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Abstract

Multiparameter likelihood models (MLMs) with multiple covariates have a

wide range of applications; however, they encounter the “curse of dimension-

ality” problem when the dimension of the covariates is large. We develop a

generalized multiparameter likelihood model that copes with multiple covari-

ates and adapts to dynamic structural changes well. It includes some popular

models, such as the partially linear and varying-coefficients models, as special

cases. We discuss the backfitting and profile likelihood procedures and present

a simple, effective two-step method to estimate both the parametric and the

nonparametric components when the model is fixed. All these estimators of

the parametric component has the n−1/2 convergence rate, and the estimator

of the nonparametric component enjoys an adaptivity property. We suggest a

data-driven procedure for selecting the bandwidths, and propose an initial es-

timator in backfitting and profile likelihood estimation of the parametric part

to ensure stability of the approach in general settings. We further develop an

automatic procedure to identify constant parameters in the underlying model.

We provide several simulation studies and an application to infant mortality

data of China to demonstrate the performance of our proposed method.
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中文摘要

能處理多個共變數(covariate)的多參數概似模型(Multiparameter Likelihood

Models, MLMs)有非常廣泛的應用。然而，當共變數的維度很大時，我們會

遇到”維度的詛咒(curse of dimensionality)”的問題。我們將多參數概似模型

推廣成半參數模型，使之能處理較大的共變數維度同時能適應動態的結構變

化。我們的模型包含了許多特例，如部份線性模型(partially linear models)、

變係數模型(varying coefficients models)等。我們介紹兩種既有的方法以及提

出一個簡單而且有效的兩步驟估計法來估計此模型的參數化的部份以及非參

數的部份。這些估計方式在參數化的部份具有和一般參數化模型一樣的收斂

速度(n−1/2)，非參數的部份則能估的和已知參數化的部份時一樣好(即具有

adaptivity property)。我們也提了一個自動帶寬選擇(bandwidth selection)法，

以及一個自動化的流程來決定哪些共變數應該被放在參數化的部份。我們做了

一些模擬研究，並且舉了一個中國嬰兒死亡率的資料來顯示我們估計方法的性

能。
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1 Introduction

Consider statistical modeling of the relationship between a response variable and

some covariates. Maximum likelihood estimation is most powerful when the joint

distribution of the response variable and covariates is specified by a parametric form.

But parametric approaches are at risk for model misspecification, which can result

in seriously biased estimation, misinterpretation of data, and other problems. Non-

parametric modeling is more flexible and allows data to present the unknown truth;

however, it often comes up against the “curse of dimensionality” problem — that is,

model instability when the dimension of the covariates is large. Numerous hybrids

of parametric and nonparametric models, generally called semiparametric models,

have been proposed to achieve a good balance between flexibility and stability in

model specification. We will review related models in Section 3.

In this article we suggest a semiparametric model for a population (X, U, Y )

in which U is a continuous variable and the conditional density function of Y given

(X, U) is specified by

f
(
Y ; X, θ, xT

1a1(U), · · · , xT
ℓaℓ(U)

)
, (1.1)

where f is a known parametric density function, θ = (θ1, · · · , θq)T is an unknown

constant vector, X = (X1, · · · , Xp)
T with X1 ≡ 1, and xj is a pj-dimensional subvec-

tor of X and aj(·) = (aj1(·), · · · , ajpj(·))T is an unknown function, j = 1, · · · , ℓ. Here

1 ≤ ℓ ≤ d, where d is as defined in (1.2). Model (1.1) is a hybrid of the standard
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multiparameter likelihood model (MLM) that assumes that the conditional density

function of Y given X follows the form

f
(
Y ; a1(X), · · · , ad(X)

)
, (1.2)

where f has d identifiable parameters and a1(X), · · · , ad(X) are unknown functions;

that is, Y depends on X through the d identifiable parameters in f being modeled

as nonparametric functions of X. Aerts and Claeskens (1997) studied a locally lin-

ear maximum likelihood estimator of MLMs when X is univariate, and Cheng and

Peng (2007) proposed a variance reduction technique to improve the estimation.

The MLM provides a general framework for specifying statistical relationship be-

tween response and covariates under a wide range of data configurations, including

continuous, categorical, binary and count variables as the response and cases where

the response is univariate or vector-valued. In addition, it can be easily adopted

to cope with various statistical problems, such as mean regression, variance estima-

tion, quantile regression, hazard regression, logistic regression, and longitudinal data

analysis (for details, see, e.g., Aerts and Claeskens 1997; Loader 1999; Claeskens and

Aerts 2000; Cheng and Peng 2007.)

With the availability of U , model (1.1) specifies ℓ of the d parameter functions

in model (1.2) by some nonparametric or semiparametric form, and if d − ℓ > 0,

then the other d− ℓ parameter functions in (1.2) are now modeled parametrically in

(1.1), with θ comprising all of the constant parameters. Like MLM (1.2), (1.1) pro-
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vides a unified approach to modeling a wide range of data settings and dealing with

various inference problems. Nonetheless, (1.1) avoids the curse of dimensionality

problem that (1.2) has when the dimension of X is large, and it allows paramet-

ric, nonparametric or semiparametric modeling of the parameter functions in (1.2).

Furthermore, (1.1) broadens the application of MLMs, because it can cope with

categorical covariates, which often arise in practice. Model (1.1) is a very general

semiparametric model provided that there exists a continuous variable U and other

covariates X. It reduces to a partially linear model (3.1) when ℓ = 1, x1 = X1 ≡ 1

and θ interacts with X through a linear function. When ℓ = 1, q = 0 and x1 = X,

model (1.1) becomes the varying-coefficients model (3.2) of Hastie and Tibshirani

(1993) with the same modifying variable U . Thus (1.1) inherits the stability, flexi-

bility, and interpretability that varying-coefficients models enjoy. In addition, it is

closely related the regression model II of Bickel, Klaassen, and Ritov and Wellner

(1993, sec 4.3).

Here we propose a simple, effective, and fast two-step procedure to estimate

both the constant and functional parameters in (1.1). The implementation of this

model involve none of the iteration usually required by conventional approaches, such

as profile likelihood and backfitting. Furthermore, we develop an Akiake Information

Criterion (AIC) data-driven procedure to select the bandwidths required in the

two-step estimation. The use of an AIC criterion (and modified versions) to select

smoothing parameters in nonparametric regression and local likelihood modeling has
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been extensively discussed and implemented (see, e.g. Hurvich, Simonoff, and Tsai

1998; Loader 1999; Schucany. For local likelihood estimation, Aerts and Claeskens

(1997) considered cross-validation and plug-in bandwidths, and Fan, Farmen and

Gijbels (1998) suggested a bandwidth selector based on an approximation to the

integrated mean squared error. The backfitting and profile likelihood approaches

can be applied to estimate the constant parameters, too. We propose a new initial

estimator to ensure stability of the backfitting and profile likelihood approaches

regardless of in which types of model features (e.g., location, scale, and shape) the

constant parameter play roles. In general, neither profile likelihood nor the two-step

estimator of the constant parameters is consistently superior to the other (see the

asymptotic results and discussion in Sec. 6 and simulation results reported in Sec.

7). Nevertheless, the major strength of the two-step estimation is its simple and fast

implementation and numerical stability, with no iteration required.

In practice, the real challenge is that we are often given a collection of signifi-

cant covariates but do not know which of the parameter functions are constant and

which are functional in (1.1); that is, we are not sure about the specification of θ

and x1, · · · ,xℓ. In an attempt to solve this fundamental identification problem, we

suggest a stepwise procedure based on a version of the Bayes information criterion

(BIC) accounted for our model. Identification of constant parameters and band-

width selection interact with each other. We propose selecting the bandwidths first

and then keeping them fixed throughout the procedure for identifying the constant
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parameters. This approach indeed resolves a complex problem in an effective, fast,

and stable fashion and is confirmed to have these properties by a simulation study

and a real data analysis. We are not aware of any existing methods for identifying

constant parameters or covariates in the parametric component of a semiparamet-

ric model, although there is an abundant literature on a different issue of variable

selection for parametric models, nonparametric models, and parametric or nonpara-

metric components in semiparametric models. For example, Irizarry (2001) derived

weighted versions of the AIC and BIC and posterior probability model selection

criteria for one-parameter local likelihood models. Fan and Li (2002) used profile

likelihood techniques in their nonconcave penalized likelihood approach to selecting

variables in the parametric part of Cox’s proportional hazards model. Fan and Li

(2004) incorporated profiling ideas in their construction of penalized least squares for

variable selection in the parametric component of a semiparametric model for longi-

tudinal data analysis. Bunea (2004) constructed a penalized least squares criterion

for variable selection in the linear part of a partially linear model. For a generalized

varying-coefficient partially linear model, Li and Liang (2008) used a nonconcave

penalized likelihood to select significant variables in the parametric component and

a generalized likelihood ratio test to select significant variables in the nonparametric

component, assuming that the two sets of covariates in the parametric and nonpara-

metric components are separated in advance.

In section 2 we provide some motivating examples for model (1.1) and discuss
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the identifiability issue. We review the two classical estimation procedures: back-

fitting and profile likelihood estimation, and then present our two-step estimation

procedure for both the constant and functional parameters and a new initial es-

timator for profile likelihood estimation of the constant parameters in Section 4,

and address bandwidth selection and identification of the constant parameters are

addressed in Section 5. We investigate the asymptotic properties of the backfit-

ting, profile likelihood, and two-step estimators in Section 6. In section 7 we present

three simulated examples and an analysis of a motivating example concerning infant

mortality in Section 8. We defer proofs of the theoretical results to Appendixes.
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2 Motivating examples and model identifiability

In applications, some of the unknown functional parameters in the MLM (1.2) may

simply be unknown constants. Under such circumstances, we would pay a price

in efficiency if the unknown constants were still treated as unknown functions. An

example of this is an analysis of 103 annual maximum temperatures (Cheng and

Peng, 2007) in which Y |X is modeled by an extreme value distribution, where X is

year. The estimates of the shape and scale parameter curves are flat except in the

boundary regions, which is reasonable because the two parameters are unlikely to

change much within 100 years. To accommodate such situations, (1.2) needs to be

restricted to the following semiparametric model:

f
(
Y ; X, θ, a1(X), · · · , aℓ(X)

)
, (2.1)

where 1 ≤ ℓ < d and θ is a q-dimensional unknown parameter. Here ℓ out of

the d parameter functions in (1.2) remain unknown functions of X, and the other

d− ℓ parameter functions are formulated by certain parametric forms, for example,

unknown constants, with θ comprising all of the constant parameters. The model

studied by Severini and Wong (1992) is a special case of (2.1) with d = 2, ℓ = 1,

and q = 1. These authors studied profile likelihood estimation of θ, along with

consistent estimators of a least favorable curve.

When the dimension of X is large, neither (1.2) nor (2.1) would work, because

the curse of dimensionality problem. Claeskens and Aerts (2000) suggested alle-
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viating this problem by restricting a1(·), · · · , ad(·) in (1.2) to additive models and

estimating them using a backfitting algorithm. Alternatively, a restriction of (2.1),

f
(
Y ; X, θ, XTβ1, · · · , XTβℓ

)
, (2.2)

where β1, · · · ,βℓ are unknown constant vectors, would cope with the curse of dimen-

sionality problem. But (2.2) actually implies a constant impact of X on Y , which is

somewhat implausible in practice. For example, in the analysis of infant mortality

in China detailed later, the impact of type of region of residence on mortality would

not be a constant along the time U , because China has changed greatly since 1950,

and the difference between rural and urban regions has changed. The impact must

vary with U and the pattern of the change is of interest. Although we can modify

(2.2) to some other parametric models involved with U to capture the trend, for

example,

f
(
Y ; X, θ, XTβ1P1(U), · · · , XTβℓPℓ(U)

)
,

where Pj(U) is some polynomial of U , j = 1, · · · , ℓ. However, determining the

correct forms of Pj(·) to catch the dynamic changes is difficult. To capture the

dynamic pattern of the changes in the impact more accurately, we extend (2.2) to

f
(
Y ; X, θ, XTa1(U), · · · , XTaℓ(U)

)
, (2.3)

where θ is an unknown constant vector, and aj(·) = (aj1(·), · · · , ajp(·))T is a vector

of unspecified smooth functions, j = 1, · · · , ℓ. In (2.3), a1(·), · · · , aℓ(·) must share
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the same dimension p, and all of the aij(·)’s are assumed to be functional. This

model assumption may be unnecessary in some situations. The analysis of infant

mortality in China is an example; the impact of ethnic group or type of feeding on

infant mortality can be formulated as an unknown constant parameter. To remove

such unnecessary restrictions and make the model more versatile, we generalize (2.3)

to (1.1) with all the aij(·)’s in (2.3) that are constant absorbed by θ in (1.1).

