Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87137
Title: 使用深度學習模型進行天空去噪
Implementation of Sky Denoising through Deep Learning Approaches
Authors: 陳柏妤
Bo-Yu Chen
Advisor: 莊永裕
Yung-Yu Chuang
Keyword: 去噪,天空去噪,深度學習,噪聲合成,
Denoising,Sky Denoising,Deep Learning,Noise Synthesis,
Publication Year : 2023
Degree: 碩士
Abstract: 「影像去噪」旨在消除由電子傳輸、圖像信號處理和圖片壓縮產生的噪聲,是電腦視覺領域的一個重要研究主題。它可以幫助提高影像品質,且能增進後續其他任務的表現,像是:影像分類、物件偵測、物件分割等。「基於影像語意的影像增強」指的是將照片根據語意劃分為多個區域(例如:天空、樹、人),並根據每種區域不同的特性施以專門的降噪器或美化器。

在這篇論文中,我們專注於使用深度學習網路做天空區域的去噪,並以此為目標進行以下三步驟。首先,調查使用深度學習進行影像去噪最核心的兩個議題:網路架構設計與生成噪聲影像。我們調查了近幾年的研究是如何解決這兩個問題,並對其做分類與歸納。再者,為了選出最有潛力的降噪器,我們把來自十篇不同研究的降噪器測試在天空的噪聲圖片上,並採用表現最好的網路進行後續的重新訓練。最後,為了提高降噪器的表現,我們嘗試了不同的噪聲合成步驟,並選用效果最好的來訓練最終的模型。
Image denoising aims to remove the noise from degraded observations generated from the electronic transmission, image signal process pipeline, and compression. Image denoising is a prevalent research topic in computer vision, and assists in enhancing image quality and improving the performance of high-level computer vision tasks, such as image classification, object detection, and object segmentation.Segment-based enhancement divides a photo into semantic-based regions, and enhances each region with different beautifiers and denoisers according to the semantic domain knowledge.

In this paper, we focus on sky denoising with deep learning approaches. To achieve this goal, we execute the following three steps: First, we survey and summarize how the widely-used and state-of-the-art researches tackle the two critical components of image denoising: model architecture and noise data synthesis. Secondly, we execute a pilot study on ten different denoisers, which have released the pre-trained models, and we retrain the best-performing model on our sky dataset. Finally, we try different procedures of noise synthesis to improve the retaining performance and select the best one to train our final model.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87137
DOI: 10.6342/NTU202300316
Fulltext Rights: 未授權
Appears in Collections:資訊工程學系

Files in This Item:
File SizeFormat 
ntu-111-1.pdf
  Restricted Access
108.39 MBAdobe PDF
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved