, 1 and 3 and all of them can be

either positive or negative due to relaxing equality constraints.
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In order to determine the concavity or convexity of subproblem 6, we have to take
the sign of all 3 multipliers y}, ;i and p into consideration. A log function by itself is a
concave function, so y}, 3 and 4 can all play an important role in deciding whether the

function is concave or convex.

To get the convexity or concavity of this function, we first find the extreme point by
finding points with derivative = 0 and will obtain a objective value for it. Later we can
compare the objective value with the point of derivative = 0 with the objective value of the
boundary points of ¢,.. If the objective value with the point of derivative =0 is smaller than
the objective values of the boundary points of ¢, then the function is a convex function.
We can then examine whether the point with derivative = 0 falls in the legal range of ¢,
if yes then we can return it as our solution to ¢,,. If the point with derivative = 0 doesn’t
appears in the legal range of ¢,, and is considered infeasible, we will return the boundary

point of g,, with a smaller objective value as our solution to .

On the contrary, if the objective value with the point of derivative = 0 is bigger than
the objective value of the boundary points of ¢,, then the function is concave. Therefore,
we can compare the objective values of the boundary points and the one with smaller

objective value will be our solution to g,.

We separate g, from the objective function and derive a subproblem shown as formula

(4.111) and constraint shown as formula (4.112).
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Table 4.16: Subproblem 6(related to decision variable ¢,)

Objective function :

Zgus = min Y _(u1} log g + 15 log g, + 41 log q,.) (4.111)
€S

Subject to :

e<q. <1 4.112)

Algorithm 16: Algorithm for Subproblem 6
Calculate the objective value at g, = € denoted as V;
Calculate the objective value at ¢, = 1 denoted as V5

partial differential to ¢,

1 1 3 1 5 1 _
Fi g ine +'uk’q,$lne _'_'ukq,{lne =0

pitng ey 0

get gglution to qx
if Zoups(qs) < min(V;,V3) then
Zubs = CONVET
if g, is feasible then
| gk =qx
else
set gk to min(Vy, Vy), which is the boundary value with smaller objective

value
end

else
set gk to min(V7, V3), which is the boundary value with smaller objective

value

end

4.3.2.7 Subproblem 7(related to decision variable ;)

By extracting all decision variables r; in the LR problem, we will then obtain sub-
problem 7. In subproblem 7, there are 4 multipliers .}, p?, 1 and p¢. All of them can be

either positive or negative due to relaxing equality constraints.

In order to determine the concavity or convexity of subproblem 7, we have to take
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the sign of all 4 multipliers y}, 112, pif and (8 into consideration. A log function by itself'is
a concave function, so i}, 42, p and 8 can all play an important role in deciding whether

the function is concave or convex.

To easily and effectively get the convexity or concavity of this function, we first find
the extreme point by finding points with derivative = 0 and will obtain a objective value
for it. Later we can compare the objective value with the point of derivative = 0 with
the objective value of the boundary points of r;. If the objective value with the point of
derivative = 0 is smaller than the objective values of the boundary points of r;, then the
function is a convex function. We can then examine whether the point with derivative = 0
falls in the legal range of r;, if yes then we can return it as our solution to ;. If the point
with derivative = 0 doesn’t appears in the legal range of r; and is considered infeasible,

we will return the boundary point of r; with a smaller objective value as our solution to r;.

On the contrary, if the objective value with the point of derivative = 0 is bigger than
the objective value of the boundary points of r;, then the function is concave. Therefore,
we can compare the objective values of the boundary points and the one with smaller

objective value will be our solution to r;.

We separate r; from the objective function and derive a subproblem shown as formula

(4.113) and constraint shown as formula (4.114) and formula (4.115).
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Table 4.17: Subproblem 7(related to decision variable r;)

Objective function :

Zsubt = minz [le log Py (ri, m) + p2log C&(rs,m) + pi log CP(rs, m) + uSCT (r:,m)
€S

(4.113)
Subject to :
€ < Pu(ri,m) <1 Vie S (4.114)

Algorithm 17: Algorithm for Subproblem 7
for each node i do
Calculate the objective value at r; = max R; denoted as V)
Calculate the objective value at r; = min R; denoted as V5
Get solution of r; where Z,,,7 has the smallest value
if Zsub?(riy m) S min(Vl, ‘/2) then
Zsup7 = CONVET
if r; is feasible then
| rfi] =
else
set r[i] to min(Vy, Vs), which is the boundary value with smaller
objective value
end

else
set r[i] to min(V4, Va), which is the boundary value with smaller
objective value

end
end

4.3.2.8 Subproblem 8(related to decision variable r,)

By extracting all decision variables r, in the LR problem, we will then obtain sub-
problem 8. In subproblem 8, there are 2 multipliers 4} and y;. Both of them can be either

positive or negative due to relaxing equality constraints.
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In order to determine the concavity or convexity of subproblem 8, we have to take
both multipliers 1 and 4 into consideration. A log function by itself is a concave func-
tion, so 43 and y; can both play an important role in deciding whether the function is

concave or convex.

To easily and effectively get the convexity or concavity of this function, we first find
the extreme point by finding points with derivative = 0 and will obtain a objective value
for it. Later we can compare the objective value with the point of derivative = 0 with
the objective value of the boundary points of r,,. If the objective value with the point of
derivative = 0 is smaller than the objective values of the boundary points of r,, then the
function is a convex function. We can then examine whether the point with derivative = 0
falls in the legal range of r,, if yes then we can return it as our solution to r,. If the point
with derivative = 0 doesn’t appears in the legal range of r,, and is considered infeasible,
we will return the boundary point of ., with a smaller objective value as our solution to

Tk

On the contrary, if the objective value with the point of derivative = 0 is bigger than
the objective value of the boundary points of r,, then the function is concave. Therefore,
we can compare the objective values of the boundary points and the one with smaller

objective value will be our solution to 7.

We separate r; from the objective function and derive a subproblem shown as formula
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(4.116) and constraint shown as formula (4.117) .

Table 4.18: Subproblem 8(related to decision variable )

Objective function :

C,(;(rm m)

Zsubs = Min + wi log Ci (1, m) + i log Cp(ry, m) (4.116)

Subject to :

r. € Ry, (4.117)

Algorithm 18: Algorithm for Subproblem 8
Calculate the objective value at r, = max R, denoted as V;
Calculate the objective value at r, = min R, denoted as V}
partial differential to 7,

b/ (r.m al(p..m al(p..m
e (m ) + Mnglzr,E,m) 11)16 + Mzcgéri,m)hze =0
get solution to r,
if Zgus(rs, m) < min(V;, V3) then
Z 08 = CONVET
if r, is feasible then
| rk=r,
else
set tk to min(V4, V3), which is the boundary value with smaller objective
value
end
else
set rk to min(V4, V3), which is the boundary value with smaller objective
value

end
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4.3.2.9 Subproblem 9(related to decision variable )

By extracting all decision variables Z;, in the LR problem, we will then obtain sub-
problem 9. In subproblem 9, there exists multiplier y}. It can be either positive or negative

due to relaxing equality constraints.

In order to determine the concavity or convexity of subproblem 9, we have to take
multiplier 4} into consideration. A log function by itself is a concave function, so y} can

both an important role in deciding whether the function is concave or convex.

We separate Z;,, from the objective function and derive a subproblem shown as for-

mula (4.118) and constraint shown as formula (4.119) .

Table 4.19: Subproblem 9(related to decision variable Z;,)

Objective function :
Zauo = min Y (=g log Ziy) (4.118)
i€s
Subject to :
n+2 1 .
max{e"™, —} < Z;,, <1 Vie S (4.119)
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Algorithm 19: Algorithm for Subproblem 9

for each node i do
Calculate the objective value at Z;,, = max{e"?, -1} denoted as V;
Calculate the objective value at Z;,, = 1 denoted as“i/g
partial differential to 7,
—p Zmllne =0
get solution to 7,
if Zup0(Zi) < min(Vy, V;) then
Z b9 = CONVET
if Z,. is feasible then

| Z[1] = Zix
else

set Z[i] to min(V3, V3), which is the boundary value with smaller
objective value

end

else
set Z[i] to min(Vy, V4), which is the boundary value with smaller

objective value

end

end

4.3.2.10 Subproblem 10(related to decision variable ;)

The procedure of dividing ;. from the LR problem is similar with z;. By extract-
ing all decision variables ;. in the LR problem, we will then obtain subproblem 10. In

subproblem 10, u¢ can be either positive or negative due to relaxing equality constraints.

In order to determine the concavity or convexity of subproblem 3, we have to take the
sign of 1% into consideration. Linear term will not influence the concavity or convexity
of the formula, so u¢ will singly decide whether it is concave or convex. A log function
by itself is a concave function, so when ¢ is positive with a negative sign in front of it,
the formula will become a convex function. And when 1 is negative, the formula will

become a concave function.
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The concavity or convexity of subproblem 10 will lead to different solution ap-
proaches. When 18 is positive and therefore changing the coefficient of log term into
negative, find the point of [3;, where the slope is 0, which will be the minimum point of
the convex function. If the point of /3;, where the slope is 0 falls in the legal range, which
is the upper and lower bound of ., then it is the solution to (3;,. However, if this point
does not fall in the legal range of 3;,, the upper and lower bound of ;. will be substitute

into the objective function to see whichever is smaller, and it will be the solution to ;.

On the contrary, when 9 is negative and therefore changing the coefficient of log
term into positive, then the function is concave. Hence, we can compare the objective
values of the boundary points and the one with smaller objective value will be our solution

to 61'5-

L

The minimum of 3;, occurs when both all C] (r;, m),-

and ¢; are at its minimum,

1
Zik

which is C7 (min R;, m) X e. The maximum on the other hand occurs when C7 (r;, m),
and ¢; are at its maximum. We separate (3;, from the objective function and derive a

subproblem shown as formula (4.120) and constraint shown as formula (4.121).
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Table 4.20: Subproblem 10(related to decision variable ;)

Objective function :

. ﬁin
Zauno = min Y _(— — yii log ) (4.120)

i€S

Subject to :

CT(min R;,m) x € < B;,, < C7 (max R;, m) VieSmeM (4.121)

Algorithm 20: Algorithm for Subproblem 10
for each node i do

Calculate the objective value at 3;, = C7(min R;, m) X ¢ denoted as V)

Calculate the objective value at 3;, = C7 (max R;, m) denoted as V5
if 1 > 0 then

pamal dlﬁ”erentlal to Bix
m _Mlﬁmlne =0

ﬁm pgm

if ;.. is not feasible then

set [i] to min(Vy, Vs), which is the boundary value with smaller
objective value

end
else

set B[i] to min(Vy, V), which is the boundary value with smaller
objective value

end
end

4.3.2.11 Subproblem 11(related to decision variable I;)

By extracting all decision variables /; in the LR problem, we will then obtain sub-
problem 11. In subproblem 11, there are 2 multipliers x} and yf. p} and p} can both be

either positive or negative due to relaxing equality constraints.

In order to determine the concavity or convexity of subproblem 11, we have to take
both multipliers i} and p} into consideration. Linear term will not influence the concavity
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or convexity of the formula so we don’t have to look at 41!. A log function by itself is a
concave function, so y} and p} will both play an important role in deciding whether it is

concave or convex.

To easily and effectively get the convexity or concavity of this function, we first find
the extreme point by finding points with derivative = 0 and will obtain a objective value
for it. Later we can compare the objective value with the point of derivative = 0 with
the objective value of the boundary points of /;. If the objective value with the point of
derivative = 0 is smaller than the objective values of the boundary points of /;, then the
function is a convex function. We can then examine whether the point with derivative =
0 falls in the legal range of [;, if yes then we can return it as our solution to /;. If the point
with derivative = 0 doesn’t appears in the legal range of /; and is considered infeasible,

we will return the boundary point of /; with a smaller objective value as our solution to /;.

The minimum of I; occurs when ¢; is at its maximum, which is 0. The maximum
on the other hand occurs when ¢; is at its minimum, which is 1. We separate [; from
the objective function and derive a subproblem shown as formula (4.122) and constraint

shown as formula (4.123) .
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Table 4.21: Subproblem 10(related to decision variable ;)

Objective function :
Zguy = min ¥ (u!(n —1)log I; + i log I; + pi] I;) (4.122)
i€S
Subject to :
0<L; <1 —¢ Vie S (4.123)

Algorithm 21: Algorithm for Subproblem 11

for each node i do
Calculate the objective value at /; = 0 denoted as V)
Calculate the objective value at I, = 1 — € denoted as V5
partial differential to I;

1n—1 4_1 7 _
Mi Tme  Hiwe T 1 =0

_ _ (n=Dpitpd

if Zsup11(L;) < min(V;,V3) then
Zoub11l = convex
if I; is feasible then

| Il] =1
else

set I[i] to min(V/7, V3), which is the boundary value with smaller
objective value

end

else
set I[i] to min(V3, V), which is the boundary value with smaller
objective value

end
end

4.4 Model 3 : Network Tree Structure Relationship

4.4.1 Deal with Decision Variables

Constraint (3.31) contains of the product of decision variables. We first take gy, (1 —

46,) """V qr, Pa; ; (T6;, m) and s, (1 — qes,) " Ve Py, ¢(7;, m) into consideration. With
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these decision variables multiplying, two issues will occur. First, the convexity of the
function is being destroyed . Second, decision variables will not be able to ’separate” or

”decomposed” when solving it. In order to deal with it,we let
Go.(1 = 60,)" Vur, Po, i, (1o, m) = Zp, 1, Vie Nyme M (4.124)

s, (1 = Gus) " Ve P, e (1, m) = Zi Vie Nyme M (4.125)

Apply logarithmic operation on both sides and we relax them to our LR problem with

Lagrangian multiplier (1} and p?).

:>10g qo; + (U - 1) IOg(l - QG«;) + IOg dkR; + 10g P@-,m(remm) = IOg Z&,m Vi € N, m e M

4,126
=logqus, + (n — 1) log(l — qus,) +logge + log Py, ¢(ry;,m) =log Z,, ¢ Vi€ (N, m )E M
(4.127)
so that we can avoid decision variables from multiplying.
We derived
="t < Zp . <1 Vie N (4.128)
from formulation (4.124).
We also derived
=" <7, <1 Vie N (4.129)

from formulation (4.125).

Before we deal with other decision variables multiplying, we first let
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(1—qp)=1p VieN (4.130)

(1—qur,) =I.p, Yi€N (4.131)

(1 —qes,) =I5, VieN (4.132)
Where

0<Ip<l—e¢ VieN (4.133)

0<Ipg <l—€¢ YieN (4.134)

0<Igs <l—€¢ VieN (4.135)

In order to deal with C (r4,,m) X qg,, C. (rx,, M) X qur,, C¢ (re, m) xge, Cf (rg,, m) X

i

Iy, O (r,,m) x I, and C¢(re,m) X q¢ , we let

i

Cy.(r9,,m) X qo, = To, Vie NNmeM (4.136)
Cr (T, M) X Gur, = T, Vie Nyme M (4.137)
C¢(re,m) X qe = ¢ Ym € M (4.138)
Cy.(ro,,m) x I, = ys, Vie Nyme M (4.139)
CY (1, m) X Lop, = Y, Vie NNme M (4.140)
Ce(re,m) X g = ye Vm e M (4.141)

Where
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e’ < xg, < Cf (ro,;,m) Vie NNmeM (4.142)

€ <z, < CL(ry,,m) Vie NNme M (4.143)
et < ze < Cg(rg,m) VYm e M (4.144)
e* < yp, < Cp (rg;,m) Vie Nyme M (4.145)
€ <y, < CL(ry;,m) Vie NmeM (4.146)
€ < ye < CL(re,m) Vm e M (4.147)

Apply logarithmic operation on both sides, and we relax these constraints into our

LR problem with respective Lagrangian multipliers(u).

= log Cj.(r9,,m) + log gy, = log xe, Vie NmeM (4.148)
= log C% (rx;, m) + log ger, = logz,, Vie Nyme M (4.149)
= log C¢ (r¢, m) + log ge = log ¢ Vme M (4.150)
= log Cy (14, m) + log Iy, = log yp, Vie NNme M (4.151)
= log C? (ry,,,m) + log I.r, = logysx, Vie NNmeM (4.152)
= log Cg(”/’g, m) + log ge = log ¢ VYm e M (4.153)

A new LR function is derived as the formula below:
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. Z (xﬁi XU+ Yp; XU+ ng.(ﬁ%, m)q& XU+ Ty, + Yp;, + C;;(Tma m)QHSi + Te + Oé)(T&m) — Ye
min

X m
iEN

+ Z Hzl (IOg do, + (U - 1) IOg 191‘ + IOg qxr; + IOg PQM%(TQN m) - 10g ZGi,fﬁ)
IEN

+ ) p(loggus, + (n — 1) log Is, + log ge + log Pr, ¢(rx,, m) — log Zs, ¢)

1EN

+ Z ll’f(log Cgl (Tew m) + log do; — IOg x&-)
1EN

+ 3 it (log C2 (1, m) + log g, — log,.,)
iEN

+ Y i (log C¢(re,m) + log g — log x)

1EN

+ > 1 (log G (ro;, m) + log I, — log ys,)
iEN

+ Z MZ (IOg CII; (T:‘im m) + IOg L{Ri - 10g ym‘)
iEN

+ Z 1% (log C’g(rg, m) + log gc — logye)

1EN

(4.154)

There still exists C, (14, m)qo, and CF (7,,m)qxs, which contains decision variables

multiplying, so we also have to deal with it.

Let
Cs, (ro,,m) 0, = Bo; 1, Vie NNme M (4.155)

Cr (T, M) s, = Bry e Vie NNmeM (4.156)

Apply logarithmic operation on both sides,
= log Cy (rg,,m) + log gy, = log By, x, Vie NmeM (4.157)
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= log CF (ry,, m) 4 log q.s, = log By, ¢ Vie NNme M (4.158)

L

Multiply both side with the upper bound and lower bound of Cf (rg,, m), CT (74, m)
and ¢y, ¢.s, and we obtain the upper and lower bound of fy, ., and f3,, ¢ as shown as
formula(4.159) and (4.160).

Cy,(min Ry, m) x € < Py, ., < Cg (max Ry,, m) Vie NNmeM (4.159)

Cr.(min R,,,m) X € < B, ¢ < CF (max Ry, m) Vie NNmeM (4.160)

Now that we’ve dealt with the products of decision variables in the objective function,
we also have to deal with the one in constraint (3.31) . We replace gy, (1—qo,) "V qxr, Lo, x; (T6,, M)
with Zj, .. and .5, (1 — qus,) "V qe Py, ¢ (7, m) with Z,., ¢ in constraint (3.31) as shown

as formula(4.161)

1 1
To, — 1|+, — 1| +2<Tpe Vie Nyme M (4.161)
20 Ki Z’iivg

o b b r 42 < Ty Vie NNme M (4.162)
Zeiﬁi ' Zf%f ’

T9¢Zm,§ + TK’LZGZ‘J%
ZGN% X Zfizwf

_THi_Tni+2§T9i,£ Vie NmeM (4.163)

Let

Zgiﬁi X Zﬁiaf = D9i7£ Vie N (4164)

Apply logarithmic operation on both sides,
= log Zy, ., +10g Z,, ¢ = log Dy, ¢ Vie N (4.165)

T < Dy <1 Vie N (4.166)
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Replace Zy, ., X Z,, ¢ with Dy, ¢ in formula (4.163).

7o, Zﬁiaf + Te, Zeiﬁz‘
Demg

— 7o, — T +2 < Th Vie N (4.167)

= TgiZni,g + TfiiZQiﬁi - TgiDgié — T,.%Dgié + 2D9i7§ S Dginggijg Vie N (4168)

As for the throughput constraint (3.34), we replace go, (1 — go,) Y qer, Py, , (70, m)
with Z, .. and .5, (1 — Gus,) "V qe Py, ¢ (7, m) withZy, .. and Z,. ¢. We get a new con-
straint as follow:

029, 5. — Zpe <0 Vie N (4.169)

After dealing with the decision variables that multiplies, we relax formula (4.130),
formula (4.131), formula (4.157), formula (4.158), formula (4.165), formula (4.168) and

formula (4.169) with respective lagrangian multipliers.