When a1(·), · · · , aℓ(·) are all constant, model (2.3) reduces to model (2.2), and

I(γ) defined in Theorem 3 becomes Ĩ , where Ĩ is I(γ) with aj(U) replaced by βj.

Condition (S7) in Appendix C ensures that the smallest eigenvalue of Ĩ is greater

than the positive number λ0 in condition (S7). If (Xi, Yi), i = 1, · · · , n, is a sample

from model (2.2) then, under condition (S7), the Fisher information matrix is

n∑
i=1

diag(Iq, Iℓ ⊗ Xi) Ĩ i diag(Iq, Iℓ ⊗ XT
i ) > λ0

n∑
i=1

diag(Iq, Iℓ ⊗ Xi)diag(Iq, Iℓ ⊗ XT
i )

≈ nλ0diag(Iq, Iℓ ⊗ E(XXT)) > 0,

where Ĩ i is Ĩ with X replaced by Xi. Here Ik denotes a size k identity matrix, and

for any matrixes A and B, diag(A,B) denotes the matrix

(
A 0

0 B

)
.

The condition (S7) ensures that the Fisher information matrix of the parametric

model (2.2) is positive-definite; that is, model (2.2) is identifiable. Furthermore, for

any given value of U , the local version of model (2.3) is model (2.2); thus, under

9



condition (7), model (2.3) is identifiable for any given value of U , and so model (2.3)

is identifiable. In addition, model (1.1) specifies some of the aij(·)’s in model (2.3)

as constant and thus is identifiable. Based on the foregoing arguments, we have the

following lemma.

Lemma 1. Under condition (S7) in Appendix C, both models (1.1) and (2.3) are

identifiable.
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3 Reviews of related models

Many semiparametric models have been proposed and developed. Most of them

focus on the regression case or the extension of generalized linear models. For ex-

ample, Engle, Granger, Rice, and Weiss (1986) proposed a partially linear regression

model of the form:

Y = XTβ + g(U) + ϵ (3.1)

where X = (X1, · · · , Xp)
T and U = (U1, · · · , Ud)

T are vectors of covariates, β =

(β1, · · · , βp)
T is a vector of unknown parameters, g(·) is a unknown smooth function

from Rd to R, and ϵ is independent of (X,U) with mean zero and finite variance

E(ϵ2) = σ2. They applied this model to analyze the relationship between temper-

ature and electricity usage. In their paper, β and g(·) are estimated by smoothing

spline: (
β̂, ĝ
)
= arg min

β,g

1

n

n∑
i=1

(
Yi − XT

i β − g(Ui)
)2

+ λ

∫
g′′(u)2du,

where λ is a smoothing parameter and can be automatically determined by cross-

validation. Cai, Fan, Jiang, and Zhou (2007) used partially linear hazard regression

to analyze multivariate survival data. They assumed that the marginal hazard

function follows

λij(t) = Yij(t)λ0j(t) exp
[
βTXij(t) + g (Uij(t))

]
,

where Yij(t) = 1(Xij > t) is an at-risk indicator process, λ0j(t) is an unspecified

baseline hazard function, and g(·) is an unspecified smooth function. The coefficients
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of the parametric part β is estimated by profile partial likelihood approach, and the

nonparametric part g(·) is estimated by local partial likelihood approach. For more

details and applications about the partially linear model can be found in Härdle et

al. (2000).

Hastie and Tibshirani (1993) proposed the varying coefficients model of the

form:

Y = XTa(U) + ϵ, (3.2)

where X = (X1, · · · , Xp)
T , a(U) = (a1(U), · · · , ap(U))T are unspecified smooth

functions. They proposed a smoothing spline approach to estimate aj(·), that is,

find aj(·), j = 1, · · · , p, to minimize

n∑
i=1

{
yi −

p∑
j=1

xijaj(ui)

}2

+

p∑
j=1

λj

∫
a′′j (u)

2du

where λj > 0, j = 1, · · · , p are predefined smoothing parameters. Fan and Zhang

(1998) proposed to estimate aj(·) by local linear smoothing. Suppose that aj(·) has a

continuous second order derivative. For each given u0, we approximate aj(u) locally

by a linear function aj(u0) ≈ aj + bj(u−u0), j = 1, · · · , p. Let (â1, b̂1, · · · , âp, b̂p) be

minimizer of

n∑
i=1

{
yi −

p∑
j=1

(aj − bj(Ui − u0))xij

}2

Kh(Ui − u),

where Kh(t) = K(t/h)/h, K(t) is a kernel function and h is bandwidth; then the

local linear estimator of aj(u) is taken to be âj, j = 1, · · · , p. The bandwidth h can

12



be automatically selected by cross-validation. Similar ideas can be found in Hoover

et al. (1998). They applied the varying coefficients model to longitudinal data: let

Yij = Xij1a1(tij) + · · ·+Xijpap(tij) + ϵi(tij)

for i = 1, · · · , n and j = 1, · · · , ni, where n denotes the number of subjects, ni

denotes the number of measurements for the i-th subject, a1(t), · · · , ap(t) are un-

known smooth functions which are estimated by smoothing spline or local polyno-

mial smoothing with smoothing parameter selected by cross-validation, and ϵi(t) are

uncorrelated stochastic processes.

Cai et al. (2000) proposed the generalized varying coefficient models that fol-

lows:

g(m(U,X)) = XTa(U),

where g is a link function and m(U,X) = E(Y |U,X). They applied a local max-

imum likelihood estimation proposed by Fan et al. (1998) to estimate a(·). Let

f(y;m(U,X)) denote the log conditional density function of Y given (U,XT ). For

any given u, let (âT , b̂T
) be the maximizer of the local likelihood function

L(a,b) =
n∑

i=1

f
(
yi; g

−1
[
XT

i

{
a + b(Ui − u0)

}])
Kh(Ui − u),

where a = (a1, · · · , ap)T and b = (b1, · · · , bp)T . The bandwidth h can be selected

by minimizing the cross-validation criteria:

CV = −
n∑

i=1

f
{
yi; g

−1
(

XT
i â\i(Ui)

)}
,

13



where â\i(Ui) is the estimated value of a(Ui) with the i-th observation deleted.

In practice, some of the components of a(·) in model (3.2) can be constant (or

other parametric forms) while other components have unknown interactions with U .

With out loss of generality, we can write the model as

Y = ZT
1 a1(U) + ZT

2 a2 + ϵ (3.3)

where (ZT
1 ,ZT

2 )
T = X. This leads to a semiparametric model model known as

semivarying coefficients model. Zhang et al. (2002) proposed a two step estimation

procedure: they first treat a2 as functionals of U and appeal to local linear smoothing

to get the initial estimator of a2(Ui), namely, ã2(Ui). Then, they average ã2(Ui) over

i = 1, · · · , n to get the final estimator of a2 and show that their estimator of a2 has

n−1/2 convergence rate when the bandwidth for the initial estimator ã2(Ui) in the

first step is taken to be of order O(n−1/4). Fan and Huang (2005) proposed a profile

least-square technique to estimate a2. Their idea is that for any given a2, model

(3.3) can be written as

Ỹ = ZT
1 a1(U) + ϵ

which is a standard varying coefficients model, where Ỹ = Y − ZT
2 a2. Then the

estimator of a1(U) can be obtained by local linear smoothing, which can be written

as ã1(U) = SỸ , where S is the smoothing matrix. Substituting ã1(U) for a1(U) in

model (3.3) we have

(I − S)Y = (I − S)ZT
2 a2 + ϵ,

14



and the least square estimator of a2 becomes

â2 =
{

ZT
2 (I − S)T (I − S)Z2

}T ZT
2 (I − S)T (I − S)Y. (3.4)

Hence we can start from an initial guess of a2 which is not far from its true value,

and estimate â2 iteratively, as shown in Section 4.2. Fan and Huang (2005) showed

that the asymptotic variance of their estimator reaches the lower bound for semi-

parametric models.
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4 Estimation procedures

Suppose that we have a sample (Xi, Ui, Yi), i = 1, · · · , n, from (X, U, Y ), which

obeys model (1.1). Let xi,j be the pj-dimensional subvector of Xi that corresponds

to xj, j = 1, · · · , ℓ, i = 1, · · · , n. We discuss existing backfitting and profile

likelihood approaches, and introduce our two-step procedures for estimating both

the constant and functional parameters in Sections 4.1, 4.2, and 4.3.

4.1 Backfitting estimation

The idea of backfitting is on iteration. If θ is given, model (1.1) reduces to a

nonparametric model and the functional parameters can be estimated by regular

local likelihood approach as follows. For any fixed u, by Taylor’s expansion, we

have, for each j,

aj(Ui) ≈ aj(u) + ȧj(u)(Ui − u)

when Ui is in a neighborhood of u, where ȧj(u) = daj(u)/du. This leas to the

following local log-likelihood function:

n∑
i=1

Kh1(Ui−u) log f
(
Yi; Xi, θ, xT

i,1 {a1 + b1(Ui − u)} , · · · , xT
i,ℓ {aℓ + bℓ(Ui − u)}

)
,

(4.1)

where Kh1(·) = K(·/h1)/h1, K(·) is a kernel function, and h1 > 0 is a band-

width. Note that we assume θ in (4.1) is known. Maximizing (4.1) with respect

to
(
aT
1,bT

1, · · · , aT
ℓ ,bT

ℓ

)T we get the maximizer
(
â1(u)

T, b̂1(u)
T, · · · , âℓ(u)

T, b̂ℓ(u)
T)T.
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The estimator of a(u) is taken to be â(u) =
(
â1(u)

T, · · · , âℓ(u)
T)T. On the other

hand, when a1 (·) , ..., al (·) are given, model (1.1) becomes the parametric model

model (2.1) and the constant parameters can be estimated by maximum likelihood

approach. Hence the backfitting algorithm start from an initial guess of θ, plug-in

this guess to replace θ in 4.1 and update estimates of aj (·), j = 1, · · · , l, and then

update estimates of θ iteratively until the estimates of θ converges. We state the

details as follows.

(a) Initialize θ by a proper guess θ̂
(0)

BF . Set k = 1.

(b) Estimate aj (·) by maximizing (4.1) with θ being replaced by θ̂
(k−1)

BF with respect

to
(
aT
1 ,bT

1 , · · · , aT
ℓ ,bT

l

)T we get the maximizer
(

â(k)T

1 , b̂(k)T

1 , · · · , â(k)T

ℓ , b̂(k)T

ℓ

)T

.

The estimator of aj (·) in this step is taken to be â(k)
j (·), j = 1, · · · , l.

(c) Estimate θ by maximizing

f
(
Y ;X,θ,xT

1â(k)
1 (U), · · · , xT

ℓ â(k)
ℓ (U)

)
, (4.2)

with respect to θ we get the maximizer θ̂
(k)

BF . The estimator of θ is taken to

be θ̂
(k)

BF . If
∥∥∥ θ̂

(k)

BF − θ̂
(k−1)

BF

∥∥∥ is smaller than a pre-defined tolerance, we say

that θ̂
(k)

BF converges and the estimation procedure is completed. Denotes the

final estimates θ̂BF = θ̂
(k)

BF . Otherwise, change k to k + 1 and go to (b). In

backfitting, (4.2) is maximized by solving

d

dθ

n∑
i=1

log f
(
Yi;Xi,θ,xT

1 â(k)
1 (Ui) , · · · ,xT

ℓ â(k)
ℓ (Ui)

)
= 0
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or by minimizing∥∥∥∥∥ d

dθ

n∑
i=1

log f
(
Yi;Xi,θ,xT

1 â(k)
1 (Ui) , · · · ,xT

ℓ â(k)
ℓ (Ui)

)∥∥∥∥∥
to avoid singularity.

It can be shown by Theorem 1 that θ̂BF has n−1/2 convergence rate under

some regularity conditions if the bandwidth in (4.1) satisfies h1 ∝ n−1/4 (that is, âj

needs to be undersmoothed). However, there are some disadvantages for backfitting.

First, the bandwidth is difficult to choose automatically, especially when the initial

guess of θ̂(0)

BF is far from the true value of θ. Under this circumstance, the variations

of âj may be dominated by the variations due to θ̂BF , which is unknown for us.

Second, the estimation requires iterations and is computation intensive. Third, if

the initialization θ̂
(0)

BF is far from the true value of θ, backfiiting procedure usually

requires more iterations, or even fails to converge. Finally, if the design of U is

sparse, estimation of âj may fail, and thus θ̂BF may diverge.

4.2 Profile likelihood estimation

A profile likelihood estimator for θ maximizes, with respect to θ, a profiled log-

likelihood
n∑

i=1

log f
(
Yi;Xi,θ,xT

i,1ã1θ(Ui), · · · ,xT
i,ℓãℓ,θ(Ui)

)
,
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where, for any given θ, ãθ(·) =
(
ã
1,θ(·)

T, · · · , ã
ℓ,θ(·)

T)T is an estimator for a(·). In

practice, we need to find the minimizer of

∣∣∣∣∣∣∣∣∂Ln

∂θ

(
θ, ãθ

)
+

∂Ln

∂a
(
θ, ãθ

) ∂

∂θ
ãθ

∣∣∣∣∣∣∣∣ (4.3)

by iteration, where Ln is the conditional log-likelihood function

Ln

(
θ, a
)
=

n∑
i=1

log f
(
Yi; Xi, θ, xT

i,1a1(Ui), · · · , xT
i,ℓaℓ(Ui)

)
, (4.4)

where a(·) =
(
a1(·)T, · · · , aℓ(·)T

)T. We describe the details of profile likelihood

estimation as follows.

(a) Initialize θ by a proper guess θ̃
(0)

PR. Set k = 1.

(b) Maximizing

n∑
i=1

Kh1 (Ui − u) log f
(
Yi;Xi, θ̃

(k−1)

PR ,xT
i,1 {a1 + b1 (Ui − u)} , · · · ,xT

i,ℓ {aℓ + bℓ (Ui − u)}
)
,

(4.5)

with respect to
(
aT
1 ,bT

1 , · · · , aT
ℓ ,bT

ℓ

)T we get the maximizer
(

ã(k)T
1 , b̃(k)T

1 , · · · , ã(k)T

ℓ , b̃(k)T

ℓ

)T
.

The estimator of aj,θ (·) is taken to be ã(k)
j (·), j = 1, · · · , ℓ.

(c) Estimate θ by minimizing

∥∥∥∥∂Ln

∂θ

(
θ, ã(k)

θ

)
+

∂Ln

∂a
(
θ, ãθ

) ∂

∂θ
ã(k)
θ

∥∥∥∥ (4.6)

with respect to θ we get the maximizer θ̃
(k)

PR. The elements of ∂

∂θ
ã(k)

θ
can be

estimated by assuming that ajθ is a polynomial of θi, i = 1, ..., q, j = 1, ..., ℓ.
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The estimator of θ in this step is taken to be θ̃
(k)

PR. If
∥∥∥θ̃(k)

PR − θ̃
(k−1)

PR

∥∥∥ is smaller

than a pre-defined tolerance, we say that θ̂
(k)

PR converges and the estimation

procedure is completed. Denote the final estimates θ̃PR = θ̃
(k)

PR. Otherwise,

change k to k + 1 and go to (b).

Let ν∗ = a′
θ0
(·) = ∂

∂θ
aθ (·)

∣∣∣
θ=θ0

be an l × q matrix. If ν∗ satisfies

E0

(
∂L

∂θ
(θ0, a0) +

∂L

∂a (θ0, a0) ν
∗
)T (

∂L

∂a (θ0, a0) ν

)
= 0

for all ν ∈ Λ, where

L
(
θ, a
)
= log f

(
Y ;X,θ,xT

1a1(U), · · · ,xT
ℓaℓ(U)

)
,

∂L
∂a (θ0, a0) is a 1× l vector and denotes the partial derivative of L (θ, z) with respect

to z evaluated at the true values (θ0, a0), Λ denotes the space of a, and E0 is the

expectation taken under the true parameters θ0 and a0, then aθ (·) are called the

least favorable curves. If the least favorable curves exist and with some regularity

conditions, it can be shown in Theorem 2 that θ̃PR has n−1/2 convergence rate if

the bandwidth h used in (4.5) satisfies h ∝ n−1/5.

When the specified semiparametric model is generally like (1.1), in which θ

may involve shape or scale parameters in f , stability of the iteration relies heavily

on the proper choice of the initial estimate. Under semiparametric models for the

regression mean, Fan and Huang (2005) and Lam and Fan (2008) used difference-

based methods to obtain a reliable initial estimate. But, difference-based methods
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may not work for model (1.1), because some of the elements in θ can be other than

mean parameters. We propose a new initial estimate for the backfitting and and

profile likelihood procedures as follows.

First, we derive some rough estimates of aj(Ui), i = 1, · · · , n, j = 1, · · · , ℓ. Con-

sider a model obtained by replacing θ in (1.1) with a0(U), a q-dimensional unknown

function of U . This model is now a fully nonparametric model and the functional

parameters can be estimated by regular local likelihood approach as follows. For any

given u, let
(

ā0(u)
T, b̄0(u)

T, ā1(u)
T, b̄1(u)

T, · · · , āℓ(u)
T, b̄ℓ(u)

T
)T

be the maximizer,

with respect to
(
aT
0,bT

0, aT
1,bT

1, · · · , aT
ℓ ,bT

ℓ

)T, of the local log-likelihood function

n∑
i=1

Kh1(Ui−u) log f
(
Yi;Xi, a0+b0(Ui−u),xT

i,1

{
a1+b1(Ui−u)

}
, · · · ,xT

i,ℓ

{
aℓ+bℓ(Ui−u)

})
.

Here h1 can be taken as the bandwidth ĥ1 in Section 5.2, because it is selected for

local likelihood estimation by assuming model (5.2). Letting u = Ui in the foregoing

procedure, we have āj(Ui), j = 1, · · · , ℓ, i = 1, · · · , n. Then our initial estimate θ̄ is

the maximizer of

n∑
i=1

log f
(
Yi;Xi,θ,xT

i,1ā1(Ui), · · · ,xT
i,ℓāℓ(Ui)

)
.

During the iteration in finding the minimizer of (4.6), ãθ(·) is taken to be the

estimator that solves (4.5) with h1 replaced by ĥ1. With this choice of bandwidth,

the least favorable curve is well approximated, by the nature of model (5.2). On

convergence of the iteration, we obtain the profile likelihood estimator for θ. Then
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we can estimate a(·) and select the bandwidth in the same manner as described later

in Sections 4.3 and 5.2 with θ̂ replaced by the profile likelihood estimator for θ.

Unlike backfitting, the profile likelihood estimation does not need to under-

smooth the estimates of functional parameters. However, the profile likelihood es-

timation requires the least favorable curve assumption and more assumptions of

∂

∂θ
aθ (·) to attain

√
n consistency, which is not always satisfied for all models. For

example, as mentioned in Fan and Wong (2000), if Y is from N (µ (·) , σ2), then the

profile likelihood estimator of σ2 is not consistent. This restricts the application

of profile likelihood estimation. Furthermore, the profile likelihood approach also

suffers some drawbacks as backfitting does. First, the bandwidth h used in (4.5) is

difficult to select automatically, especially when the initialization θ̂
(0)

PR is far from

the true value of θ. In fact, the iteration may not converge under this situation

even the bandwidth is correctly specified. Second, the profile likelihood approach

requires more computation on estimating ∂
∂θ

aθ (·) so is even more computationally

intensive. Finally, the iteration may also diverge when the design of U is sparse.

4.3 Two-step estimation

Our two-step approach first produces an estimator for the constant vector θ, then

plugs this estimator into the local likelihood function to estimate the functions aj(·),

j = 1, · · · , ℓ.

The estimation procedure for θ consists of two stages. First, we treat θ as
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an unknown function of U and appeal to the local likelihood approach to get a

preliminary estimator θ̃(Ui) for θ(Ui) for each Ui, i = 1, · · · , n. Then we average

θ̃(Ui) over i = 1, · · · , n to get the final estimator for θ. The procedure is as follows.

Consider the model that specifies the conditional density of Y given X and U as:

f
(
Y ; X, θ(U), xT

1a1(U), · · · , xT
ℓaℓ(U)

)
. (4.7)

For any fixed u, by Taylor’s expansion, we have, for each j,

aj(Ui) ≈ aj(u) + ȧj(u)(Ui − u).

when Ui is in a neighborhood of u, where ȧj(u) = daj(u)/du. This leads to the

following local log-likelihood function:

n∑
i=1

Kh(Ui − u) log f
(
Yi; Xi, θ, xT

i,1

{
a1 +b1(Ui − u)

}
, · · · , xT

i,ℓ

{
aℓ +bℓ(Ui − u)

})
,

(4.8)

where Kh(·) = K(·/h)/h, K(·) is a kernel function, and h > 0 is a bandwidth.

Maximizing (4.8) with respect to
(
θT, aT

1,bT
1, · · · , aT

ℓ ,bT
ℓ

)T we get the maximizer(
θ̃(u)T, ã1(u)

T, b̃1(u)
T, · · · , ãℓ(u)

T, b̃ℓ(u)
T
)T

. In the foregoing local likelihood esti-

mation, θ is fitted by a local constant vector, because θ is constant under model (1.1)

and fitting it by a local constant vector stabilizes the procedure. For i = 1, · · · , n,

let u = Ui; we get an initial estimator θ̃(Ui) of θ. The final estimator of θ is taken

to be

θ̂ = n−1

n∑
i=1

θ̃(Ui). (4.9)
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For θ̂ to achieve the n−1/2 convergence rate, we need to choose a relatively small

bandwidth h so that the biases of θ̃(·) and ãj(·), j = 1, · · · , ℓ, are dominated by

n−1/2. This ensures that estimating the constant and the functional parts simulta-

neously in the first step does not create extra bias for θ. Then, averaging over θ̃(Ui),

i = 1, · · · , n, as in (4.9) brings the variance from the order (nh)−1 in nonparametric

estimation back to the order n−1 in parametric estimation. Later, we show that

θ̂ is root-n consistent when h is chosen properly. Like any other maximum local

likelihood estimation procedure, the bandwidth h cannot be chosen too small, or

otherwise one runs into problems with singularity of the design matrix. From an

asymptotic standpoint, condition (S5) keeps the bandwidth h from being too small;

thus, conditions (S5) and (S7) guarantee that the estimators θ̃(U1), · · · , θ̃(Un) exist.

Furthermore, the method of Cheng and Wu (2008) can be used to modify the local

likelihood function (4.8) to overcome the singularity problem caused by a small h or

sparsity in the design points Ui’s. This approach also can be applied to (4.10) when

estimating the function a(u).

With θ̂, we can estimate a(u) using the maximum local likelihood approach.

Note that the estimator ã(u) =
(
ã1(u)

T, · · · , ãℓ(u)
T)T that we obtained before is too

noisy and is not appropriate for this purpose, because the bandwidth h is intention-

ally chosen to be small to get a good estimator of θ. Thus we use another, larger

bandwidth to estimate a(u). We replace θ in (4.8) by θ̂ to get a local log-likelihood
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function for a(u),

n∑
i=1

Kh1(Ui−u) log f
(
Yi; Xi, θ̂, xT

i,1

{
a1+b1(Ui−u)

}
, · · · , xT

i,ℓ

{
aℓ+bℓ(Ui−u)

})
,

(4.10)

where h1 > 0 is a bandwidth different from h. We could use a kernel other than

K at this step, but this does not matter much. Maximizing (4.10) with respect to(
aT
1 ,bT

1 , · · · , aT
ℓ ,bT

ℓ

)T , we get the maximizer
(
â1(u)

T , b̂1(u)
T , · · · , âℓ(u)

T , b̂ℓ(u)
T
)T .

Our estimator of a(u) is taken to be â(u) =
(
â1(u)

T, · · · , âℓ(u)
T)T. Because the con-

vergence rate of θ̂ is n−1/2 (see Sec. 6), â(u) would work as well as when θ is

known and is used in the local log-likelihood (4.10); that is, â(u) has the adaptivity

property.

In some cases, local likelihood estimation of the varying coefficients aj(·), j =

1, · · · , ℓ, may require a different amount of smoothing (see, e.g., Claeskens and Aerts

2000). Backfitting ideas can be implemented to achieve this goal, as follows: (a)

Use â(·) as the initial estimate; (b) for each j, substitute all of the local linear

coefficient functions except the jth and h1 in (4.10) by the previous estimates and

use the bandwidth for smoothing the jth functional parameter, and then maximize

the resulted local likelihood to find an estimate of aj(·); and (c) iterate step (b) until

convergence. Convergence usually is attained quickly in this case.
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5 Bandwidth selection and identifying constant

parameters

In reality, we do not know which of the parameters are constant and which are

functional in model (1.1). This is essentially a model selection problem. The problem

can be formulated in the form of successive tests of null hypotheses against multiple

alternative hypotheses, and actually only one of the alternative hypotheses is the

one we are looking for. Thus even if we construct a test statistics, choosing an

appropriate threshold is challenging. To avoid this troublesome issue, information-

criteria-based model selection procedures are often used.

There are many model selection criteria under parametric assumptions, includ-

ing cross-validation (Stone 1974), the AIC (Akaike 1970), the BIC (Schwarz 1978),

and nonconcave penalized likelihood (Fan and Li 2001). Of these various criteria, the

AIC and BIC are likely the most commonly used in practice, because of their easy

implementation. We use the concepts of the AIC and BIC to select the bandwidths

h1 and h in the estimation procedures and to identify the constant parameters in

model (1.1).
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5.1 Model selection criteria

5.1.1 Akaike Information Criterion (AIC)

The Kullback-Leibler information (Kullback and Leibler 1951) is a widely used dis-

tance to measure the similarity between two probability distributions. For two given

probability distributions with density functions g and f , the Kullback-Leibler infor-

mation is defined by

D (g, f) =

∫
g (y) log g (y)

f (y)
dy.

Let’s start from the parametric case. Assume M0 denotes the true but unknown

model with density function g and Mk is a candidate model with density function

f (·|θ). Let M be the collection of candidate models. Our goal is to seek an Mk in M

such that D (g, f (·|θ)) is minimized. Let θ=(θ1, ..., θK) for some K. By definition,

D (g, f (·|θ)) =
∫

g (y) log g (y)

f (y|θ)
dy = EY [log g (Y )]− EY [log f (Y |θ)] ,

where EY [log g (Y )] is actually a constant. Hence, minimizing D (g, f (·|θ)) is

equivalent to minimize −EY [log f (Y |θ)]. In practice we don’t know the true

value of θ, denoted by θ0, we replace it by θ̂, which is the mle of θ, and use

−Eθ̂

[
EY

[
log f

(
Y |θ̂

)]]
to estimate −EY [log f (Y |θ0)]. That is, instead of mini-

mizing −EY [log f (Y |θ0)], we minimize its estimate −Eθ̂

[
EY

[
log f

(
Y |θ̂

)]]
. By

Taylor expansion we can easily derive that

−Eθ̂

[
EY

[
log f

(
Y |θ̂

)]]
≃ −EY

[
log f

(
Y |θ̂

)]
+ tr (I (θ0) Σ) ,
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where I (θ0) = EY

[
−∂2 log f(Y |θ)

∂θi∂θj

]
θ=θ0

, i, j = 1, ...,K is a K ×K matrix and Σ is the

covariance matrix of θ̂. Since the log-likelihood log f
(
Y |θ̂

)
is naturally an unbiased

estimator of EY

[
log f

(
Y |θ̂

)]
, we have

−Eθ̂

[
EY

[
log f

(
Y |θ̂

)]]
≃ − log f

(
Y |θ̂

)
+ tr (I (θ0) Σ) . (5.1)

Moreover, Akaike (1973) showed that if f ≃ g, then I (θ0) ≃ Σ−1 and thus

tr (I (θ0) Σ) ≃ K. Multiply ( 5.1) by 2 and approximate tr (I (θ0) Σ) by K we

can obtain the definition of AIC:

AIC = −2 log f
(
Y |θ̂

)
+ 2K.

Now return to our model. Based on the standard AIC formula, we have the

following version of AIC for model (1.1):

AIC = −2
n∑

i=1

log f
(
Yi; Xi, θ̂, xT

i,1â1(Ui), · · · , xT
i,ℓâℓ(Ui)

)
+ 2K .

To work out K, we have to determine how many unknown parameters each unknown

function aij (·) amounts to. In nonparametric modeling, when a locally polynomial

approximation is used, Fan and Gijbels (1996) suggested that an unknown function

amounts to

tr
{(

GTW0G
)−1

GTW 2
0G
}
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unknown parameters, where

G =


1 U1 − u

... ...

1 Un − u

 , W0 = diag (Kh1 (U1 − u) , · · · , Kh1 (Un − u)) .

To make it more easy to compute, we can look into its asymptotic version. When

the sample size n is large enough, we have

tr
{(

GTW0G
)−1

GTW 2
0G
}
≃ h−1

1 (ν0 + ν2/µ2) ,

where νi =
∫
tiK2 (t) dt, µi =

∫
tiK (t) dt. Further, ν0 + ν2/µ2 = 1.028571 when

the Epanechnikov kernel K (t) = 0.75 (1− t2)+ is used. Thus, for our case K =

q + 1.028571 (p1 + · · ·+ pl)h
−1
1 if we use the Epanechnikov kernel in our estimation

procedure.

5.1.2 Bayesian Information Criterion (BIC)

Assume m (Mk) denotes the prior distribution of some model Mk and π (θ|Mk) be

the prior distribution of θ given the model Mk. We can then obtain the posterior

distribution of model Mk:

P (Mk|Y ) =

∫
f (Y |Mk,θ) π (θ|Mk)m (Mk)

h (Y )
dθ,

where h (Y ) denotes the marginal density of Y , which is irrelevant of the model.

A reasonable choice is to choose the model which maximizes the posterior proba-

bility. Further, Schwarz (1978) showed that under some regularity conditions of f ,

29



maximizing the posterior is asymptotically equivalent to minimizing BIC:

BIC = −2 log f
(
Y |θ̂

)
+ log (n)K.

In parametric cases, the major advantage of BIC is its consistency property. That

is, if the true model is contained in the candidate set, BIC will select the true model

with probability 1 as the sample size n → ∞. If the true model is not selected, BIC

tends to select simpler models since it penalize more on model complexity. Hence

the prediction error may be larger (compared to the result of AIC) if the true model

is not selected. That is, BIC does not serve the efficiency property. See Burnham

and Aderson (2003) for more details.

Since the only difference between AIC and BIC is the penalty on model com-

plexity, we can also obtain the version of BIC for model (1.1)

BIC = −2
n∑

i=1

log f
(
Yi; Xi, θ̂, xT

i,1â1(Ui), · · · , xT
i,ℓâℓ(Ui)

)
+K log(n) .

The AIC and BIC formulas can be applied to any models of the form (1.1),

which can have different q, ℓ or xj, and model (5.2). In the latter case, K =

h−1
1 (ν0 + ν2/µ2)(q + p1 + · · · + pℓ) and θ̂, âj(·), j = 1, · · · , ℓ, are replaced by āj(·),

j = 0, 1, · · · , ℓ, in the formulas.

5.2 Bandwidth selection

Suppose that (1.1) is the true underlying model, and it is used to analyze the

data. The choice of bandwidths h and h1 determines the performance of the two-
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step estimators described in Section 4.3. Compared with choosing h1, choosing

h is relatively simple, because h is used to get undersmoothed estimators of the

functional parameters. It follows from Theorem 3 that we get a good estimator

of θ by letting h be of order n−α for any α ∈ (1/4, 1). In practice, we may take

α = 1/4+δ for a small δ > 0 to avoid difficulties in the maximization of (4.8) caused

by design sparsity. Proper selection of h1 is crucial for â(·) to perform well. We

propose first obtaining a reasonable choice of h1, using the relationship between the

optimal rate of h1 and a suitable rate of h to determine h, and, finally, selecting h1.

To get a reasonable choice of h1, we compute the version of AIC for different

values of h1 under the model:

f
(
Y ; X, a0(U), xT

1a1(U), · · · , xT
ℓaℓ(U)

)
. (5.2)

This yields an AIC function of h1 only; h is not involved, because there are no

constant parameters in (5.2). Then ĥ1, the minimizer of the AIC function of h1, is a

rough approximation to the optimal value of h1 in the two-step estimator â(·) for a(·)

in (1.1). The reason for this is that when data generated from (1.1) are modeled by

(5.2), the true value of a0(·) is the constant vector θ, so the curve estimate of a0(·) is

roughly flat for a wide range of h1, and the AIC criterion for (5.2) measures mainly

the performance of the estimators of aj(·), j = 1, · · · , ℓ, while h1 varies. Here we use

AIC to select the bandwidth since it is an approximation of the expected Kullback-

Leibler information. When the model is fixed, the Kullback-Leibler information
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measures the distance between the probability distribution of the true underlying

model and the probability distribution with the estimated parameters under the

specified model. Hence, the bandwidth that minimizes AIC generates the best

estimates of the parameters under a specified model in the sense of the Kullback-

Leibler information.

As discussed earlier, selection of the bandwidth h in the two-step estimation of

θ is not a major issue. Any bandwidth h will do as long as it is relatively small but

not too small. In the light of Theorem 2, which suggests that the optimal rate of h1

is n−1/5, and the discussion on choice of h earlier we take ĥ = n−0.051ĥ1. Note that

value of n−0.051 falls in the narrow range (0.5559, 0.7907) for n ∈ [102, 105].

We choose the bandwidth ĥ1 for estimating the functions a0(·), a1(·), · · · , aℓ(·)

in model (5.2), which specifies the constant vector θ in the true model (1.1) as

functional. We refine our data-driven selection of h1, which is required in the two-

step estimation of a(·) in the true model (1.1). Based ĥ, we obtain the two-step

estimator θ̂ for θ in (1.1): (a) Plug-in θ̂ into (4.10) to find â(·), and (b) compute

the AIC criterion for model (1.1) for a range of h1. We denote the minimizer of this

AIC function by h̃1.

5.3 Identifying constant parameters

We propose a procedure to identify which parameters are constant and which are

functional in model (1.1) based on the BIC criterion. This model selection prob-
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lem interacts with the bandwidth selection problem; the BIC formula depends on

the bandwidth h1. In fact, choosing the bandwidth and the constant parameters

simultaneously is almost impossible, because either a complex model or a small

bandwidth can result in a small bias and a large variance, and either a simple model

or a large bandwidth can result in a large bias and a small variance. Thus a complex

model with a large bandwidth would have same effects as a simple model with a

small bandwidth. A sensible solution is to first choose the bandwidths h1 and h and

then identify the constant parameters.

We start with a model M0 of the form (5.2), and then determine which pa-

rameters in M0 are functional and which are constant. The choice of a0(U) and

x1, · · · ,xℓ, and knowledge of how they determine the dependence of Y on X and U

in M0, should come from the basic assumptions on the model; in practice, they are

determined by the analyst. Because of the curse of dimensionality issue, we need

to impose some basic assumptions on the model based on some knowledge about

the data that we are analyzing, which usually is available from the background of

the data or people working in the area where the data arise. Because all of the un-

known parameters in M0 are functions, as in Section 5.2, we choose the bandwidth

h1 for estimating the unknown functions by minimizing the version of the AIC for

model M0. For simplicity of notation, we denote this bandwidth by ĥ1 and again let

ĥ = ĥ1n
−0.051. Then we fix at these two bandwidths throughout the model selection

procedure.
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Ideally, we could compute the BICs for all possible combinations, and the chosen

combination would be the one with the smallest BIC value. Unfortunately, however,

this approach would immediately become computationally impossible when κ (the

number of parameters that can be either functional or constant) is not very small

because there are 2κ possible combinations. We propose the following iterative

procedure to reduce the computational burden. We start with M0 as the candidate

model and at the Lth step of the iteration we examine whether one of the functional

parameters in the candidate model ML can be further reduced to a constant.

(a): Set L = 0. Based on model M0, compute local likelihood estimates of all of

the unknown parameter functions using bandwidth ĥ1.

(b): If L = κ (i.e., all of the κ parameters are reduced to constants in ML) then

ML is the chosen model, and model selection is completed. Otherwise, for

each of the unknown functions in the candidate model ML, say aij(·), that

could be reduced to a constant, calculate

Sij =
n∑

k=1

(
âij(Uk)− āij

)2
, āij = n−1

n∑
k=1

âij(Uk).

Changing the function aij(·) in ML that has the smallest Sij to a constant

parameter results in a new model, ML+1.

(c): Based on the new model ML+1 and the bandwidths ĥ1 and ĥ, compute the

estimates of the unknown functions and constants. Compute the BIC of ML+1

and compare it with that of ML. If ML has a smaller BIC, then ML is the
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chosen model and the model selection is completed. Otherwise, ML+1 becomes

the candidate model; thus we denote the new constant parameter in (b) as θL+1

and change L to L+ 1 then go to (b).

The foregoing iterative process continues until ML has a smaller BIC than ML+1

for some L < κ (i.e., ML is the chosen model) or until L = κ (i.e., the chosen model

has all of the considered parameters constant). Apparently, the final chosen model

can be written in the form of (1.1).
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6 Asymptotic properties

In this section we investigate asymptotic distributions of the backfitting estimators

given in Section 4.1, the profile likelihood estimators given in Section 4.2, and the

two-step estimators given in Section 4.3.

For simplicity of notation, the theory presented here concerns the case with

xj = X, j = 1, · · · , ℓ. The established theory straightforwardly carries over to the

general case where x1, · · · ,xℓ, are different. Let π(u) be the density of U and let

äj(u) be the second derivative of aj(u), j = 1, · · · , ℓ. Write

z = (z1, · · · , zℓ)T, zj = XTaj(u), j = 1, · · · , ℓ, D = Iℓ⊗(XT, 01×p)
T, Dc = Iℓ⊗(01×p, XT)T.

