請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8688
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 鄭明燕(Ming-Yen Cheng) | |
dc.contributor.author | Lu-Hung Chen | en |
dc.contributor.author | 陳律閎 | zh_TW |
dc.date.accessioned | 2021-05-20T19:59:46Z | - |
dc.date.available | 2010-03-10 | |
dc.date.available | 2021-05-20T19:59:46Z | - |
dc.date.copyright | 2010-03-10 | |
dc.date.issued | 2010 | |
dc.date.submitted | 2010-02-22 | |
dc.identifier.citation | Aerts, M., and Claeskens, G. (1997), “Local polynomial estimators in multiparameter likelihood models,” Journal of the American Statistical Association, 92, 1536-1545.
Akaike, H. (1970), “Statistical predictor identification,” Annals of the Institute of Statistical Mathematics, 22, 203–217. Bickel, P.J., Klaassen, C.A.J., Ritov, Y., and Wellner, J.A. (1993), Efficient and adaptive estimation for semiparametric models, Baltimore: The Johns Hopkins University Press. Bunea, F. (2004), “Consistent covariate selection and post model selection inference in semiparametric regression,” The Annals of Statistics, 32, 898–927. Burnham, K. and Aderson, D. (2003), Model Selection and Multimodel Inference: A Practical Information-Theoretical Approach (2nd Edition), New York: Springer-Verlag. Cai, J., Fan, J., Jiang, J., and Zhou, H. (2007), “Partially linear hazard regression for multivariate survival data,” Journal of the American Statistical Association, 102, 538–551. Cai, J., Fan, J., Jiang, J., and Zhou, H. (2008), “Partially linear hazard regression with varying-coefficients for multivariate survival data,” Journal of the Royal Statistical Society Series B, 70, 141–158 Cai, Z., Fan, J., and Li, R. Z. (2000), “Efficient estimation and inferences for varying-coefficient models,” Journal of the American Statistical Association, 95, 888-902. Chen, X., Linton, O. and Van Keilegom, I. (2003), “Estimation of semiparameric models when the criterion function is not smooth,” Econometrica, 71, 1591–1608. Cheng, M.-Y., and Peng, L. (2007), “Variance reduction in multiparameter likelihood models,” Journal of the American Statistical Association, 102, 293–304. Cheng, M.-Y., Zhang, W. and Chen, L.-H. (2009), “Statistical Estimation in Generalized Multiparameter Likelihood Models,” Journal of the American Statistical Association, 104, 1179–1191. Cheng, M.-Y., and Wu, J.S. (2008), “Adapting to design sparsity in univariate and bivariate local linear regression,” Manuscript. Claeskens, G., and Aerts, M. (2000), “On local estimating equations in additive multiparameter models,” Statistics and Probability Letters, 49, 139–148. Clayton, D. and Cuzick, L. (1985), “Multivariate generalizations of the proportional hazards model (with discussion),” Journal of the Royal Statistical Society A, 148, 82–117. Engle, R.F., Granger, C.W.J., Rice, J., and Weiss, A. (1986), “Semiparametric estimates of the relation between weather and electricity sales,” Journal of the American Statistical Association, 81, 310–320. Fan, J., and Gijbels, I. (1996), Local Polynomial Model ling and Its Applications, London: Chapman and Hall. Fan, J., Farmen, M., and Gijbels, I. (1998), “Local maximum likelihood estimation and inference,” Journal of the Royal Statistical Society Series B, 60, 591 - 608. Fan, J., H‥ardle, W., and Mammen, E. (1998), “Direct estimation of additive and linear components for high dimensional data,” The Annals of Statistics, 26, 943–971. Fan, J., and Huang, T. (2005), “Profile Likelihood Inferences on semiparametric varying-coefficient partially linear models,” Bernoul li, 11, 1031–1057. Fan, J., and Jiang, J. (2005), “Nonparametric inference for additive models,” Journal of the American Statistical Association, 100, 890–907. Fan, J. and Li, R. (2001), “Variable selection via nonconcave penalized likelihood and its oracle properties,” Journal of the American Statistical Association, 96, 1348–1360. Fan, J. and Li, R. (2002), “Variable selection for Cox’s proportional hazards model and frailty model,” The Annals of