The final LR function is derived as the formula below:
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. x9ixv+y9ixv+59iﬁixv+mm
min E

1EN

T Yk, +Bm,§ + T¢ + Cg(rfam> - yf)
m

+ Z /%1 (IOg do, + (U - 1) IOg [91' + 10g GkR; T 1Og Paiyﬁi (rﬁ'i? m) - 10g ZOW%)

i€EN

+ Y 17 (log gus, + (n — 1) log Is, + log ge + 1

1€EN

+ >y (log G (rg,,m) + log g5, — log z,)
1EN

+ ) i (log Cf (r,, m) + log gur, — log ,)
iEN

+ ) i (log G (re, m) + log ge — log )

€N

+) 1l (log C4 (ro,,m) + log I, — log ys,)
1EN

+ Z ,MZ(IOg Orl; (7“,%, m) + 10g L{Ri - IOg ym)
i€EN

+) i (log CE(re, m) + log g — logye)

€N

+ ZM?(I& + qo, — 1)

1EN

=+ ZM}O([KRi + qxR;, — 1)
iEN

+ZHJ HS +QHS 1)

iEN

+ > P (log G, (ry,,m) + log gy, — log B, ;)

iEN

+Zu (log O, (1;,m) + 10g gios, — 10g By, ¢)

iEN

+ > it (log Zo, x, +log Zs, ¢ — log D, ¢)

iEN

0og Pﬁuf(rﬁiv m) - log Zfﬂé)

+ > 103 (70, 2,6 + i Zouw, — 0. Do, — T Doy + 2Do,c — Do, Toc)

1EN

+ZM (VZo, ki — Znyie)

iEN
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The objective function is subject to :

e<qy, <1 Vie N (4.171)
€ < QuR;s Grs; <1 Vie N (4.172)
e<qg <1 (4.173)
0<I) <1—e¢ Vie N (4.174)
0<Ip <1—c¢ Vie N (4.175)
0<I <1—¢ Vie N (4.176)
¢ < Py, (rg,m) <1 Vie Nyme M (4.177)
€ < Py e(re,m) <1 Vie NmeM (4.178)
et < Zp o <1 Vie N (4.179)
< Z <1 Vie N (4.180)
€’ < g, < Cf (rg,;,m) Vie NmeM (4.181)
e’ <z, < CL(ry,,m) Vie NNmeM (4.182)
¢? < xe < C¢(re,m) Vm e M (4.183)
e < yg, < Ch (re,,m) Vie NNme M (4.184)
€ <y, < CP (ry;,m) Vie NmeM (4.185)
e <y < Cg(rg, m) VYme M (4.186)
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Cy,(min Ry, m) x € < Py, ., < Cg (max Ry, m) Vie NmeM (4.187)

7

Cr.(min R, ,m) x € < B, < CF (max Ry, m) Vie NNme M (4.188)

Tt < Dy <1 Vi e N (4.189)
r9, € Ry, Vie N (4.190)
T, € Ry, Vie N (4.191)
re € Re (4.192)

Multipliers pi', p?, 1o, i, 1%, p®, ", B, 0, 0, ™, ', pt?, ' and o' respec-
tively represents the vectors of {1}, {47}, {¢°}, {wi}, {w°}, {uf}, {0d} {w®}s {1},

{mF, ' b {p® {ni®} {mi*}, {pi®} and {1;°}. They are either positive or negative

due to relaxing equality constraints except p'® and p'6. ;'° and ;!¢ are greater or equal

to 0 due to relaxing inequality constraints.

4.4.2 The LR Subproblems

4.4.2.1 Subproblem 1(related to decision variable z;,)

By extracting all decision variables xy, in the LR problem, we will then obtain sub-
problem 1. In subproblem 1, 1 can be either positive or negative due to relaxing equality

constraints.

In order to determine the concavity or convexity of subproblem 1, we have to take the

sign of 1 into consideration. Linear term will not influence the concavity or convexity
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of the formula, so i will singly decide whether it is concave or convex. A log function
by itself is a concave function, so when p? is positive with a negative sign in front of it,
the formula will become a convex function. And when 4 is negative, the formula will

become a concave function.

The concavity or convexity of subproblem 1 will lead to different solution approaches.
When 1} is positive and therefore changing the coefficient of log term into negative, find
the point of xy, where the slope is 0, which will be the minimum point of the convex func-
tion. If the point of =y, where the slope is 0 falls in the legal range, which is the upper and
lower bound of zy,, then it is the solution to zp,. However, if this point does not fall in the
legal range of zy,, the upper and lower bound of xy, will be substitute into the objective

function to see whichever is smaller, and it will be the solution to xy, .

On the contrary, when 1 is negative and therefore changing the coefficient of log
term into positive, then the function is concave. Hence, we can compare the objective
values of the boundary points and the one with smaller objective value will be our solution

to wy;.

The minimum of zy, occurs when both Cj (r,, m) and g, are at its minimum, which
is . The maximum on the other hand occurs when g, is 1. We separate z, from the ob-
jective function and derive a subproblem shown as formula (4.193) and constraint shown

as formula (4.194).
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Table 4.22: Subproblem I1(related to decision variable zy,)

Objective function :
(4.193)

Subject to :
(4.194)

. Ty, XV 3
Zsupl = min g (lT — i log xy,)
iEN

Vie N

2 < xp, < C’gj(rgi,m)

Algorithm 22: Algorithm for Subproblem 1

for each node i do

Calculate the objective value at 2y, = € denoted as V}
Calculate the objective value at xg, = C (rg,, m) denoted as V,

if 2 > 0 then
partial differential to xy,

v _ .3 _1 —
m l’bizgilne_o
3

_ #m
Igi—ZT

if xy, is not feasible then
set xtheta[i] to min(V;, Vy), which is the boundary value with
smaller objective value

end
else
set xtheta[i] to min(Vy, V3), which is the boundary value with smaller

objective value

end
end

4.4.2.2 Subproblem 2(related to decision variable z,.,)

By extracting all decision variables z,;, in the LR problem, we will then obtain sub-

problem 2. In subproblem 2, i} can be either positive or negative due to relaxing equality

constraints.

The way to determine the concavity or convexity of subproblem 2 and the solution
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is similar to subproblem 1, we have to take the sign of ;i into consideration. We separate
x,, from the objective function and derive a subproblem shown as formula (4.195) and

constraint shown as formula (4.196).

Table 4.23: Subproblem 2(related to decision variable ;)

Objective function :
Ty
Zsupp = mi 1 , .
sz =N > (S5 — pij log i, (4.195)
i€EN
Subject to :
€ <z, <C&(ry,m) VieN (4.196)

Algorithm 23: Algorithm for Subproblem 2

for each node i do

Calculate the objective value at x,, = ¢* denoted as V;
Calculate the objective value at x,, = C (1,,m) denoted as V5
if 11} > 0 then

pamal dlﬁ‘erentzal o Ty,

=0

Ml acN lne
Ri = :uz
if Z,, 1s not feasible then
set xkappa[i] to min(Vy, Vs), which is the boundary value with
smaller objective value
end
else
set xkappa[i] to min(Vy, V), which is the boundary value with smaller
objective value

end
end
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4.4.2.3 Subproblem 3(related to decision variable ;)

By extracting all decision variables z¢ in the LR problem, we will then obtain sub-
problem 3. In subproblem 3, i can be either positive or negative due to relaxing equality

constraints.

The way to determine the concavity or convexity of subproblem 3 and the solution
is similar to subproblem 1, we have to take the sign of ;. into consideration. We separate
x¢ from the objective function and derive a subproblem shown as formula (4.197) and

constraint shown as formula (4.198).

Table 4.24: Subproblem 3(related to decision variable x¢)

Objective function :
. Te 5
Zsups = — — .
suba mmZ(m 11 log ¢) (4.197)
iEN
Subject to :
€ < e < C(re,m) (4.198)
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Algorithm 24: Algorithm for Subproblem 3

for each node i do
Calculate the objective value at x¢ = € denoted as 1}
Calculate the objective value at z¢ = C¢ (r¢, m) denoted as V5
if 117 > 0 then
partial differential to x
e =0
Te = u’m
if 2¢ is not feasible then
set xxi[i] to min(Vy, Vy), which is the boundary value with smaller
objective value
end

else
set xxifi] to min(Vy, V5), which is the boundary value with smaller
objective value

end
end

4.4.2.4 Subproblem 4(related to decision variable )

By extracting all decision variables y,, in the LR problem, we will then obtain sub-
problem 4. In subproblem 4, ¢ can be either positive or negative due to relaxing equality

constraints.

The way to determine the concavity or convexity of subproblem 6 and the solution
is similar to subproblem 1, we have to take the sign of 1. into consideration. We separate
yp, from the objective function and derive a subproblem shown as formula (4.199) and

constraint shown as formula (4.200).
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Table 4.25: Subproblem 4(related to decision variable yp,)

Objective function :
. Yo, X v 6
7 = _— _ ;
st =min 3 (Zm — i log gy, (4.199)
1EN
Subject to :
e <yp < Ch(re,m) VieN (4.200)

Algorithm 25: Algorithm for Subproblem 4

for each node i do

Calculate the objective value at yy, = ¢? denoted as V;
Calculate the objective value at yy, = C§ (r5,, m) denoted as V3
if u¢ > 0 then

partial differential to yp,

v _ 61
m Miygilne

6
_ mm

if yp, is not feasible then
set ytheta[i] to min(V;, Vy), which is the boundary value with
smaller objective value
end
else
set ytheta[i] to min(Vy, V3), which is the boundary value with smaller
objective value

end
end

4.4.2.5 Subproblem S(related to decision variable v,.,)

By extracting all decision variables ¥, in the LR problem, we will then obtain sub-
problem 5. In subproblem 5, ! can be either positive or negative due to relaxing equality

constraints.

The way to determine the concavity or convexity of subproblem 5 and the solution
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is similar to subproblem 1, we have to take the sign of 1 into consideration. We separate
Y., from the objective function and derive a subproblem shown as formula (4.201) and

constraint shown as formula (4.202).

Table 4.26: Subproblem 5(related to decision variable y,,,)

Objective function :
: yﬂi 7
- AR , )
s = min 3 (T8 — pif log ) (4.201)
i€EN
Subject to :
€ <yp <CY(rp,m) VieN (4.202)

Algorithm 26: Algorithm for Subproblem 5

for each node i do

Calculate the objective value at y,.. = ¢* denoted as V;
Calculate the objective value at y,,, = C? (r,,m) denoted as V;
if 117 > 0 then

pamal dlﬁ‘erentzal 10 Yy,

=0

m Ml yﬁ lne
Yk, = H’z
if v, is not feasible then
set ykappa[i] to min(Vy, Vs), which is the boundary value with
smaller objective value
end
else
set ykappa[i] to min(V7, Vs), which is the boundary value with smaller
objective value

end
end
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4.4.2.6 Subproblem 6(related to decision variable y.)

By extracting all decision variables y, in the LR problem, we will then obtain sub-
problem 6. In subproblem 6, 1i$ can be either positive or negative due to relaxing equality

constraints.

The way to determine the concavity or convexity of subproblem 6 and the solution
is similar to subproblem 1, we have to take the sign of 1 into consideration. We separate
ye from the objective function and derive a subproblem shown as formula (4.203) and

constraint shown as formula (4.204).

Table 4.27: Subproblem 6(related to decision variable )

Objective function :
- Ye 8
Z supe = —= — U .
e = min y_(— 5~} log ye) (4.203)
iEN
Subject to :
¢ <ye < CL(re,m) (4.204)
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Algorithm 27: Algorithm for Subproblem 6

for each node i do

Calculate the objective value at y = €* denoted as V;
Calculate the objective value at e = Cf(r¢, m) denoted as V5
if 12 > 0 then

partial differential to y

_1r _,8_1
m 'uiyglne

Ye = —H;m
if y¢ is not feasible then
set yxi[i] to min(V7, Vy), which is the boundary value with smaller
objective value

end

else

set yxifi] to min(Vy, V5), which is the boundary value with smaller
objective value

end
end

4.4.2.7 Subproblem 7(related to decision variable gy,)

By extracting all decision variables g, in the LR problem, we will then obtain sub-
problem 7. In subproblem 7, there are 4 multipliers x;,u?,1%and p}? and all of them can

be either positive or negative due to relaxing equality constraints.