Theorem 1 and 2 gives the asymptotic distribution of θ̂BF and θ̂PR. Note that

the backfitting and profiling procedure produce estimators with the same asymptotic

distribution. The backfitting procedure requires that undersmoothing be used to

estimate â(U), whereas the profiling procedure does not.

Theorem 1. Assume that the regularity conditions (S2)–(S4) and (BF1)–(BF5)

stated in Appendix A and C hold, and that the bandwidth h satisfies nh4 → 0 and

not h ∝ n−1/5, then we have

n1/2
(
θ̂BF − θ

)
D−→ N

(
0q×1, G−1(θ0)Σ1G−1(θ0)

)
when n −→ ∞,

where

G(θ) = d

dθ
E
[
∂

∂θ
L
(
θ, a

0θ0
(U)
)]

,
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Σ1 = cov
[
∂

∂θ
L
(
θ0, a0θ0

)
+

∂

∂aL
(
θ0, a0θ0

) ∂

∂θ
a
0θ0

(U)

]

Theorem 2. Assume the regularity conditions (PR1)–(PR4) stated in Appendix B

and allow that h ∝ n−1/5, then we have

n1/2
(
θ̂PR − θ

)
D−→ N

(
0q×1, G−1(θ0)Σ1G−1(θ0)

)
when n −→ ∞,

The asymptotic distributions of the proposed 2-step estimators are discussed

by Cheng et al. (2009). We state them in Theorem 3 and 4 as follows. Theorem 3

gives the asymptotic distribution of θ̂ and shows that θ̂ is asymptotically unbiased

as an estimator of the constant parameter θ, provided that the bandwidth h is of

an order smaller than that of optimal bandwidths used in univariate smoothing.

Theorem 3. Under the regularity conditions (S1)–(S7) stated in the Appendix, if

h = o(n−1/4) and nh/ log2 n −→ ∞, then we have

n1/2(θ̂ − θ)
D−→ N(0q×1, ∆) when n −→ ∞,

where

∆ = (Iq, 0q×2pℓ)E
{

Vc(U)−1V0(U)Vc(U)−1
}
(Iq, 0q×2pℓ)

T,

V0(u) = E
{

HI(γ)HT∣∣U = u
}
, Vc(u) = V0(u) + E

{
µ2HcI(γ)HT

c

∣∣U = u
}
,

H = diag (Iq,D) , Hc = diag (0q×q,Dc) , I(γ) = −E {ġ(Y ; X, γ)|X, U} ,
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g(Y ; X, γ) =
∂ log f(Y ; X, γ)

∂γ
, ġ(Y ; X, γ) =

∂g(Y ; X, γ)

∂γ
, γ = (θT, zT)T.

In general, neither the profile likelihood nor the two-step estimator of the con-

stant parameter θ is consistently superior to the other in their asymptotic perfor-

mance. The profile likelihood estimator may have a smaller asymptotic variance

than the two-step estimator when both are asymptotically normal (Severini and

Wong 1992), but on the other hand, there are situations for which Theorem 1 holds

but the profile likelihood estimator does not work because it requires existence of

the least favorable curves ( see the example discussed in Fan and Wong 2000).

Theorem 4. Under the regularity conditions stated in the Appendix, if h1 −→ 0

and nh1/ log2 n −→ ∞, then we have

(nh1)
1/2
{

â(u)− a(u) +B
} D−→ N(0pℓ×1,Σ) when n −→ ∞,

where

B = 2−1µ2h
2
1Iℓ ⊗ {(1, 0)⊗ Ip}G−1

c Γ ,

Γ = E
{

DI1(z)
(
ä1(u), · · · , äℓ(u)

)TX
∣∣∣U = u

}
,

Σ = Iℓ ⊗ {(1, 0)⊗ Ip}G−1
c GG−1

c π(u)−1Iℓ ⊗ {(1, 0)T ⊗ Ip} ,

G = E
{
ν0DI1(z)DT + ν2DcI1(z)DT

c

∣∣U = u
}
,

Gc = E
{

DI1(z)DT + µ2DcI1(z)DT
c

∣∣U = u
}
,
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I1(z) = −E

{
∂2 log f(Y ; X, θ, z)

∂z∂zT

∣∣∣∣X, U

}∣∣∣∣
U=u

.

Theorem 4 says that our estimator â(·) has the adaptivity property; it has

the same asymptotic distribution as the estimator of a(·) obtained by maximizing

(4.10), with θ̂ replaced by the true value of θ. In addition, the optimal bandwidth

h1 is of order n−1/5, and the optimal convergence rate of â(·) is n−2/5. We defer the

proofs of these two theorems to the Appendix.
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7 Simulation study and data analysis

7.1 Logistic Regression

Consider the following logistic regression model

log
(

P (Y = 1|X = x, U = u)

1− P (Y = 1|X = x, U = u)

)
= a1 (u)x1 + a2 (u)x2 + a3x3 + a4x4 (7.1)

where a1 (·) and a2 (·) are unknown functional parameters, a3, a4 are unknown con-

stant parameters, and X and U are independent. Further, assume X ∼ N (0, I),

U ∼ Uniform (0, 1), a1 (u) = sin (2πu), a2 (u) = cos (2πu), a3 = 2 and a4 = 1. The

sample sizes were set to be 500 and 1000. For each sample size we repeated the

experiment 300 times.

The kernel function K was set to be the Epanechnikov kernel. The bandwidths

h and h1 were respectively taken to be the data-driven AIC bandwidths ĥ and h̃1

given in Section 5.2, with model 5.2 specifying the conditional distribution

log
(

P (Y = 1|X = x, U = u)

1− P (Y = 1|X = x, U = u)

)
= a1 (u) x1 + a2 (u) x2 + a3 (u)x3 + a4 (u)x4

(7.2)

We use the mean integrated absolute error (MIAE) to access the accuracy of an

estimator. The MAIE of an estimator of an unknown constant is defined as its

mean absolute error. The MIAE of a estimator â (·) of an unknown function a (·) is

defined as

MIAE = E (IAE) , where IAE=
∫

|â (u)− a (u)| du.
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The proposed two-step estimation method and the profile likelihood estimation us-

ing our suggested initial value were employed to estimate a1 (·), a2 (·), a3, and a4

for the 300 random samples. Table 1 compares the performances of our two-step

estimation and the profile likelihood estimation under different sample sizes. The

result suggests that both the two-step and the profile likelihood estimation methods

do work well. The profile likelihood method is slightly better than the two-step

method in estimating the constant parameters, while they preform equally well in

estimating the functional parameters.

Table 1: MIAEs of different estimation methods for logistic regression.

Two-step Profile Likelihood

Sample size a1(·) a2(·) a3 a4 a1(·) a2(·) a3 a4

1000 0.1775 0.1753 0.1887 0.1174 0.1781 0.1748 0.1650 0.1121

500 0.2488 0.2465 0.2123 0.1368 0.2509 0.2514 0.2014 0.1406

To give a visible picture of how well the two-step estimators of the functional

parameters work, the pointwise 10%, 50% and 90% quantiles of the 300 estimates

of a1 (·) and a2 (·) are plotted in Fig. 1 when the sample size n = 1000 and 2 when

n = 500. The solid lines are the true curves. Further, we single out the samples with

median total IAE performance, i.e. the one that yields the median of the IAEs for
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a1 (·) and a2 (·). In these samples, the estimates of a3 and a4 are respectively 2.280

and 1.094 when the sample size is 1000 and 1.9590 and 0.8112 when the sample

size is 500. The dotted lines are the estimates, based on this sample, when a3 and

a4 are treated unknown. The dashed lines are the estimates, based on the same

sample, when a3 and a4 are treated known and replaced by their true values in

the local likelihood function 4.10. From Fig. 1 and 2, we can see that the proposed

method works quite well. Also, the estimators of the unknown functional parameters

work as well as when the unknown constant parameters are replaced by their true

values. This means the proposed estimators for the functional parameters do have

the adaptivity property.

Suppose we do not know which of the four parameters are constant and which

are functional. The BIC model selection procedure proposed in Section 3.3, with

the start model M0 specified by (7.2), was applied to the simulated samples. When

the sample size is 1000, 276 of the 300 samples specify the true model, 7 samples

pick a1, a2, and a3 as constant parameters, 9 samples take a1, a2, and a4 as constant

parameters, and the remaining 8 samples determine all the parameters as constant

parameters. When the sample size is 500, 251 of the 300 samples specify the true

model, 19 samples select a3 as constant parameter, 2 samples prefer a4 as constant

parameter, 8 samples pick a1, a3, and a4 as constant parameters, 9 samples take

a2, a3, and a4 as constant parameters, 8 samples determine all the parameters as

constant parameters, and the remaining 3 samples determine all the parameters as
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Figure 1: Functional parameters in logistic regression when the sample size is 1000.

The left and right columns depict results for a1 (·) and a2 (·), respectively. In the

upper row, the long-dash lines are the pointwise 10%, 50% and 90% quantiles of

the 300 estimates. The bottom row plots the estimates based on the sample with

median total ISE performance when the constant coefficients a3 and a4 are treated

unknown (dotted) or known (dashed). The solid lines represent the true functions.

43



0.0 0.2 0.4 0.6 0.8 1.0

−
1.

5
−

0.
5

0.
0

0.
5

1.
0

1.
5

u

0.0 0.2 0.4 0.6 0.8 1.0

−
1.

5
−

0.
5

0.
0

0.
5

1.
0

1.
5

u

0.0 0.2 0.4 0.6 0.8 1.0

−
1.

5
−

0.
5

0.
0

0.
5

1.
0

1.
5

u

0.0 0.2 0.4 0.6 0.8 1.0

−
1.

5
−

0.
5

0.
0

0.
5

1.
0

1.
5

u

Figure 2: Functional parameters in logistic regression when the sample size is 500.

The left and right columns depict results for a1 (·) and a2 (·), respectively. In the

upper row, the long-dash lines are the pointwise 10%, 50% and 90% quantiles of

the 300 estimates. The bottom row plots the estimates based on the sample with

median total ISE performance when the constant coefficients a3 and a4 are treated

unknown (dotted) or known (dashed). The solid lines represent the true functions.
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functional parameters. The left panels of Fig. 3 and 4 show boxplots of the 300

predicted values of a3 ≡ 2 and a4 ≡ 1, and the right panels of Fig. 3 and 4 depict

the point cloud of the predicted value against the true value of a1(U0) and a2(U0)

for the 300 samples.

Other than the BIC criterion, we can also apply the AIC criterion to build

the model selection procedure. In this case, when sample size is 1000, 242 of the

300 samples specify the true model, and the remaining 58 samples determine all

the parameters as functional parameters. When the sample size is 500, 211 of the

300 samples specify the true model, and the remaining 89 samples select all the

parameters as functional parameters. The left panels of Fig. 5 and 6 show boxplots

of the 300 predicted values of a3 ≡ 2 and a4 ≡ 1, and the right panels of Fig.

5 and 6 depict the point cloud of the predicted value against the true value of

a1(U0) and a2(U0) for the 300 samples. Note that although the AIC criterion does

not select correct model as many times as the BIC criterion does, it generates less

prediction error. This is because that the AIC criterion tends to select more complex

models (for example, model with all aj as functions for j = 1, · · · , 4), while the BIC

criterion tends to select simpler models (for example, model with all aj as constants

for j = 1, · · · , 4) due to their penalties to model complexity. When the model

is mis-specified, specifying the functional parameters a3(·) and a3(·) as constants

would result in a large bias and inconsistency in post-model selection inference,

while misspecifying the constant parameter a1 and a2 as functionals is only a minor
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Figure 3: Parameter predictions in the logistic example when the sample size is 1000.

Left: boxplots of the predicted values of a3 ≡ 2 and a4 ≡ 1 based on the selected

model for the 300 samples. Right: scatterplots of the predicted value against the

true value of a1(U0) and a2(U0) for the 300 samples.
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Figure 4: Parameter predictions in the logistic example when the sample size is 500.

Left: boxplots of the predicted values of a3 ≡ 2 and a4 ≡ 1 based on the selected

model for the 300 samples. Right: scatterplots of the predicted value against the

true value of a1(U0) and a2(U0) for the 300 samples.
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problem because the nonparametric estimates under the wrong model still look flat.

The results of our simulation may support empirically that the consistency property

of BIC and the efficiency property of AIC in parametric models also hold in our

model.

7.2 Weibull model

Suppose that, conditional on X = x and U = u, Y has a Weibull distribution with

density function

f
(
y; x, θ, a(u)x

)
=

θ{
a(u)x

}θ yθ−1 exp
[
−
{
y/a(u)x

}θ]
, y > 0, (7.3)

where the constant θ > 0 is the shape parameter and is taken to be 2, the function

a(·) is the scale parameter and is set to be a quadratic function a(u) = β0+β1u+β2u
2,

U ∼ Uniform(0, 1), X ∼ Uniform(1, 2), and X and U are independent. This exam-

ple is motivated by some real applications. For example, in reliability data analysis,

Meeker and Escobar (1997), Nelson (1984) and Wang and Kececioglu (2000) studied

the low-cycle fatigue life data for a strain-controlled test on 26 cylindrical specimens

of a nickel-base superalloy to estimate the curve giving the number of cycles at

which 0.1% of the population of such specimens would fail, as a function of the

pseudostress U . They assumed that the logarithm of the number of cycles condition

on the pseudostress follows a weibull distribution with a constant shape parameter

(independent of the pseudostress) and a functional scale parameter. The scale pa-
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Figure 5: Parameter predictions in the logistic example by the AIC criterion when

the sample size is 1000. Left: boxplots of the predicted values of a3 ≡ 2 and a4 ≡ 1

based on the selected model for the 300 samples. Right: scatterplots of the predicted

value against the true value of a1(U0) and a2(U0) for the 300 samples.
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Figure 6: Parameter predictions in the logistic example by the AIC criterion when

the sample size is 500. Left: boxplots of the predicted values of a3 ≡ 2 and a4 ≡ 1

based on the selected model for the 300 samples. Right: scatterplots of the predicted

value against the true value of a1(U0) and a2(U0) for the 300 samples.
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rameter was often assumed to be a linear, quadratic, or log-linear function of the

pseudostress. In our implementation, we set β0 = 2, β1 = −1.6, and β2 = 3.6. The

sample sizes are taken to be 250, 500, and 1000; for each size we simulated 300

samples from this model and applied our estimation and model selection procedures

to the samples.

In the two-step estimation procedure, we used the bandwidths ĥ and h̃1 in

Section 5.2, with model (5.2) specifying the conditional density

f
(
y;x, a0(u), a(u)x

)
=

a0(u){
a(u)x

}a0(u) ya0(u)−1 exp
[
−
{
y/a(u)x

}a0(u)] , y > 0. (7.4)

The kernel function K was taken to be the Epanechnikov kernel. The MIAEs for

θ and a(·) are 0.0175 and 0.1090 with sample size 1000, 0.0318 and 0.1369 with

sample size 500, and 0.0623 and 0.1774 with sample size 250. The bias and standard

deviation for θ are 0.00149 and 0.0496 with sample size 1000, in agreement with the

theory that θ̂ is asymptotically unbiased (see Theorem 1). The bias and standard

deviation for θ with sample size 500 and 250 are reported in Table 3 and 4. The left

panel of Fig. 7 plots the pointwise 10%, 50%, and 90% quantiles of the 300 curve

estimates of a(·) with sample sizes 1000, 500, and 250 from top to bottom. Both

estimators of θ and a(·) are quite accurate. In addition, the constant parameter θ is

estimated with a higher level of accuracy than the functional parameter a(·). This

coincides with our theory that θ̂ has a faster rate of convergence than â(·). The

right panel of Fig. 7 plots the estimates of a(·) based on the sample with median
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IAE performance when θ is treated as unknown (dotted line) and known (dashed

line). The estimates are close to each other, indicating that our estimator of a(·)

has the adaptivity property.

We also applied the profile likelihood method described in Section 4.2 to the

same 300 samples. The MIAEs, biases and standard deviations for θ and a(·) with

sample sizes n = 1000, 500, and 250 are summarized in Table 2, 3 and 4, respectively.

Note that the profile likelihood estimators diverge in some samples with sample size

250 which may due to design sparsity. In this example, θ is the scale parameter and

a(·) determines the shape parameter in the conditional Weibull distribution. The

two-step method performs slightly better than the profile likelihood method in esti-

mating both the constant (scale) parameter and the functional (shape) parameter.

We also fitted parametric models to the same 300 examples. Later, quadratic

model denotes the case if a(·) is correctly specified as a quadratic function, cubic

model denotes the case if a(·) is mis-specified as a cubic function, and linear model

denotes the case if a(·) is assumed to be a linear function. Table 2 – 4 list the

performances of different methods.

Suppose that it is not known which of the two parameters are constant and

which are functional. For each of the 300 samples simulated from (7.3), we used the

model selection procedure in Section 5.3, with the start model M0 given by model

(7.4), to select the constant parameters. When the sample size is 1000, 295 samples

specify the true model, and for all of the other 4 samples, the model with both θ and
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Figure 7: Estimates of the functional parameter in the Weibull example. Left panel:

Pointwise 10%, 50%, and 90% quantiles (long-dashed lines) of the 300 estimates of

a(·) (solid line) for sample size 1000, 500, and 250 from top to bottom. Right panel:

Estimates of a(·) (solid line) based on the sample with median IAE performance

with the constant parameter θ treated as unknown (dotted) or known (dashed line).
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Table 2: Performances of different estimation methods on the Weibull example when

the sample size is 1000.

MAE of θ bias of θ std of θ MIAE of a(·)

Two-step 0.0175 0.00149 0.0496 0.1090

Profile likelihood 0.0181 0.00155 0.0504 0.1121

Linear model 0.0266 0.00248 0.0501 0.2001

Quadratic model 0.0168 0.00111 0.0488 0.0542

Cubic model 0.0180 -0.00156 0.0524 0.1080

Table 3: Performances of different estimation methods on the Weibull example when

the sample size is 500.

MAE of θ bias of θ std of θ MIAE of a(·)

Two-step 0.0318 0.00169 0.0711 0.1367

Profile likelihood 0.0344 0.00195 0.0721 0.1400

Linear model 0.0339 0.00221 0.0702 0.1989

Quadratic model 0.0299 0.00152 0.0698 0.0704

Cubic model 0.0320 0.00177 0.0780 0.1360
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Table 4: Performances of different estimation methods on the Weibull example when

the sample size is 250.

MAE of θ bias of θ std of θ MIAE of a(·)

Two-step 0.0623 0.0149 0.1201 0.1774

Profile likelihood 1.2555 1.8400 21.8001 18.6441

Linear model 0.0666 0.0183 0.0911 0.1802

Quadratic model 0.0414 0.0100 0.1989 0.0780

Cubic model 0.0517 0.0126 0.1075 0.1511

a as functions of u was selected. This indicated that our model selection criterion

has a high success rate of 98%. When the sample size is 500, 271 samples specify the

true model, and the other 22 samples take the model with both θ and a as functions.

When the sample size is 250, 160 samples specify the true model, 62 samples prefer

the model with both θ and a as constants, and the other 78 samples opt the model

with both θ and a as functions. This indicated that our model selection criterion

has a high success rate when the sample size is moderately large (98% when the

sample size is 1000, and 90% when the sample size is 500.)

To further examine the performance of the model selection procedure, for each

sample sizes, we used the selected model and the corresponding parameter estimates

to predict the true values of the parameters θ and a(U0) associated with a future
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observation (Y0, X0, U0) for each of the 300 samples. The mean absolute prediction

errors (MAPE) for θ and a(U0) are reported in Table 5. The left panel of Fig. 8

shows boxplots of the 300 predicted values of θ ≡ 2 with sample sizes 1000, 500,

and 250 from top to bottom, and the right panel of Fig. 8 depicts the point clouds

of the predicted value against the true value of a(U0) for the 300 samples. We can

see that the predictions are both quite satisfactory even though the model selection

procedure may misspecifies the model when the sample size is moderately large.

Thus we can conclude from this example that our proposed estimation and model

selection procedures work together to provide a powerful tool for multiparameter

likelihood modeling even when there is little knowledge regarding whether or not

some of the parameters are constant.

We also implement a different model selection procedure with the BIC criterion

being substituted by the AIC criterion. When the sample size is 1000, 230 samples

specify the true model, and the other 70 samples pick the model with both θ and a as

functions of u. When the sample size is 500, 212 samples specify the true model, and

the other 88 samples choose the model with both θ and a as functions. When the

sample size is 250, 166 samples specify the true model, 143 samples prefer the model

with both θ and a as functions, and the other 4 samples opt the model with both θ

and a as constants. Table 5 summarizes the results of the model selection procedures

based on BIC and AIC criterion. The left panel of Fig. 9 shows boxplots of the 300

predicted values of θ ≡ 2 with sample sizes 1000, 500, and 250 from top to bottom,
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Figure 8: Parameter predictions in the Weibull example with the BIC criterion.

Left panel: Boxplots of the predicted values of θ ≡ 2 based on the selected model

for the 300 samples of sample sizes 1000, 500, and 250, from top to bottom. Right

panel: Scatterplots of the predicted value against the true value of a(U0) for the 300

samples.
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and the right panel of Fig. 9 depicts the point clouds of the predicted value against

the true value of a(U0) for the 300 samples. As in the case of logistic regression, we

can see that the AIC criterion tends to select more complex models (for example,

model with both θ and a as functions) and thus generates less prediction error, while

the BIC criterion tends to select simpler models (for example, model with both θ

and a as constants) and thus generate larger prediction error, although the BIC

criterion selects the correct model more times than the AIC criterion does,

Table 5: Performances of model selection procedures of the Weibull example.

1000 500 250

BIC

True model selected 295 271 160

MAPE of θ 0.0416 0.0671 0.1122

MAPE of a(·) 0.1453 0.1610 0.1788

AIC

True model selected 230 212 166

MAPE of θ 0.0507 0.0704 0.1065

MAPE of a(·) 0.1489 0.1609 0.1692

In model (7.3), the Weibull conditional distribution has d = 2 parameters, of

which ℓ = 1 follow a nonparametric form and the other d−ℓ = 1 follow a parametric

form. A more complex model involves changing the conditional distribution to

Weibull
(
θ + a1(u)x, a(u)x

)
, where x, u, θ and a(·) are the same as in (7.3), and
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Figure 9: Parameter predictions in the Weibull example with the AIC criterion.

Left panel: Boxplots of the predicted values of θ ≡ 2 based on the selected model

for the 300 samples of sample sizes 1000, 500, and 250, from top to bottom. Right

panel: Scatterplots of the predicted value against the true value of a(U0) for the 300

samples.
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a1(u) = 0.1 + 0.1 cos(2πu). In this case, ℓ = d = 2, with the shape parameter

modeled semiparametrically and the scale parameter modeled nonparametrically.

7.3 Hazard Regression

Suppose that we have a random sample of n subjects with J failure types in each

subject. Consider the following semiparametric varying-coefficients hazard regres-

sion model

λij(t) = Yij(t)λ0j(t) exp{θTWij(t) + a(Uij(t))
TZij(t)}, (7.5)

where i = 1, · · · , n indicates subject and j = 1, · · · , J denotes the jth failure type

in the ith subject, Wij(·) = (Wij1(·), · · · ,Wijq(·))T is a vector of covariates that has

parametric effect on the logarithm of the hazard, Zij(·) = (Zij1(·), · · · , Zijp(·))T

is a vector of covariates that may interact with Uij(·), Yij(t) = I(Xij ≥ t) is

an indicator, Xij = min(Tij, Cij) is the observed time with the failure time Tij

and the censoring time Cij, λ0j(·) is an unspecified baseline hazard function, and

a(·) = (a1(·), · · · , ap(·))T is a vector of unspecified smooth coefficient function. The

marginal hazard function λij(t) is defined as

λij(t) = lim
h↓0

1

h
P (Tij ≤ t+ h|Tij ≥ t,Ft,ij) ,

where Ft,ij represents the failure, censoring and covariate information up to time t

for the (i, j) failure type as well as the covariate information of the other failure types
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in the ith subject up to time t. The censoring time is assumed to be independent

of the failure time conditional on the covariates (i.e. independent censoring).

The estimation is usually carried out by maximizing the partial likelihood of

model (7.5):

L(θ, a) =
J∏

j=1

n∏
i=1

{
exp{θTWij(Xij) + a(Uij(Xij))

TZij(Xij)}∑
l∈Rj(Xij)

exp{θTWlj(Xij) + a(Ulj(Xij))TZlj(Xij)}

}∆ij

, (7.6)

where Rj(t) = {i : Xij ≥ t} denotes the set of the individuals at risk just prior to

time t for failure type j, and ∆ij is an indicator which equals 1 if Xij is a failure

time and 0 otherwise. By applying Taylor expansion on a we can obtain the local

log-partial likelihood as we do in (4.8):

J∑
j=1

n∑
i=1

Kh(Uij(Xij)− u0)∆ij

{
θTWij(Xij) + γTVij(Xij)−R∗

ij(θ,γ)
}

(7.7)

where Vij(v) =
{
Zij(v)

T , Zij(v)
T (Uij(v)− u0)

}T , γ = (aT ,bT )T , and

R∗
ij(θ,γ) = log

 ∑
l∈Rj(Xij)

exp{θTWlj(Xij) + γTVlj(Xij)}Kh(Uij(Xij)− u0)


With the local log-partial likelihood (7.7) we can construct the two-step estimation

proposed in Section 4.3; together with the partial likelihood (7.6) we can build the

profile likelihood estimation introduced in Section 4.2.

In this example we set n = 250, J = 2, the baselines λ01 = 1 and λ02 = 2.

The true parameter was set as θ0 = (0.8, 0.6, 1)T , and the coefficient function was

set as a(u) = 2 − 3 cos((u − 0.5)π/2). We assumed that Zij ∼ N(0, 1), Wij1 ∼

Bernoulli(0.5), Wij2 ∼ N(0, 1), Wij3 ∼ U(0, 1), and the covariate Uij was set as Wij3.
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The censoring time distribution was generated from an exponential distribution with

mean chosen to produce a 41% of censoring. The failure times were generated by

the extension of the model of Clayton and Cuzick (1985). The number of replication

is 300. The proposed two-step estimation method was employed to estimate θ1, θ2,

θ3, and a(·). The MIAEs are 0.09001 for θ1, 0.0508 for θ2, 0.1555 for θ3, and 0.1362

for a(·). We compared our results with the profile likelihood estimation proposed by

Cai et. al. (2008). The MIAEs are 0.0897, 0.0504, 0.1559 and 0.1367. This suggests

that profile likelihood is slightly better than the two-step method in estimating the

linear part, while they preform equally well in estimating the nuisance parameters.
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8 Analysis for infant mortality in China

The data for this analysis come from a National Survey of Fertility and Contraceptive

Prevalence, often referred to as the ”Two per Thousand Fertility Survey,” conducted

by China’s State Family Planning Commission between July 1, 1988 and July 15,

1988. The survey, representing a sample of 2 per 1,000 persons in mainland China,

targeted ever-married resident women age 15-57 years. All provinces in the Chinese

mainland took part in the survey. The sample for this study is restricted to births

occurring after 1949, that is, after the founding of the People’s Republic of China.

Thus we have a total of 118,346 births (61,286 boys and 57,060 girls), contributed

by 35,652 women. Of these births, 6,909 infants died before their first birthday,

yielding an infant mortality rate of 58.4 per thousand.

The response variable Y was taken to be the binary variable, death or survival

within the first year. Thus births occurring within 12 months before the survey were

excluded, and the remaining 114,337 births were used for the logistic regression anal-

ysis. Selection of relevant independent variables was guided by previous studies on

the determinants of infant mortality and constrained by those that were included

in the survey. Thus we used the following variables: year of birth (U); reproductive

patterns [mother’s age at the birth of the child (X2), first child (X3) and previ-

ous birth interval (X4)]; and socioeconomic variables [urban-rural residence (X5),

mother’s education (X6), geographic region of residence (X7), and ethnicity (X9)].
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We also included other control variables, such as sex of the child (X8) and breast-

feeding (X10) during the first year of life. Table 7 lists all the variables included in

the study together with their descriptive statistics.

We categorized the mother’s age into two categories: between 15 to 35 (ap-

propriate age) and otherwise (inappropriate age). To see if the impacts of the

independent variables vary of time, we can compare the parametric model without

involving with U :

log
(

P (Y = 1|X = x)

1− P (Y = 1|X = x)

)
= a1 +

10∑
i=2

ai xi ,

with the nonparametric model M0 specifying

log
(

P (Y = 1|X = x, U = u)

1− P (Y = 1|X = x, U = u)

)
= a1(u) +

10∑
i=2

ai(u) xi .

However, when constructing a test that involves the nonparametric forms, the stan-

dard chi-squared approximation (e.g. Pearson’s chi-square test or tests based on

deviance) fails because the effective number of parameters tends to infinity. Cai

et al. (2000) suggested a bootstrap approach to facilitate model testing. In our

case, bootstrap is computationally impractical due to our large sample size. Here

we considered an alternative parametric model M′
0

log
(

P (Y = 1|X = x, U = u)

1− P (Y = 1|X = x, U = u)

)
=

(
a1,u +

10∑
i=2

ai,u xi

)
I(U = u) .

That is, we treated data in different years as independent and fitted a separate

model for each year. The difference between M0 and M′
0 is that the impacts of the
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dependent variables are assumed to be smooth in M0, while to be independent in

M′
0. When comparing the parametric model with M′

0, the p-value of the Pearson’s

chi-square test is 4 × 10−24, which is definitely significant in all significant levels.

This demonstrate that the impacts of the independent variables do vary of time.

Although we construct a test to test M0 against M′
0, the deviance of M0 is smaller

than that of M′
0, suggesting that M0 may be a better fit. The estimated impacts of

the covariates with model M0 and M′
0 are presented in Fig. 10 and 11, respectively.

Then we used the model selection procedure outlined in Section 5.3 to determine

which effect of the covariates are constant (invariant to time U) and which are

functional in the logistic regression. We started with the nonparametric model M0

and used the bandwidth selection procedure described in Section 5.2 to select the

bandwidths h and h1. The selected bandwidth are ĥ = 10.80% and ĥ1 = 19.55%

of the time range. After that we start with model M0 as the candidate model

and iteratively examine whether one of the functional parameters in the candidate

model can be further reduced to a constant. Our model selection procedure suggests

that the impacts of the mother’s age (X2), mother’s education (X6), ethnicity (X9),

child’s sex (X8), and type of feeding (X10) are constant; thus we used model (1.1)

with the assumption that

log
(

P (Y = 1|X = x, U = u)

1− P (Y = 1|X = x, U = u)

)
= a1(u) + a2x2 + a3(u)x3 + a4(u)x4 + a5(u)x5

+a6x6 + a7(u)x7 + a8x8 + a9x9 + a10x10
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Figure 10: Impacts of covariates on infant mortality with model M0.
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Figure 11: Impacts of covariates on infant mortality with model M′
0.
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fits the data. We denoted this model as M and used the proposed two-step esti-

mation method to estimate the effects of the sociodemographic variables on infant

death with this model.

The estimate of the impact of the mother’s age (X2) is 0.1041, indicating that

women of inappropriate age are at high risk for infant mortality. The estimate of

the effect of the mother’s education (X6) is −0.1088, which means that educated

women are at lower risk for infant mortality. This difference between educated

women and noneducated women is understandable, because well-educated women

generally have readier access to information on nutrition and health care and are

better at implementing medical advice. The estimated effect of the child’s sex (X8)

is −0.0492, indicating a lower risk of mortality in male infants. Traditional Chinese

culture always favors boys. As in much of the developing world, Chinese girls receive

far less attention and resources than boys. The estimate of impact of ethnicity

(X9) is −0.1371, which tells us that the Han have a lower risk of infant mortality

compared with people from Chinese minority groups. The estimate of the impact

of breast-feeding (X10) is −0.2058, suggesting the superiority of breast-feeding over

other kinds of feeding.

The estimated impacts of the other functional factors (U,X3, X4, X5, X7) are

presented in Fig. 12. The confidence bands were constructed using âj(·)± 1.96SE,

where SE is the standard error computed by a sandwich method (see Cai, Fan, and

Li 2000). Fig. 12(a) shows that infant mortality started high in 1950, increasing
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from 1950, and reached its highest level in 1959. After 1959, the mortality dropped

steadily; however, the pace of the decline slowed down after 1970.

Fig. 12(b) clearly shows that mortality of the first birth is lower than that of the

others; the impact of first child on mortality is a negative curve. The interpretation

of this finding is that the first child has the advantage of having no previous sibling

to compete with for the parents’ attention and resources. Cultural factors also

may contribute to the lower mortality of first births in China. In China, the birth

of the first child is a very important event for a family, and the first child usually

receives much more attention and care than others. Moreover, Chinese grandmothers

generally play a very important role in taking care of their grandchildren, especially

in rural areas. Their involvement, advice, and supervision can overcome some of the

disadvantages that first births encounter as a result of physiological difficulties in

delivery and the mothers’ lack of previous childbearing and child care experience. It

also appears that although the impact of first child on mortality is always negative,

its absolute value decreased sharply from 1950 to 1960 sharply, then only slightly

thereafter.

Fig. 12(c) shows that the impact of birth interval on infant mortality also is

a negative curve, meaning that a longer birth interval would enhance an infant’s

chance of survival. This finding is in accordance with those from previous studies.

Like the impact of the first child, the absolute value of the impact of birth interval

dropped sharply between 1950 and 1960, remained unchanged until 1967, and then
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Figure 12: Impacts of covariates on infant mortality. Effects of year of birth (U), first

child (X3), previous birth interval (X4), urban-rural residence (X5), and geographic

region of residence (X7) against time. The solid curves represents estimates of

impacts of the covariates; the dashed curves, the 95% bands of the estimates.
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dropped again thereafter.

Fig. 12(d) shows that infant mortality was always higher in rural areas than

in urban areas. The impact of rural residence on infant mortality rose sharply from

1950 to 1958, then dropped sharply until 1972, remained steady until 1981, and

then again dropped sharply. This suggests a decreasing difference between rural

and urban residence from 1958 to 1987.

We took the three cities of Beijing, Shanghai and Tianjin, as a reference. Fig.

12(e) suggests lower infant mortality in these three cities than in other places, with

the difference increasing between 1952 to 1961, then decreasing until 1978, and then

increasing again thereafter. The interpretation of this finding is the Chinese govern-

ment invested in these three cities much more heavily than in other places. Indeed,

the three cities received priority on almost everything for quite a long time. Be-

fore 1980, many goods (including some important medicines and nutritional foods)

could be bought only in these three cities, and the three cities had the best hospitals,

health care, and environmental sanitation.

Again, instead of testing M against M0, we tested their parametric alterna-
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tives, H0 : M′ against H1 : M′
0, where M′ is specified by

log
(

P (Y = 1|X = x, U = u)

1− P (Y = 1|X = x, U = u)

)
= a1,uI(U = u) + a2x2 + a3,ux3I(U = u)

+a4,ux4I(U = u) + a5,ux5I(U = u) + a6x6

+a7,ux7I(U = u) + a8x8 + a9x9 + a10x10

The p-value of the Pearson’s chi-square test was 0.112>0.1, which may not be sig-

nificant and cannot reject H0. However, the AIC for model M′ is 48680.93, while

the AIC for model M′
0 is 48842.28. This suggests that model M′ provides a better

fit than model M′
0. Further, if we assumed that the degree of freedoms of M and

M0 equal to their alternatives M′ and M′
0, the p-value of the Pearson’s chi-square

test H0 : M against H1 : M0 became 0.02, which is much more significant. This

coincided with the result of our model selection procedure. Table 6 compares the

estimated impacts of the constant parameters (X2, X6, X8, X9, X10) with model M

and M′. The estimated impacts of the other functional factors (U,X3, X4, X5, X7)

with model M′ are presented in Fig. 13.

We also used the profile likelihood estimation method with our proposed initial-

ization to estimate the effects of the independent variables with the selected model

M. The estimate of the impact of the mother’s age (X2) is 0.1044, the estimate of

the effect of the mother’s education (X6) is -0.1087, the estimate of the effect of the

child’s sex (X8) is -0.0486, the estimate of the impact of ethnicity (X9) is -0.1444,
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Figure 13: Impacts of covariates on infant mortality with model M’.
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Table 6: Estimated impacts of the constant parameters with model M and M′

Model X2 X6 X8 X9 X10

M 0.1041 -0.1088 -0.0492 -0.1371 -0.2058

M′ 0.0818 -0.1394 -0.0651 -0.1889 -0.3468

and the estimate of the impact of breast-feeding (X10) is -0.2050. All these results

are close to those of our proposed two-step estimation method.
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Table 7: List of Covariates with Descriptive Statistics

Variable/category mean % of sample

Year of Birth (U , 1950-1987) 1972.2 -

Demographic Variables

Maternal age (X2) 25.7

First Birth (X3)

yes - 36.2

no - 63.8

Previous birth interval (X4, in months) 21.5 -

Socioeconomic Variables

Place of Residence (X5)

rural - 80.6

urban - 19.4

Educational Attainment (X6)

illiterate/semiliterate - 55.6

primary school+ - 44.4

Geographic Region of Residence (X7)

Beijing/Shanghai/Tianjin - 6.8

Others - 93.2
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Ethnicity (X9)

Han - 86.9

minority - 13.1

Other Controls

Sex of child (X8)

girl - 48.2

boy - 51.8

Breastfed (X10)

yes - 88.7

no - 11.3

Total Number of Births 114,337
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9 Conclusion and Future Works

In this article we propose a generalized multiparameter likelihood model together

with an efficient two-step estimation procedure. The model is very a general semi-

parametric model, which includes some popular models, such as the partially linear,

varying-coefficients, and semi-varying generalized linear models, as special cases.