Statistics, 30, 74–99. Fan, J. and Li, R. (2004), “New estimation and model selection procedures for semiparametric modeling in longitudinal data analysis,” Journal of the American Statistical Association, 99, 710–723. Fan, J., and Wong, W. H. (2000), “On Profile Likelihood: Comment,” Journal of the American Statistical Association, 95, 468–471. Fan, J. and Zhang, W. (1999), “Statistical estimation in varying coefficient models,” The Annals of Statistics, 27, 1491–1518. Hall, P., and Turlach, B.A. (1997), “Interpolation methods for adapting to sparse design in nonparametric regression,” Journal of the American Statistical Association, 92, 466 – 472. H‥ardle, W. Liang, H., and Gao, J. (2000), Partial ly Linear Models, Heidelberg: Physica-Verlag. Hastie, T., and Tibshirani, R. (1990), Generalized Additive Models, London: Chapman and Hall. Hastie, T., and Tibshirani, R. (1993), “Varying-coefficient models,” Journal of the Royal Statistical Society Series B, 55, 757–796. Hoover, D. R., Rice, J. A., Wu, C. O. and Yang, L.-P. (1998). “Nonparametric smoothing estimates of time-varying coefficient models with longitudinal data,” Biometrika, 85, 80–822 Hurvich, C.M., Simonoff, J.S., and Tsai, C.-L. (1998), “Smoothing parameter selection in nonparametric regression using an improved Akaike information criterion,” Journal of the Royal Statistical Society Series B, 60, 271–293. Irizarry, R.A. (2001), “Information and posterior probability criteria for model selection in local likelihood estimation,” Journal of the American Statistical Association, 96, 303–315. Keilegom, I. V. and Carroll, J. R. (2007) “Backfitting Versus Profiling in General Criterion Functions,” Statistica Sinica, 17, 797–816. Kullback, S. and Leibler, R. A. (1951), “On information and sufficiency,” Annals of Mathematical Statistics, 22, 79-86. Lam, C., and Fan, J. (2008), “Profile-kernel likelihood inference with diverging number of parameters,” The Annals of Statistics, 36, 2232–2260. Li, R., and Liang, H. (2008), “Variable selection in semiparametric regression modeling,” The Annals of Statistics, 36, 261–286. Loader, C. (1999), Local regression and likelihood, New York: Springer-Verlag. Mack, Y. P., and Silverman, B. W. (1982), “Weak and strong uniform consistency of kernel regression estimates,” Zeitschrift f‥ur Wahrscheinlichkeitstheorie und verwand le Gebiete, 61, 405–415. Meeker, W. Q. and Escobar, L. A. (1998), Statistical Methods for Reliability Data, New York: John Wiley & Sons. Murphy, S.A., and van der Vaart, A.W. (2000), “On profile likelihood” (with discussion), Journal of the American Statistical Association, 95, 449–465. Nelson, W. (1984), “Fitting of fatigue curves with nonconstant standard deviation to data with runouts,” Journal of Testing and Evaluation, 12, 140–146. Schucany, W.R. (2004), “Kernel smoothers: an overview of curve estimators for the first graduate course in nonparametric statistics,” Statistical Science, 19, 663–675. Schwarz, G. (1978), “Estimating the dimension of a model,” The Annals of Statistics, 6, 461–464. Severini, T., and Wong, W. H. (1992), “Profile likelihood and conditionally parametric models,” The Annals of Statistics, 20, 1768–1802. Seifert, B., and Gasser, Th. (2000), “Data adaptive ridging in local polynomial regression,” Journal of Computational & Graphical Statistics, 9, 338–360. Stone, C. J. (1985). “Additive Regression and Other Nonparametric Models”, The Annals of Statistics, 13, 689–705. Stone, M. (1974). “Cross-validatory choice and assessment of statistical predictions” (with discussion), Journal of the Royal Statistical Society Series B, 36, 111–147. Wang, W. and Kececioglu, D. B. (2000). “Fitting the Weibull log-linear model to accelerated life-test data,” IEEE Transactions on Reliability, 49, 217–223. Xia, Y., and Li, W. K. (1999), “On the estimation and testing of functional coefficient linear models,” Statistica Sinica, 9, 735–58. Zhang, W. and Lee, S. Y. (2000), “Variable bandwidth selection in varying coefficient models,” Journal of Multivariate Analysis, 74, 116–134 Zhang, W., Lee, S. Y. and Song, X. (2002). “Local polynomial fitting in semivarying coefficient models,” Journal of Multivariate Analysis, 82 166–188. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8688 | - |
dc.description.abstract | Multiparameter likelihood models (MLMs) with multiple covariates have a
wide range of applications; however, they encounter the “curse of dimension- ality” problem when the dimension of the covariates is large. We develop a generalized multiparameter likelihood model that copes with multiple covari- ates and adapts to dynamic structural changes well. It includes some popular models, such as the partially linear and varying-coefficients models, as special cases. We discuss the backfitting and profile likelihood procedures and present a simple, effective two-step method to estimate both the parametric and the nonparametric components when the model is fixed. All these estimators of the parametric component has the n−1/2 convergence rate, and the estimator of the nonparametric component enjoys an adaptivity property. We suggest a data-driven procedure for selecting the bandwidths, and propose an initial estimator in backfitting and profile likelihood estimation of the parametric part to ensure stability of the approach in general settings. We further develop an automatic procedure to identify constant parameters in the underlying model. We provide several simulation studies and an application to infant mortality data of China to demonstrate the performance of our proposed method. | en |
dc.description.provenance | Made available in DSpace on 2021-05-20T19:59:46Z (GMT). No. of bitstreams: 1 ntu-99-D95221006-1.pdf: 788411 bytes, checksum: e61bc5de732dda8258fe40ac3dc528f0 (MD5) Previous issue date: 2010 | en |
dc.description.tableofcontents | ABSTRACT i
中文摘要 ii 致謝 iii 1 Introduction 1 2 Motivating examples and model identifiability 7 3 Reviews of related models 11 4 Estimation procedures 16 4.1 Backfitting estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 16 4.2 Profile likelihood estimation . . . . . . . . . . . . . . . . . . . . . . . 18 4.3 Two-step estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 5 Bandwidth selection and identifying constant parameters 26 5.1 Model selection criteria . . . . . . . . . . . . . . . . . . . . . . . . . . 27 5.1.1 Akaike Information Criterion (AIC) . . . . . . . . . . . . . . 27 5.1.2 Bayesian Information Criterion (BIC) . . . . . . . . . . . . . 29 5.2 Bandwidth selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 5.3 Identifying constant parameters . . . . . . . . . . . . . . . . . . . . . 32 6 Asymptotic properties 36 7 Simulation study and data analysis 40 7.1 Logistic Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 7.2 Weibull model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 7.3 Hazard Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 8 Analysis for infant mortality in China 63 9 Conclusion and Future Works 77 REFERENCES 79 A Proofs for Backfitting 83 B Proofs for Profile Likelihood Estimation 90 C Proofs for 2-Step Estimation 94 | |
dc.language.iso | en | |
dc.title | 廣義多參數概似模型之估計 | zh_TW |
dc.title | On Estimation Methods in Generalized Multiparameter Likelihood Model | en |
dc.type | Thesis | |
dc.date.schoolyear | 98-1 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 曾勝滄(Sheng-Tsaing Tseng),戴政(John Jen Tai),張淑惠(Shu Hui Chang),丘政民(Jeng-Min Chiou) | |
dc.subject.keyword | 帶寬選取,模型選取,半參數模型,變係數模型, | zh_TW |
dc.subject.keyword | Bandwidth selection,Model selection,Multiple covariate,Partially linear model,Backfitting,Profi,le likelihood,Varying-coeffi,cient model,Semiparametric models, | en |
dc.relation.page | 101 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2010-02-22 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 數學研究所 | zh_TW |
顯示於系所單位: | 數學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-99-1.pdf | 769.93 kB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。