In order to determine the concavity or convexity of subproblem 7, we have to take
the sign of yu},u and u}?into consideration, but not i because gy, is linear so it won’t
affect the concavity or convexity of subproblem 7. A log function by itself is a concave
function, so },u3 and p}? can all play an important role in deciding whether the function

IS concave or convex.

In this section, we developed a way to easily get the convexity or concavity of this

function. We first find the extreme point by finding points with derivative = 0 and will
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obtain a objective value for it. Later we can compare the objective value with the point

of derivative = 0 with the objective value of the boundary points of gg,. If the objective

value with the point of derivative = 0 is smaller than the objective values of the boundary

points of ¢p,, then the function is a convex function. We can then examine whether the

point with derivative = 0 falls in the legal range of gy,, if yes then we can return it as our

solution to gp,. If the point with derivative = 0 doesn’t appears in the legal range of ¢y, and

is considered infeasible, we will return the boundary point of gy, with a smaller objective

value as our solution to g, .

On the contrary, if the objective value with the point of derivative = 0 is bigger than

the objective value of the boundary points of gy, then the function is concave. Therefore,

we can compare the objective values of the boundary points and the one with smaller

objective value will be our solution to g, .

We separate gy, from the objective function and derive a subproblem shown as for-

mula (4.205) and constraint shown as formula (4.206).

Table 4.28: Subproblem 7(related to decision variable gg,)

Objective function :

Zgwr =min Y () log go, + 113 10g go, + 11790, + 111> 1og gs,) (4.205)

1EN
Subject to :

e<qy <1 Vie N (4.206)

7
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Algorithm 28: Algorithm for Subproblem 7

for each node i do
Calculate the objective value at gy, = € denoted as V}
Calculate the objective value at gy, = 1 denoted as V;
partial differential to gy,
Mg me M gme P =0

go; Ine qp; Ine gp; Ine
pitpi e 9
qe, = H
N e
G0, = =~

if Zsub7(q€i) < min(Vl, VQ) then
Z b7 = convex
if gy, is feasible then
‘ qtheta[i] = o,
else
set qtheta[i] to min(V/4, V5), which is the boundary value with
smaller objective value
end
else
set gtheta[i] to min(V4, V3), which is the boundary value with smaller
objective value

end

end

4.4.2.8 Subproblem 8(related to decision variable ¢.,)

By extracting all decision variables g, g, in the LR problem, we will then obtain sub-
problem 8. In subproblem 8, there are 3 multipliers y},u; and p'° and all of them can be

either positive or negative due to relaxing equality constraints.

The way to determine the concavity or convexity and the solution to subproblem 8 is
similar to subproblem 7. We have to take the sign of p},u} and ;'%into consideration, but

not p'° because ¢, g, is linear so it won’t affect the concavity or convexity of subproblem

We separate g, r, from the objective function and derive a subproblem shown as for-
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mula (4.207) and constraint shown as formula (4.208).

Table 4.29: Subproblem 8(related to decision variable g, )

Objective function :

Subject to :

i€EN

Zows = min Y _ (11 10g Gur, + 115108 Gur, + 111°Gi,)

Vie N

(4.207)

(4.208)

Algorithm 29: Algorithm for Subproblem 8

for each node i do

1 1

pitei 0
QNRi ¢

1 4

Mty

4kR; = — Lml
7

Zoups = CONVET

else

end
else

objective value
end

end

1 4
Fi dnr; Ine + Ky gnr; Ine +

' =0

if ZsubS(q,‘-cRi) S min(‘/lu ‘/2) then

if q. R, is feasible then
| qkappaR[i] = qyr,

Calculate the objective value at g.r, = € denoted as V;
Calculate the objective value at gz, = 1 denoted as V5
partial differential to g,p,

set gkappaR[i] to min(V7, V), which is the boundary value with
smaller objective value

set gkappaR[i] to min(V}, V5), which is the boundary value with smaller
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4.4.2.9 Subproblem 9(related to decision variable g;)

By extracting all decision variables ¢¢ in the LR problem, we will then obtain sub-
problem 9. In subproblem 9, there are 3 multipliers p2,u°and ;8 and all of them can be

either positive or negative due to relaxing equality constraints.

The way to determine the concavity or convexity and the solution to subproblem 9 is

similar to subproblem 7. We have to take the sign of ?,u°and 8 into consideration.

We separate ¢¢ from the objective function and derive a subproblem shown as formula

(4.209) and constraint shown as formula (4.210).

Table 4.30: Subproblem 9(related to decision variable g¢)

Objective function :

Zouo =min Y (11} log ge + 11° log g + 11 log g¢) (4.209)
iEN

Subject to :

e<gqg <1 (4.210)
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Algorithm 30: Algorithm for Subproblem 9
for each node i do

Calculate the objective value at gc = € denoted as V;
Calculate the objective value at gc = 1 denoted as V5
partial differential to g

2_1 5_1 S 1 _
Fi gelne T gelne + gelne 0
pir At

get Csléolution to ge
if ZsubQ(Q{) < min(Vl, ‘/2) then
Z b9 = CONVET
if q¢ is feasible then
| gxifi] = g
else
set gxi[i] to min(V}, V3), which is the boundary value with smaller
objective value
end
else
set gxi[i] to min(V}, V3), which is the boundary value with smaller
objective value

end

end

4.4.2.10 Subproblem 10(related to decision variable r,)

By extracting all decision variables ry, in the LR problem, we will then obtain sub-
problem 10. In subproblem 10, there are 4 multipliers p}, 13, ¢ and p}?. All of them can

be either positive or negative due to relaxing equality constraints.

The way to determine the concavity or convexity and the solution to subproblem 10 is

similar to subproblem 7. We have to take the sign of .}, u?, uf and p}? into consideration.

We separate 7y, from the objective function and derive a subproblem shown as for-

mula (4.211) and constraint shown as formula (4.212) and formula (4.213).
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Table 4.31: Subproblem 10(related to decision variable rg)

Objective function :

Zeupio = min Z [uzl log Py, «;(r9:,m) + 12 log Cy. (ro,,m) + 18 log C’gi (re,,m)
iEN

+ 12 log C, (v, m)|

(4.211)

Subject to :
€ < Py, 4;(rgiym) <1 Vie N (4.212)
ro, € Ry, Vie N (4.213)

Algorithm 31: Algorithm for Subproblem 10
for each node i do
Calculate the objective value at ry, = max Ry, denoted as V;
Calculate the objective value at 7y, = min Ry, denoted as V;
Get solution of 7y, where Z,;10 has the smallest value
if Zsup10(re,, m) < min(V3, V3) then
Zoublo = CONVET
if 7y, is feasible then
| rthetafi] =1y,
else
set rtheta[i] to min(V, V3), which is the boundary value with
smaller objective value
end

else
set rthetafi] to min(Vy, Vs), which is the boundary value with smaller
objective value

end
end

4.4.2.11 Subproblem 11(related to decision variable 7))

By extracting all decision variables r,;, in the LR problem, we will then obtain sub-

problem 11. In subproblem 11, there are 4 multipliers 2, i, p! and p}. All of them can
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be either positive or negative due to relaxing equality constraints.

The way to determine the concavity or convexity and the solution to subproblem 11 is

similar to subproblem 7. We have to take the sign of ui2, i, 1! and p}? into consideration.

We separate r,,, from the objective function and derive a subproblem shown as for-

mula (4.214) and constraint shown as formula (4.215) and formula (4.216).

Table 4.32: Subproblem 11(related to decision variable )

Objective function :

Zsup1l = mlnz [ log Py, ¢(ry;, m) + pu log Cp (g, m) + p! log C’gi(r,ﬂ, m)

€N

+ i log C (s, m) |

(4.214)

Subject to :
e < Py elry,,m) <1 Vie N (4.215)
Ty, € Ry, Vie N (4.216)
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Algorithm 32: Algorithm for Subproblem 11

for each node i do
Calculate the objective value at r,;, = max R, denoted as V}
Calculate the objective value at r,,, = min R, denoted as V;
Get solution of 7, where Z,;11 has the smallest value
if Zgup11(ry,, m) < min(V3, V3) then
Zsubll = CONVET
if .., is feasible then
| rkappali] =ry,
else
set rkappa[i] to min(V4, Vy), which is the boundary value with
smaller objective value
end

else
set rkappa[i] to min(Vy, Vy), which is the boundary value with smaller
objective value

end
end

4.4.2.12 Subproblem 12(related to decision variable )

By extracting all decision variables 7¢ in the LR problem, we will then obtain sub-
problem 12. In subproblem 12, there are 2 multipliers ° and p®. All of them can be either

positive or negative due to relaxing equality constraints.

The way to determine the concavity or convexity and the solution to subproblem 12

is similar to subproblem 7. We have to take the sign of ;° and ® into consideration.

We separate 7 from the objective function and derive a subproblem shown as formula

(4.217) and constraint shown as formula (4.218).
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Table 4.33: Subproblem 12(related to decision variable 7¢)

Objective function :

Zsubl2 = minz [C’é’(r& m) + p’ log Ce(re,m) + 18 log CE(T& m) (4.217)

iEN
Subject to :

re € Re (4.218)

Algorithm 33: Algorithm for Subproblem 12

for each node i do
Calculate the objective value at r = max R, denoted as V;
Calculate the objective value at r = min R, denoted as V>
Get solution of 7¢ where Z,;12 has the smallest value
if Zsup12(re) < min(V4, V5) then
Zsubl2 = CONVET
if 7¢ is feasible then

| rxi =g
else

set rxi to min(Vy, Vi), which is the boundary value with smaller
objective value

end

else
set rxi to min(V7, Vy), which is the boundary value with smaller
objective value

end
end

4.4.2.13 Subproblem 13(related to decision variable Z, ,..)

By extracting all decision variables Zy, ., in the LR problem, we will then obtain

14

subproblem 13. In subproblem 13, there are 4 multipliers x} %, and 1%, p} and
pit can be either positive or negative due to relaxing equality constraints and ;% and y}°
should be greater or equal to positive due to relaxing inequality constraints.
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The way to determine the concavity or convexity and the solution to subproblem 13 is

1

similar to subproblem 7. We have to take the sign of y},u}4,11° and 11 into consideration.

We separate Zy, ., from the objective function and derive a subproblem shown as

formula (4.219) and constraint shown as formula (4.220).

Table 4.34: Subproblem 13(related to decision variable Zy, ,,)

Objective function :

Zsub13 = min Z [ - ”zl IOg ZGi,ni + ,u114 lOg ZG,L-,M + Hz‘lSTmZOi,M + H’z‘lﬁvzeiﬁi]
€N

(4.219)
Subject to :

< Zp . <1  VieEN (4.220)
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Algorithm 34: Algorithm for Subproblem 13

for each node i do

Calculate the objective value at Zy, .., = €"T2 denoted as V;
Calculate the objective value at Z, .., = 1 denoted as V5
partial differential to Zy, .

i 7y T Gy 1 T %0 =0

—p + 1+ Zo, 1T, + Zoy 110 = 0

Z0
0;,K4 #35T~¢+#3°v

if Zoup13(Zp, ;) < min(V7, V5) then
Zgup13 = CONVET
if Zy, ., is feasible then
| ztheta[i] = Zy, .,
else
set ztheta[i] to min(V3, V), which is the boundary value with
smaller objective value

end

else

set ztheta[i] to min(V7, V5), which is the boundary value with smaller
objective value

end

end

4.4.2.14 Subproblem 14(related to decision variable Z,, )

By extracting all decision variables Z,, ¢ in the LR problem, we will then obtain

subproblem 14. In subproblem 14, there are 4 multipliers p?,u%, 1 and 1% p? and
pit can be either positive or negative due to relaxing equality constraints and ;5 and 116

should be greater or equal to positive due to relaxing inequality constraints.

The way to determine the concavity or convexity and the solution to subproblem 14 is

1

similar to subproblem 7. We have to take the sign of pi?,u}4,11° and 1 into consideration.

We separate Z,, ¢ from the objective function and derive a subproblem shown as

formula (4.221) and constraint shown as formula (4.222).
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Table 4.35: Subproblem 14(related to decision variable Z,, ¢)

Objective function :

Zsub14 = mll’lz [ - Nz2 IOg Zm-,& + /%M 10g Zm,,{ + N2‘157—97:Zm,§ - Mz‘lGZfiivf]
iEN

4.221)

Subject to :

< Z,. <1 VieN (4.222)

Algorithm 35: Algorithm for Subproblem 14

for each node i do

Calculate the objective value at 7, ; = €"*2 denoted as V}
Calculate the objective value at Z,;, = 1 denoted as V5
partial differential to Z,,, ¢

7 = ki
Ki\€ ”115761_7%16

if Zsub14(Zﬁi7£) S min(Vl, ‘/2) then
Zoub1a = CONVEX
if Z,., ¢ is feasible then
‘ Zkappa[i] = Zf%f
else
set zkappal[i] to min(V}, V3), which is the boundary value with
smaller objective value
end
else
set zkappal[i] to min(V, V5), which is the boundary value with smaller
objective value

end

end

4.4.2.15 Subproblem 15(related to decision variable [, ,.)

The procedure of dividing [y, ,, from the LR problem is similar with subproblem 1.

By extracting all decision variables f3, ., in the LR problem, we will then obtain subprob-
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lem 15. In subproblem 15, pi}? can be either positive or negative due to relaxing equality

constraints.

In order to determine the concavity or convexity of subproblem 15, we have to take
the sign of p}? into consideration. Linear term will not influence the concavity or con-
vexity of the formula, so p}? will singly decide whether it is concave or convex. A log
function by itself is a concave function, so when p}? is positive with a negative sign in
front of it, the formula will become a convex function. And when 1}? is negative, the

formula will become a concave function.

The concavity or convexity of subproblem 15 will lead to different solution ap-
proaches. When )2 is positive and therefore changing the coefficient of log term into
negative, find the point of 3y, ., where the slope is 0, which will be the minimum point
of the convex function. If the point of 3y, .., where the slope is 0 falls in the legal range,
which is the upper and lower bound of [y, ,,, then it is the solution to 3y, .,. However,
if this point does not fall in the legal range of [y, ,,, the upper and lower bound of 3y, ...
will be substitute into the objective function to see whichever is smaller, and it will be the

solution to By, ;-

On the contrary, when 1,2 is negative and therefore changing the coefficient of log
term into positive, then the function is concave. Hence, we can compare the objective

values of the boundary points and the one with smaller objective value will be our solution
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to ul?.

We separate (3, ., from the objective function and derive a subproblem shown as

formula (4.223) and constraint shown as formula (4.224).

Table 4.36: Subproblem 15(related to decision variable Sy, .,)

Objective function :

. 691, ;U
Zsubls = man(Tﬁ - :uzm log 591'7’%)
iEN

Subject to :

Cy,(min R;,m) x € < By, ., < Cy (max Ry, m)

Vie Nyme M

(4.223)

(4.224)

Algorithm 36: Algorithm for Subproblem 15

for each node i do

Calculate the objective value at fg, ., = Cj,
if 112 > 0 then

partial differential to By, .,

v 12 1 _
m Hi Bo,.r;Ine 0
Boo, = B

Oiki — " o

if B3y, x, is not feasible then

smaller objective value
end
else

objective value

end
end

(min R;,m) x € denoted as V;

Calculate the objective value at fy, ., = Cj (max R;, m) denoted as V5

set betatheta[i] to min(Vy, V3), which is the boundary value with

set betatheta[i] to min(V;, Vs), which is the boundary value with smaller
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4.4.2.16 Subproblem 16(related to decision variable 3., ¢)

The procedure of dividing f3,, ¢ from the LR problem and the way to determine the
concavity or covexity is similar to subproblem 1. By extracting all decision variables f3,, ¢
in the LR problem, we will then obtain subproblem 16. In subproblem 16, ;1% can be either

positive or negative due to relaxing equality constraints.

We separate f3,, ¢ from the objective function and derive a subproblem shown as

formula (4.225) and constraint shown as formula (4.226).

Table 4.37: Subproblem 16(related to decision variable 3, ¢)

Objective function :
Z o : 5’%}5 _ 131
aung = min Y (=25 — i log B ) (4.225)
ieEN
Subject to :
Cr.(min Ry, m) x € < B, ¢ < CF (max R;, m) Vie NmeM (4.226)
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Algorithm 37: Algorithm for Subproblem 16

for each node i do
Calculate the objective value at f,, ¢ = C7 (min R;, m) X € denoted as V;
Calculate the objective value at 3, . = C7 (max R;, m) denoted as V3
if 1113 > 0 then
partial differential to 3, ¢

1 131 _

m M Br;elne

Bm,{ = :uzl Sm

if 3., ¢ is not feasible then

set betakappa[i] to min(V;, V), which is the boundary value with
smaller objective value

end

else

set betakappa[i] to min(V;, Vy), which is the boundary value with
smaller objective value

end
end

4.4.2.17 Subproblem 17(related to decision variable /)

By extracting all decision variables Iy, in the LR problem, we will then obtain sub-
problem 17. In subproblem 17, there are 3 multipliers .} ,u and pf. pf 18 and pf can all

be either positive or negative due to relaxing equality constraints.

In order to determine the concavity or convexity of subproblem 17, we have to take
all multipliers .} and y{ into consideration. Linear term will not influence the concavity
or convexity of the formula so we don’t have to look at 11). A log function by itself is a
concave function, so p} and p¢ will both play an important role in deciding whether it is

concave or convex.

To easily and effectively get the convexity or concavity of this function, we first find

the extreme point by finding points with derivative = 0 and will obtain a objective value
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for it. Later we can compare the objective value with the point of derivative = 0 with
the objective value of the boundary points of Iy,. If the objective value with the point of
derivative = 0 is smaller than the objective values of the boundary points of /,,, then the
function is a convex function. We can then examine whether the point with derivative =0
falls in the legal range of Iy, if yes then we can return it as our solution to /,,. If the point
with derivative = 0 doesn’t appears in the legal range of I, and is considered infeasible,
we will return the boundary point of /,, with a smaller objective value as our solution to

Iy,.

(3

We separate [y, from the objective function and derive a subproblem shown as for-

mula (4.227) and constraint shown as formula (4.228) .

Table 4.38: Subproblem 17(related to decision variable I,)

Objective function :

Zgur = min » (! (v — 1) log Iy, + 1§ log I, + 11} 1y,) 4.227)

1EN
Subject to :

0<Ip<l—¢ VieN (4.228)

4.4.2.18 Subproblem 18(related to decision variable /,.r,)

By extracting all decision variables /., in the LR problem, we will then obtain sub-

problem 18. In subproblem 18, there are 2 multipliers p! and }°. 17 and 12}° can both be
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Algorithm 38: Algorithm for Subproblem 17

for each node i do
Calculate the objective value at I, = 0 denoted as V;
Calculate the objective value at Iy, = 1 — € denoted as V5
partial differential to Iy,
o 1T e T =0

Igl. Ine

IG- — _(Ufl)ﬁézhr#?
; 5
if Zsubl?(IGi) < min(Vl, Vé) then
Zoupi7 = CONvVET
if Iy, is feasible then
| Ttheta[i] = Iy,
else
set Itheta[i] to min(V/7, V3), which is the boundary value with smaller
objective value
end
else
set Itheta[i] to min(V}, V5), which is the boundary value with smaller
objective value

end

end

either positive or negative due to relaxing equality constraints.

The way to determine the concavity or convexity of subproblem 18 and the solution

is similar to subproblem 17. We separate /., from the objective function and derive a

subproblem shown as formula (4.229) and constraint shown as formula (4.230) .

Table 4.39: Subproblem 18(related to decision variable I,.,)

Objective function :
Zoums = min y_(p] log Lep, + 11} Lir,) (4.229)
ieN
Subject to :
0<Iig <1—c¢ Vie N (4.230)
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Algorithm 39: Algorithm for Subproblem 18

for each node i do
Calculate the objective value at Iz, = 0 denoted as V;
Calculate the objective value at /g, = 1 — € denoted as V;

partial differential to I, g,

7 1 10
2% Iir, Ine +:Uz‘ =0

7
— M
L@Ri - _#Zfo

if ZsublS(LﬁRi) < min(‘/h ‘/2) then
Zoubiz = convex
if IR, is feasible then
| IkappaR[i] = I,
else
set IkappaR[i] to min(V;, V3), which is the boundary value with
smaller objective value
end

else
set IkappaR[i] to min(V}, V3), which is the boundary value with smaller

objective value

end

end

4.4.2.19 Subproblem 19(related to decision variable Dy, )

By extracting all decision variables Dy, ¢ in the LR problem, we will then obtain
subproblem 19. In subproblem 19, there are 2 multipliers p;° and 147, 1} and p}° should

be greater or equal to positive due to relaxing inequality constraints.

We separate Dy, . from the objective function and derive a subproblem shown as

formula (4.231) and constraint shown as formula (4.232).
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Table 4.40: Subproblem 19(related to decision variable Dy, ¢)

Objective function :

Zuyro = min » [ — p1;*10g D, ¢ — 11;°79, Do, ¢ — 11", Doy + 211;" Do, ¢
iEN

(4.231)

— 113" Do, ¢Tp, ¢

Subject to :

< Dpe<1  VieN (4.232)

Algorithm 40: Algorithm for Subproblem 19

for each node i do
Calculate the objective value at Dy, ¢ = €¢"7"*2 denoted as V;
Calculate the objective value at Dy, ¢ = 1 denoted as V5

partial differential to Dy, ¢

14 1 15 15 15 15 _
—H Dy, clne Hi“To; — i Ty T 2:“1‘ — Ky T9i75 =0

—1i* + Do, (=170, — 11T, + 211;° — 11;°T, ¢) = 0
Dy = 4

—13°To; =1y Ty +205° =1 To, ¢
if 14 > 0 then
Zoublg = convex
if Dy, ¢ is feasible then
| Dtheta[i] = Dy, ¢
else
set Dtheta[i] to min(V3, V5), which is the boundary value with
smaller objective value
end

else
set Dtheta[i] to min(V}, V4 ), which is the boundary value with smaller
objective value

end
end
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4.4.2.20 Subproblem 20(related to decision variable ¢,s.)

By extracting all decision variables ¢, in the LR problem, we will then obtain sub-
problem 20. In subproblem 20, there are 3 multipliers p?,u)" and ;'3 and all of them can

be either positive or negative due to relaxing equality constraints.

The way to determine the concavity or convexity and the solution to subproblem 20 is
similar to subproblem 7. We have to take the sign of 1i2,1.}! and p'3into consideration, but
not u'! because ¢, is linear so it won’t affect the concavity or convexity of subproblem

20.

We separate g, s, from the objective function and derive a subproblem shown as for-

mula (4.233) and constraint shown as formula (4.234).

Table 4.41: Subproblem 20(related to decision variable g,.s,)

Objective function :

Zyuzo = min ¥ (p210g qps, + 11} Gus, + 11" 10g gcs,) (4.233)
iEN
Subject to :
€<qu, <1 VieN (4.234)
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Algorithm 41: Algorithm for Subproblem 20

for each node i do
Calculate the objective value at g5, = € denoted as V;
Calculate the objective value at g5, = 1 denoted as V5
partial differential to g,

2 1 11 1 13 __
MZ dkS; Ine + MZ 9k S; Ine + N - O
pitndt SPRE

qui

2, 11
Mty
dksS; = — 7H137

if Zsups(qrs,) < min(V7, Vz) then
Z 20 = convex
if .5, is feasible then
| gkappali] = gs,
else
set gkappa[i] to min(V3, V), which is the boundary value with
smaller objective value
end
else
set gkappa[i] to min(V3, V,), which is the boundary value with smaller
objective value

end

end

4.4.2.21 Subproblem 21(related to decision variable /,.s,)

By extracting all decision variables /., in the LR problem, we will then obtain sub-
problem 21. In subproblem 21, there exists multiplier ;2 and p}t. p? and p}!' can both be

either positive or negative due to relaxing equality constraints.

The way to determine the concavity or convexity of subproblem 21 and the solution
is similar to subproblem 1. We separate I,.s, from the objective function and derive a

subproblem shown as formula (4.235) and constraint shown as formula (4.236) .
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Table 4.42: Subproblem 21(related to decision variable ,.z.)

Objective function :
Zourzn = min Y (7 (n — 1) log Ls, + pf' Is,) (4.235)
iEN
Subject to :
0< s, <1—¢€ Vie N (4.236)

Algorithm 42: Algorithm for Subproblem 21

for each node i do

Calculate the objective value at I,,s, = 0 denoted as V}
Calculate the objective value at /g, = 1 — € denoted as 1,
partial differential to /,.g,

i Ig:ﬁl)e +pit =0
1 _ Hi(n—1)
it
if Zoupo1(1s,) < min(Vy,V5) then
Zoup21 = convex
if 1,5, is feasible then
‘ IkappaS[l] = ]nSi
else
set IkappaS[i] to min(V7, V5), which is the boundary value with
smaller objective value
end

I/{Si =

else
set IkappaS[i] to min(V}, V3), which is the boundary value with smaller
objective value

end

end

4.5 Lagrangian Dual Problem and The Subgradient Method

In this minimization problem, the main purpose of the LR problem (Z r) is to provide
us a bound to the optimal solution. By keep decreasing the gap between the upper bound

and lower bound, we can obtain a better solution throughout the process. The optimal
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solutions of the subproblems will form the optimal value of the LR problem, which is the

lower bound of the primal problem. And the feasible solutions to the primal problem will

form an upper bound.

The lower bound have to keep increase for the purpose of to approach the optimal

solution of the primal problem. In order to achieve that, a dual problem (Zp) will be

formed. The aim of the dual problem is to maximize the objective value of the LR problem

so as to find the tightest lower bound. The dual problem is subjected to the Lagrangian

multipliers (1), and by adjusting multipliers, we can achieve smaller duality gap to find the

maximum value of the dual problem. Table (4.43),(4.44) and (4.45) respectively shows the

dual problem of Model 1 (One-to-one relationship), Model 2 (Many-to-one relationship)

and Model 3 (Network Tree Structure) .

Table 4.43: The dual problem of Model 1(One-to-one relationship)

Objective function :

Zp = max Zpp(p', 12, 1, 1t 1, 1, ") (4.237)

Table 4.44: The dual problem of Model 2(Many-to-one relationship)

Objective function :

Zp = max Zpp(p', 2, 1, pt, 1, i, u¥) (4.238)
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Table 4.45: The dual problem of Model 3(Network Tree Structure)

Objective function :

ZD = max ZLR(MlaM2>M37M47M5,M6,M77u8,ngMlO,M11,M12,M13,M147M15,M16)
(4.239)

Subject to :

p' ' >0 (4.240)

When solving non-differential optimization problem, there are two conditions to
make sure the subgradient method is guaranteed to optimally solve the problem [43]. The
stepsize in the subgradient method should converge to 0, but not too quickly or else the
subgradient method will converge to a point other than the optimal solution. The second
condition is the sum of the stepsize sequence should be infinity, which means the sequence
of the stepsize should be a divergent series. These two conditions are shown as formula

(4.241) below where t* is the stepsize parameter and k is the iteration count.

When &k — oo :

k
t* 50  and Y t'— o0 (4.241)
=1

We use The Subgradient Method to solve the dual problem in this research. The
Subgradient Method is proposed by Held and Karp [45] [46] and is a effective way to
solve the Lagrangian dual problem. The Lagrangian multipliers are updated by the formula
(4.242) shown as below.
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pFt = max (0, 1* + t*gF) (4.242)

1 18 @ vector that contains all the multipliers, and ¢, is used to determine the stepsize
in order to update the multipliers. g is the subgradient of the dual problem. We use

formula (4.243) shown as below to determine the stepsize parameter ¢ in this research.

M(Z" = Zp(p*))
9"l

i — (4.243)

In formula (4.243), Z* is the objective value of the best known feasible solution that
we have obtained so far. )\, is the coefficient of the stepsize which is often initially step to
2. When Zp(p*) has failed to increase in a certain number of iteration that we set, \j, will
be reduced by a factor of two. The objective value of the feasible solution Z* sometimes
can be initially set to 0 and can be updated when solutions to the LR problem turns out to

be feasible, or we can tune the solutions that aren’t feasible by proposed heuristics.

As the number of adjustment of the multipliers increases, the duality gap between
the lower bound and the upper bound will gradually reduce. There are few criteria for the
solution process to terminate. The first one is when we obtain a p* for which Zp (1*) (LB)
overlaps Z*(UB), and then it means the problem is optimally solved. The second one is
when the duality gap size is less than the threshold value we set and a fairly high-quality
solution will be obtained. The last one is when the number of iterations reached the limit
we set. The pseudo code (Algorithm 43) of the Lagrangian Relaxation method with The

Subgradient Method is shown as below.
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Algorithm 43: Lagrangian Relaxation method with The Subgradient
Method

Input : N : max number of iterations;

target gap : target optimization gap;
Initialization: z° : any feasible solution;

Z*(x*) : primal feasible solution value for x

Zyp: —inf;

Z} 5 : best known feasible solution for objective function,

objective value for 2°

4 - initial multiplier value = 0

current best solution : x°

current best objective value : Z 5

k : iteration count = 0

7 : improvement count = 0

A : initial step size coefficient = 2

for £ < N do
Solve Z1p :

Get Solution x
Compute current objective value Zp(juy, 2%);
Compute subgradient g, = g(2*);
if x* is feasible then
| Z*(2%) is an upper bound
else
| tune x* with proposed heuristic
end
Zy5 = max(Zip, Zp(p*, 2*));
if Z* < ZF  then
current best solution = x
current best objective value = Z*(x*)
end
ZgE = min(Zk g, 2%)
if Zp(u*, %) < 7k, then
| i=1+1
end
Zk+1

k+1

k+1 _ Zus —“ZiE

gap = T T
LB

if i reaches improvement counter limit then
A=)\/2
i=0

end

Compute t* (step size of subgradient descent)
th— Aw(Z7 @)= Zp(pkah))
gk

pF Y = max (0, p* + t*g*)
if gap**! < target gap then

| return current best solution , current best objective value , gap**+*
end
end
return current best solution , current best objective value , gap**!

k.
>

k
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4.6 Getting Primal Feasible Solution

After solving each subproblems that were formed, we then obtain set of decision
variables. The next step is to check whether the decision variables are feasible. If so, then
an UB is formed by the objective value of the primal problem. However, if the decision
variables were not feasible, heuristic methods would become crucial in order to tune the
decision variables into feasible solutions. In this study, we propose different getting primal

feasible solutions for each models due to their characteristics and features.

4.6.1 Model 1(One-to-one relationship)

In model 1, we first take this constraint(4.244) into consideration.

1
’7—.

| — -1 +1<Ty VicS,jeSmeM (4.244)
qiq; Pij(ri, m)

If we are going to find the initial primal feasible solution for the primal problem, the
easiest way is to set all ¢;, ¢; and r; to the max. That way the time slots needed to transmit
a single packet will be minimized. In this model we assume that whenever a node is active
it will send data, so in such way the delay constraint(4.244) will be satisfied even though

it will consume more energy.

After the constraint is satisfied, we can adjust each decision variables to minimize the

energy consumption and at the same time satisfy the constraint. Lagrangian multipliers
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can play an important role for distinguishing which decision variable is more significant to
the model and should have the higher priority to adjustment. Further and detailed studies
about the use of Lagrangian multipliers will be provided and demonstrated in the next

section.

4.6.2 Model 2(Many-to-one relationship)

In model 2, the method to get the primal feasible solution is more complicated than

model 1. We take constraint(4.245) into consideration.

1
7, 1| +1< T, VieSmeM (4.245)
QZ(l - Qi)nilq:ﬁpm(ria m)

There are three variables ¢;, g, and r; to be adjust. The time slots before the first

successful transmission appears when ¢; = , g, and Py (r;, m) = 1.

As for g;, there exists no advantage when ¢; is greater than % for both the delay
constraint(4.245) or the minimization of the primal problem. When ¢; is greater than %,
the time slots needed before the first successful transmission will increase and may become
infeasible. Also when ¢; is greater than %, it will increase the energy consumption of the

primal problem.

Therefore, when the decision variables we obtain is infeasible, we set ¢; to %, q. and
P,.(r;,m) to 1. However, when ¢; is smaller than %, it might reduce the power consump-

tion. Hence, when the decision variables are satisfied, we can adjust them respectively so
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as the constraint won’t be break and the power consumption can be minimized.

Lagrangian multipliers can play an important role for distinguishing which decision
variable is more significant to the model and should have the higher priority to adjustment.
It can be used as the sensibility or the penalty coefficient of the model. It can show some
hints on whether a constraint or a variable is important for the model. With this kind of

hint, we can decide which decision variable to adjust first so it will benefit the model most.

Decision variable ¢; and r; exists different multipliers for each i, and ¢, exist a single
multiplier. In the next chapter we will discuss and analyze whether using the summation,

the largest or the average of the multipliers in the set 1 is the most appropriate and effective.

4.6.3 Model 3(Network Tree Structure)

In model 3, not only we have to consider the delay constraint(4.246), we also have

to consider the newly added throughput constraint(4.247) as shown as followed.

! 1} + { ! 1| +2 <7,
To; - Ths — - = b,
i q92<1 - q9i)(v_1)an¢P9¢,m (TGN m) QHsi(l - QH&')(” 1)q§PRZ‘,£ (Tﬁi7m) ot
Vie NNme M (4.246)
MGs (1 = Gus;) " Ve Pry (s m) > muge, (1 — q6,) ™ qur, Poy s (To;, m)
Vie NNme M (4.247)

As for the delay constraint, more factors and decision variables appears compared

to model 1 and model 2. And in model 3, we assume that the relay nodes x have two
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subsystems. One in charge of the activeness of receiving (¢.r,) and another one is in

charge of the activeness of sending (¢ss, ).

We first analyze the delay constraint(4.246) and it appears that when ¢y, = %, Qrs;, =
%, QiRi» Po;r;(To;,m), ge and Py, ¢(r,,,m) = 1, the time slots needed for a successful

transmission is minimized. It is similar with model 1 and model 2.

On the other hand, when the throughput constraint(4.247) is violated, setting g,.s, to
% and q¢, Py, ¢(ry;,m) to 1 is the first step to tune the decision variables. It will make
the left side of the throughput constraint(4.247) as big as possible. The reason why we
choose to first tune ¢.s,, g¢ and P, ¢(r,,,m) is that tuning these decision variables is
more effective than tuning qy,, ¢z, and Py, ., (re,, m) because by tuning g,s, to % and ¢,
Py, ¢(ry;,m) to 1, it not only helps obey the delay constraint(4.246) but also the throughput

constraint(4.247).

After that, we check the delay constraint(4.246) whether it is violated or not. If so,
we set g, to %} and g, , Pp, x,(19,,m) to 1 and then gradually decrease them so as both the
delay constraint(4.246) and the throughput constraint(4.247) can be satisfied. From the
perspective of throughput, gs,, g.r, and Py, ., (re,, m) will be forced to decrease to satisfy

the throughput constraint(4.247) in order to avoid the problem of overflowing.

At last when both constraints are satisfied, we gradually decrease ¢.s,, ¢¢ and 7, to

get a better objective value to the primal problem and still remain the feasibility of the
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solution.
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Chapter 5 Experimental Results and

Discussion

In this chapter, several experiments regarding wireless sensor network are conducted
to verify the validity and the performance of our proposed method. The main goal of this
research is to minimize the energy consumption of the wireless sensor network in different
scenarios. Hence, results of different experiment cases and discussions will be presented

in the following section.

5.1 Experimental Environment

The experiments conducted in this research are implement by Python language on
Jupyter notebook IDE with version 3.8.5. We use a desktop as the execution environment.
The system parameters are shown in detailed in Table 5.1. The parameters related to the

LR method are shown in Table 5.2.
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Table 5.1: System Parameters

Parameters Value
Computer Type Desktop
Central Processing Unit Intel Core 15-6400 2.70 GHz
System Type x64-based pc
Random Access Memory 32GB
Programming Language Python
Integrated Development Environment Jupyter notebook

Table 5.2: Lagrangian Relaxation Parameters

Parameters Value
Iteration Count Limit 300
Improvement Count Limit 10
Initial Lambda 2
Initial Multipliers 0.00001
Initial UB 00
Initial LB -00
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5.2 Experiments and Results

5.2.1 The Design of Probability and Energy Consumption Functions

P,.(ri,m), Py, x,(r9;,m) and Py, ¢(r,, m) (P) are the probability functions used to
transmit a packet with m € M size with transmission range radius of r; € R;, rg; € Ry;
and r,, € R,,. We take P,.(r;,m) as an example. When we set the transmission range
radius r; to fixed, the higher the packet size m is, the lower the probability of transmitting
a packet is. However, when we set the packet size m to fixed, the higher the transmission
range radius 7; is , the stronger the signal, the higher the Signal-to-noise ratio(SNR) rate
and therefore the higher the probability of transmitting a packet is. And in our design,

function P is a concave function which will saturated or asymptotically converge to 1 .

In order to implement this function P, we employ the energy consumption characteris-
tics of Mica2 motes [47] equipped with CC1000 [48]. Mica2 motes is the most commonly
utilized sensor nodes in experimental WSN research due to their well-characterized en-
ergy dissipation properties [33] and CC1000 is a RF Module, which is a small electronic

device used to transmit and/or receive radio signals between two devices.

The transmission power consumption (P£°) and output antenna power (P at each

power level(/)[48] is shown as Figure 5.1.
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L PO PR |1 PgT)  PEMQ)

2 26.4 0.0126 15 33.3 0.2512
3 21.0 0.0158 16 414 0.3162
4 27.1 0.0200 17 435 0.3981
5 213 0.0251 18 43.6 0.5012
6 278 0.0316 19 453 0.6310
7 219 0.0398 20 474 0.7943
8 28.5 0.0501 21 50.4 1.0000
9 29.1 0.0631 22 51.6 1.2589
10 29.7 0.0794 23 35.5 1.5849
11 303 0. 1000 24 3.6 1.9953
12 31.2 0.1259 25 63.9 25119
13 31.8 0.1585 26 (Iymazx) 76.2 3.1623

Figure 5.1: Power Consumption of Mica2 motes

The received signal power (Pog" ) due to a transmission at power level-l over link-

(¢, 7) is shown as formula(5.1).

Poit (1) = P (1) — 7 (5.1)
Yi; = Yo + 10a IOg(d_) + Xo (5.2)
0

Where v;; is the path loss value occurred over link-(7, 7), based on the log-normal
shadowing path loss model [49]. d;; is the distance between transmitter and receiver, 7 is
the path loss at the reference distance, a is the path loss exponent and X, is a zero-mean
Gaussian random variable with the standard deviation ¢ dB to model large-scale fading
(shadowing) effects. We adopt the parameter values provided for Mica2 motes as n = 3.69,
0=1.42dB,d0=1m,and YO=31 dB [50].

SNR is defined as
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bij(1) = Pojyi;(1) — Poy (5.3)

The noise power (Po,,) is -115 dBm at the temperature of 300 Kelvin for Mica2 motes
[51]. The probability of a successful packet reception of a m-Byte packet transmitted at

power level-1 over the link-(z, ) [51] is shown as formula(5.4)

. 1 —i;(1) 1 sm

The distance over the link-(z, 7) versus the probability of successfully transmitting a

packet is shown as Figure 5.2.

Distance between 1 and | vs. Prob of success

10
0.8 1
0.6
0.4 4
024 — power level =12

power level = 19

— power level =

0.0 T T

20 A0 lﬂﬂ 180
Dlstann:e[m}

prob Sucess

Figure 5.2: Distance between i and j vs. Prob of success

We then implement the probability function P with the characteristics of Mica mote2
and replace power level-l with transmission range radius r;. The figure of the probability
of node i to transmit packet with m size when no error occurs with transmission range

radius of r; is shown as Figure 5.3.
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—— m= 256 byte,distance between ik = 50m

m= 128 byte,distance between ik = 50m
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m= 128 byte,distance between ik = 80m
—— m= 64 byte, distance between ik = 80m
m= 256 byte,distance between ik = 110m
m= 128 byte,distance between ik = 110m
m= 64 byte distance between ik = 110m

Figure 5.3: Probability function

As for energy consumption functions C%(ri,m), C®(ri,m) and C7(ri, m), we im-

plement them respectively with the power consumption for reception of Mica mote 2[23],

the power consumption in the sleep mode and the power consumption shown as Figure

5.1. The relationship of power consumption and the transmission range radius of r; is

shown as Figure 5.4.
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Figure 5.4: C7
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5.2.2 Experiment 1

In experiment 1, we conducted an experiment to testify the performance of our pro-
posed method introduced in Many-to-One model. We set the distance between sensor
nodes and relay node to 30 meters. The number of sensor nodes is set to 10. The time-
out interval 7; is set to 10 time slots. In terms of timeout interval, time and the factors of
environment will influence it, but we assume that our environment is a quasistatic envi-
ronment. In such way we can assume that the timeout interval 7; is fixed. When a packet is
transmitted, if the expected acknowledgement isn’t received before 7; time slots, it is con-
sidered a failure transmission. It is composed of a packet transmission delay, propagation
delay, receiver’s processing delay, the time needed for forming the acknowledgement, the
transmission delay for the acknowledgement, the propagation delay for the acknowledge-
ment and the processing delay for the source node to receive the acknowledgement. We
assume that each of them need 1 time slot, therefore it needs at least 7 time slots to proceed

the mentioned process.

The setting of ;. is crucial. When T}, is set too small, sensor nodes will not be able
to transmit data in time. If 7}, is set too big, the delay constraint will be considered as
useless. We first observe and analyze the relationship between the number of sensor(n)
nodes and 7;,.. We take delay constraint(5.5) below into consideration. The least amount

of delay T}, = 249.37585528 happens when ¢; = %, ¢. = land P, = 1.
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1

Ti -1 +1<T, Vie SSme M (5.5)
QZ(l - Qi)n_IQH]Din(Thm)
Letq; = %,q,i =1,P,=1:
{ 1 1} +1 { ! 1} +1 (5.6)
T - =T - .
¢i(1 = ¢;)" ' quPi(ri, m) 11— )t

Whenn — oo :

n—o0

1
_6_

= lim r;[nxe—1]+1 <T

n—o0

(5.7)

(5.8)

(5.9)

From the equations above, we can find out that the number of sensor(n) nodes is

for the decision variables.The result is shown as Figure 5.5.

proportional to 7;,.. We then set T}, to 260, which is considered extremely tight in order

to make the feasible region very small and test if our method can find the expected answer

From Figure 5.5, we can see that the getting primal feasible solution gets the optimal

time spent is 20.44 seconds. It is shown as Table 5.3.
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solution throughout the first few iterations. When iteration continues to increase, the lower

bound gradually approaches the upper bound causing the gap between them to shrink.

After 100 iterations, the gap between the lower bound and upper bound is 4.7 % and the
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iteration vs. LB & UB
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Figure 5.5: Many-to-One LR Result
Table 5.3: Many-to-One LR Result
LB UB Gap Time
60.56 63.45 4.7 % 20.4

5.2.3 Experiment 2

In experiment 2, we set the delay constraint 77, even tighter (249.37585529) to con-
duct an experiment to testify the performance of our proposed method. We set the distance
between nodes to 30 meters. The timeout interval 7; is set to 10 time slots as explained

in the previous section. The number of sensor nodes is set to 10.The result is shown as

Figure 5.6 and Table 5.4 .
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iteration vs. LB & UB
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Figure 5.6: Many-to-One LR Result 2
Table 5.4: Many-to-One LR Result 2
LB UB Gap Time
71.9 74.82 4.08 % 15.8

We then also conduct an experiment when sensor nodes is set to 5, and set the delay

constraint 7;, very tight (113.1925051) to conduct the experiment. The number of sensor

nodes is set to 10.The result is shown as Figure 5.7 and Table 5.5 .
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iteration vs. LB & UB
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Figure 5.7: Many-to-One LR Result 3
Table 5.5: Many-to-One LR Result 3
LB UB Gap Time
73.3 74.84 2.04 % 4.8

From the experiments shown above, we can find out that the probability of the sensor

node to be active when n =15 is two times as large as when n = 10. The reason is that when

the delay constraint is extremely strict, in order to get the optimal solution, the probability

of the sensor node to be active will approach to % The probability of the relay node to be

active and the probability to transmit a packet without error will approach to 1. Therefore,

the total power consumption when n =5 is similar to n = 10 because the number of nodes

when n = 10 is two times as large as when n = 5, and the probability of the sensor node to

be active when n = 5 is two times as large as when n = 10.
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5.2.4 Experiment 3

In experiment 3, we conducted an experiment to testify the performance of our pro-
posed method introduced in the Network Tree Structure model. We set the distance be-
tween nodes to 30 meters. The number of sensor nodes in each subtree(v) is set to 2 and the
number of subtree(n) is set to 5. The timeout interval 7; is set to 10 time slots as explained
in the previous section. Tj, ¢ is set to 1001 which is also tight to testify the performance

of our proposed model. The result is shown as Figure 5.8 and Table 5.6 .

iteration vs. LB & UB
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Figure 5.8: Network Tree Structure Experiment 1
Table 5.6: Network Tree Structure Experiment 1
LB UB Gap Time
332.75 349.38 4.9 % 308.6
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We then increase the number of sensor nodes in each subtree(v) into 3 and the number
of subtree(n) into 8 and do the experiment in a bigger scale. T, ¢ is set to 3000. The result

is shown as Figure 5.9 and Table 5.7 .

iteration vs. LB & UB
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Figure 5.9: Network Tree Structure Experiment 2
Table 5.7: Network Tree Structure Experiment 2
LB UB Gap Time
498.06 522.76 4.96 % 4662.7

From the results shown above, we found out that at the beginning, the model will tend
to adjust q.s,, g¢ and P, ¢(r,,, m) as much as possible to satisfy both the delay constraint
and the throughput constraint. After that, if the throughput constraint is not satisfied,
0, Qxr, and Py, .. (rg,, m) will be decreased according to the size of multipliers to make

it feasible. At last when solutions are feasible, decision variables will be slightly adjust
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to try to find a better solution. The results also shows that compared to model 2, g, g g,
and Py, .., (rs,, m) will be forced to set to a smaller value in order to satisfy the throughput

constraint and to avoid overflow.

5.2.5 Experiment 4

In experiment 4, we conducted an experiment to observe the effect of different packet
sizes(m). Packet sizes(m) is also considered as a decision variable. However, m and r;
often coupled together and is difficult to decompose. Therefore, we use exhausted solution

to see which packet size m has the better solution.

There are three aspect that were influenced by m. First, the larger m is, the longer the
time slot is for transmitting a packet. In this research, we use time slot as the unit, so we
will also take the influence of packet size into consideration. Secondly, the probability of
transmitting a packet without error will decrease when m increases. Thirdly, we assume
each packet has a fixed size header of 50 bytes, therefore the larger the packet size is,
the larger the throughput is. We take all the mentioned factors into consideration and
conducted an experiment to see which m has the best performance. We use the same

setting as experiment 2 and enumerate through 64 byte to 255 byte.

The result is shown as Figure 5.10 .

We can see that there exists a trade off. When m is too big, it could cause the prob-
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Packet size(byte) vs. Energy Consumption{W/byte)
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Figure 5.10: Packet Size Experiment
ability of transmitting a packet without error decrease, therefore the delay constraint will

not be satisfied and also cause the absolute time interval of the time slot to increase and

eventually increase the power consumption.

However, if m is too small, the real throughput will decrease. The reason is that the
real throughput will be the packet size minus the header size. Therefore when m is too

small, the power consumption of a single byte of the real throughput will be too high.

5.2.6 Experiment5

In experiment 5, we conducted an experiment to observe and compare the usage of the
multipliers in Many-to-One model. In the getting primal feasible solutions we proposed,

we decide the adjustment order of the decision variables by comparing the multipliers. We
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compare using the multipliers by choosing the maximum in the set i, the summation of

the set i and the average of the set i to see which way perform well in the getting primal

feasible solution. We use the same setting as experiment 2 and enumerate through 64 byte

to 255 byte. The result is shown as Table 5.8 .

Table 5.8: Multipliers Experiment 1

Maximum Summation Average

Objective value | 63.45 70.59 63.45

When comparing the usage of multipliers, we found out that by choosing the maxi-

mum multiplier in the set i and the average of the set i have the better performance than

choosing the summation of the set i. It is because when the delay constraint is set tight,

the multipliers of ¢, tend to become bigger than ¢;, therefore the model tend to adjust g,

first. However, when we use the summation of the set i, the model will then adjust ¢; first.

When the delay constraint is set tight, the adjustment of ¢; will not be enough for satisfying

it, so making ¢; important by choosing the summation of the set 1 will lead to the worst

performance. Also, choosing the maximum multiplier in the set i and the average of the

set 1 does not affect the result because when choosing the the maximum multiplier in the

set 1, the multiplier is not big enough to influence the adjustment order of ¢;, ¢, and r;.

We then also set the adjustment order to fixed rather than using the multipliers to
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decide the adjustment order to see which perform better. There are three decision variables

remain adjusting, so there will be 6 combinations of adjustment orders, which are [g; > g,

>1) (6> 71 > qels [0 > @ > 13l [ge > 7> @i 1 [ > ¢ > g, [15 > g > ¢;]. The result is

shown as Table 5.9 .

Table 5.9: Multipliers Experiment 2

Qi > Qx> T

qi > 7T >k

Qi > Qx> T

Qx> T > G;

> Qi > Qk

Ti > Qx> G

Objective

value

70.258

70.229

64.913

63.828

70.029

63.456

We compared the above methods with the one using multipliers, and it shows that

by choosing the adjustment order dynamically with multipliers has the best performance,

which gets the smallest objective value. The result is shown as Figure 5.11 .

Methods vs Obj_values

=
=
L

Obj wvalues
2 8 E 8 8 aHA

Multipliers

ri=gk=qi

gk=ri=qi

gk=qiz=ri
Methods

n=gi=gk

Figure 5.11: Multipliers Experiment 2
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5.2.7 Experiment 6

In experiment 6, we conducted an experiment to compare the performance and ef-

ficiency of our proposed method and Exhausted Search 1. We first conduct Exhausted

Search 1 by searching all the possible answers of ¢; and ¢, from 0.01 to 0.99. The result

is shown as Table 5.10 .

Table 5.10: Exhausted Search 1 vs. Proposed Method

Exhausted Search 1 Proposed Method
Objective value 64.458 63.453
Time 315.5 19.6

From the result above, we can see that the time that Exhausted Search 1 spent is

ten times more longer than our proposed method. Moreover, the performance is worst

than our proposed method. We then increase the precision of the Exhausted Search. We

conducted Exhausted Search 2 by searching all the possible answers of ¢; and ¢, from

0.001 to 0.999.The result is shown as Table 5.11 .
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Table 5.11: Exhausted Search 2 vs. Proposed Method

Exhausted Search 2 Proposed Method
Objective value 63.189 63.453
Time 7527.8 19.6

From the result above, we can see that the performance of Exhausted Search 2 is

better than our proposed method due to the precision increase. However, the time spent

for Exhausted Search 2 is 300 times more than our proposed method.
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Chapter 6 Conclusions and Future

Work

6.1 Conclusions

In this thesis, we proposed an optimization-based power control mechanism for sav-
ing energy in green wireless sensor networks. In order to minimize the energy consump-
tion of the wireless sensor network and also satisfy the delay and throughput constraints,
we developed a series of getting primal feasible solution and LR based algorithms. One-
to-One model is first proposed theoretically and we later expand and implement it into
Many-to-One model. At last, a complete and more practical Network Tree structure model
is proposed by considering more scenarios and was implemented in a larger scale. After
modeling, we apply LR method’s divide-and-conquer characteristics to help us simplify
the primal problem. By dividing the primal problems into subproblems, we can solve

them individually in an easier way. We then conducted a series of experiments to testify
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the validity of our proposed method. The experiments shows different insights of saving
energy in wireless sensor network and also demonstrates that the method we proposed

performs better than other heuristics.

6.2 Future Work

There are some issues and works that could be done in the future to further improve

this research.

In Network Tree structure model, we assume the relay node is consists of 2 subsys-
tem, which can allow it to separately control the probability of activeness when receiving
from the probability of activeness when sending. The connection between these 2 subsys-
tems may exist some difficulties and extra energy consumption. After taking the above
mentioned factor into consideration, we can then compare it with assuming that it only
exist a single system responsible for controlling both the probability of activeness when
receiving and the probability of activeness when sending. We presume that the model will
be more flexible when we separate the relay node into 2 subsystem and the getting primal
feasible solution will be able to adjust more easily to the throughput constraint. Therefore,
research regarding the issues mentioned above could give us more insights and is worth

deep discussion.
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