We also discuss some possible alternative approaches for estimating the model, in-

cluding backfitting and profile likelihood. We suggest a data-driven procedure for

selecting the bandwidths, and develop an automatic procedure to identify constant

parameters in the underlying model. Theoretical properties and simulation results

show that our estimators of both constant parameters and functional parameters are

accurate. Although in some cases, the profile likelihood approach may has better

performance than our proposed two-step estimation, it requires more constraints

which are not always satisfied. Further, profile likelihood performs poor when the

sample size is small. The simulation results also suggest that our model selection

procedure is effective when the sample size is moderately large.

Here we assume that the covariates involved is known. However, this is often

not the case in practice. In the future, we are going to develop a data-driven vari-

able selection method to decide which parameters should be included in the model.

Inferences under this model is also of interest. Further, our approaches rely heavily

on kernel smoothing, hence design sparsity is an important issue. Existing methods
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in the regression case such as ridging (Seifert and Gasser, 2000) and interpolation

(Hall and Turlach, 1997) may not be directly applicable. Finally, our approaches

may be applied to different settings such as hazzard regression, longitudinal data

analysis, etc..
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Fan, J., Härdle, W., and Mammen, E. (1998), “Direct estimation of additive and
linear components for high dimensional data,” The Annals of Statistics, 26,
943–971.

Fan, J., and Huang, T. (2005), “Profile Likelihood Inferences on semiparametric
varying-coefficient partially linear models,” Bernoulli, 11, 1031–1057.

Fan, J., and Jiang, J. (2005), “Nonparametric inference for additive models,”
Journal of the American Statistical Association, 100, 890–907.

Fan, J. and Li, R. (2001), “Variable selection via nonconcave penalized likelihood
and its oracle properties,” Journal of the American Statistical Association, 96,
1348–1360.

(2002), “Variable selection for Cox’s proportional hazards model and frailty
model,” The Annals of Statistics, 30, 74–99.

(2004), “New estimation and model selection procedures for semiparametric
modeling in longitudinal data analysis,” Journal of the American Statistical
Association, 99, 710–723.

Fan, J., and Wong, W. H. (2000), “On Profile Likelihood: Comment,” Journal of
the American Statistical Association, 95, 468–471.

Fan, J. and Zhang, W. (1999), “Statistical estimation in varying coefficient mod-
els,” The Annals of Statistics, 27, 1491–1518.

80



Hall, P., and Turlach, B.A. (1997), “Interpolation methods for adapting to sparse
design in nonparametric regression,” Journal of the American Statistical As-
sociation, 92, 466 – 472.
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Appendices

A Proofs for Backfitting

Here we follow the proofs of Van Keilegom and Carroll (2007) and extend their

results to the current setup. We first introduce two theorems in Chen, Linton and

Van Keilegom (2003) (CLV hereafter) which we will make use later:

Theorem CLV1. Let M(θ, a) = E
{

d

dθ
L (θ, a)

}
and Mn(θ, a) = d

dθ
Ln (θ, a). Sup-

pose that θ0 satisfies M(θ0, a0) = 0, and that

(1.1) ∥M(θ̂, â)∥ 6 infθ ∥M(θ, â)∥+ op(1).

(1.2) For all δ > 0, there exists ϵ > 0 such that inf∥θ−θ0∥>δ
∥M(θ, a0)∥ ≥ ϵ > 0.

(1.3) For all θ, M(θ, a) is continuous in a at a = a0.

(1.4) ∥â − a0∥ = op(1).

(1.5) For all positive sequences δn with δn = o(1),

sup
θ,∥a−a0∥≤δn

∥Mn(θ, a)−M(θ, a)∥ = op(1).

Then, θ̂ − θ0 = op(1).

Theorem CLV2. Let Γθ(θ, a) =
∂

∂θ
M(θ, a) and

Γa(θ, a)[ξ] = lim
τ→0

1

τ
{M(θ, a + τξ)−M(θ, a)}
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be the Gâteaux-derivative of M(θ, a) in the direction of ξ. Suppose that θ0 satisfies

M(θ0, a0) = 0, ∥θ̂ − θ0∥ = op(1), and that

(2.1) ∥Mn(θ̂, â)∥ = infθ ∥Mn(θ, â)∥+ op(1/
√
n).

(2.2) (i) Γθ(θ, a0) exists for all θ, and is continuous at θ = θ0.

(ii) The matrix Γθ ≡ Γθ(θ0, a0) is of full rank.

(2.3) Γa(θ, a0)[a− a0] exists in all directions [a− a0]. For all positive sequences δn

with δn = o(1),

(i) ∥M(θ, a)−M(θ, a0)−Γa(θ, a0)[a−a0]∥ ≤ c∥a−a0∥2 for some constant

c ≥ 0.

(ii) ∥Γa(θ, a0)[a − a0]− Γa(θ0, a0)[a − a0]∥ ≤ o(1)δn.

(2.4) ∥â − a0∥ = op(n
−1/4).

(2.5) For all positive sequences δn with δn = o(1),

sup
∥θ−θ0∥≤δn,∥a−a0∥≤δn

∥Mn(θ, a)−M(θ, a)−Mn(θ0, a0)∥ = op(n
−1/2).

(2.6) For some finite matrix V ,
√
n{Mn(θ0, a0) + Γa(θ0, a0)[â − a]} D−→ N(0, V ).

Then,
√
n(θ̂ − θ0

D−→ N(0,Ω) where Ω = G−1(θ0)V G−1(θ0).

We utilize the two theorems mentioned before to prove theorem 1. Denote

MBF (θ, a) = E
{

d

dθ
L
(
θ, aθ

)}
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and define

ΓBF,a(θ, a)[ξ] = lim
τ→0

1

τ
{MBF (θ, a + τξ)−MBF (θ, a)}

= E
{

∂

∂aE
[
d

dθ
L
(
θ, aθ

)
|U
]
ξθ

}
for some function ξθ. We impose the following conditions:

(BF1) The bandwidth h satisfies nh4 → 0 as n → ∞.

(BF2) (i) ∥â − a0∥∞ = oP (n
−1/4).

(ii) sup ∥â ˆθ
− âθ0

∥ = oP (1)∥θ̂ − θ0∥.

(iii) supu |n−1
∑n

i=1Kh(Ui − u) ∂
∂a log f

(
Yi;Xi,θ0, âθ0

(u)
)
| = oP (n

−1/2).

(BF3) (i) L(θ, a) is differentiable with respect to θ and a.

(ii) ∂
∂aE

[
∂

∂θ
L
(
θ, a

0θ
)
|U
]

and ∂

∂θ
E
[

∂
∂aL

(
θ, a

0θ
)
|U
]

exist for all θ, and

they are equal.

(iii) E
{
| ∂
∂aL(θ0, a)|2

}
< ∞ for all a.

(iv) ∂j+k+l

∂θj
∂uk∂al

E
{

∂

∂θ
L(θ, a)|U = u

}
and ∂j+k+l

∂θj
∂uk∂al

E
{

∂
∂aL(θ, a)|U = u

}
exist

for 0 ≤ j + k + l ≤ 2 and are bounded.

(v) G(θ) exists for θ in a neighborhood of θ0, is continuous at θ0 and G(θ0)

is of full rank.

(BF4)
∫∞
0

√
logN(ϵ1/sl , Â, ∥ · ∥∞)dϵ < ∞ for l = 1, · · · , q, where Â = {aθ(·) : a ∈

A,θ ∈ Θ}, N(ϵ,A, ∥ · ∥) is the minimal number of balls {η : ∥η − θ∥ < ϵ} of

radius ϵ needed to cover A.
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(BF5) (i) For all δ > 0, there exists a ϵ > 0 such that inf∥θ−θ0∥>δ
∥MBF (θ, a0) ∥ ≥ ϵ

(ii) For all θ, MBF (θ, a) is continuous in a at a0 (with respect to the ∥ · ∥∞

norm).

(iii) ΓBF,a(θ, a0)[a − a0] exists.

For the proofs below, we restrict our attention to the case q = 1. The general

case q ≥ 1 can be obtained in a similar way, but requires more complex notations.

Lemma A.1. Assume (BF1)–(BF5) and (S2)–(S4) listed in Appendix C hold.

Then,

n−1

n∑
i=1

EU

(
Kh(Ui − U)

π(U)

∂

∂θ
a
0θ0

(U)

[
∂

∂a log f (Yi;Xi,θ0, a0(Ui))−
∂

∂a log f (Yi;Xi,θ0, â0(U))

])

= EU1,U2,Y

(
Kh(U1 − U2)

π(U2)

∂

∂θ
a0θ0(U2)

[
∂

∂a log f{Yi;Xi,θ0, a0(U1)}

− ∂

∂a log f{Yi;Xi,θ0, âθ0
(U2)}

])
+ oP (n

−1/2),

where the expectations are taken conditionally on (Ui, Yi).

Proof: This result immediately from Keilegom and Carroll (2007).

Lemma A.2. Assume (BF1)–(BF5) and (S2)–(S4) listed in Appendix C hold.

Then,

ΓBF,a(θ0, a0)[â − a0] = n−1

n∑
i=1

∂

∂a log f (Yi;Xi,θ0, a0(Ui))
∂

∂θ
a
0θ0

(Ui) + oP (n
−1/2)

(A.1)
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Proof:

ΓBF,a(θ0, a0)[â − a0]

= lim
τ→0

1

τ
E
{

∂

∂θ
L
[
θ0, {a0 + τ(â − a0)θ0

}
]
− ∂

∂θ
L
[
θ, a

0θ0

]}
= E

{
∂

∂aE
(

∂

∂θ
L
[
θ0, a0θ

]
|U
)
(â − a0)θ0

}
= E

{
∂

∂θ
E
(

∂

∂aL
[
θ0, a0θ

]
|U
)
(â − a0)θ0

}
= −E

{
∂

∂aE
(

∂

∂aL
[
θ0, a0θ

]
|U
)
(â − a0)θ0

∂

∂θ
a
0θ0

}
,

(A.2)

since E
(

∂
∂aL

[
θ, a

0θ
]
|U
)
= 0 for all θ. Let g(U) = ∂

∂θ
a
0θ0

(U) and H(Y, a) =

∂
∂a log f(Y ;X,θ0, a(U), then the right hand side of (A.1) equals

n−1

n∑
i=1

EU

(
Kh(Ui − U)

π(U)
g(U)[H{Yi, a0(Ui)} −H{Yi, âθ0

(Ui)}
)
+ oP (n

−1/2),

since n−1
∑n

i=1 Kh(Ui − u)H{Yi, âθ0
(u) = oP (n

−1/2) uniformly in u by assumption

(BF2)(iii). Using Lemma A.1 the latter expression can be written as

EU1,U2,Y

(
Kh(U1 − U2)

π(U2)
g(U2)[H{Y, a0(U1)} − H{Y, âθ0

(U2)}]
)
+ oP (n

−1/2)

= EU1,U2

(
Kh(U1 − U2)

π(U2)
g(U2)[κ{U1, a0(U1)} − κ{U1, âθ0

(U2)}]
)
+ oP (n

−1/2),

where κ(U, a) = E[H(Y, a)|U ]. Using Taylor and assumptions (BF1), (BF3)(iv),
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(S2) and (S3) this can be written as

EU2

(
EU1{Kh(U1 − U2)}

π(U2)
g(U2)[κ{U2, a0(U2)} − κ{U2, âθ0

(U2)}]
)

+EU2

(
EU1{(U1 − U2)Kh(U1 − U2)}

π(U2)
g(U2)

d

du
[κ{u, a0(u)} − κ{u, âθ0

(U2)}]|u=U2

)
+ oP (n

−1/2)

= E
(
g(U)κ{U, a0(U)} − κ{U, âθ0

(U)}
)
+ oP (n

−1/2)

= −E
[
g(U)

∂

∂aE[H{a(U)}|U ]{âθ0
(U)− a0(U)}

]
+ oP (n

−1/2),

since sup ∥âθ0
−a0∥ = oP (n

−1/4). The later expression equals ΓBF,a(θ0, a0)[â−a0]+

oP (n
−1/2) by (A.2). Hence, the result follows.

Proof of Theorem 1. We make use of Theorem CLV2, which states prim-

itive conditions under which θ̂BF is asymptotically normal. First of all, we need

to show that θ̂BF − θ0 = oP (1). For this, we verify the conditions of Theorem

CLV1. Condition (1.1) holds by definition of θ̂BF , while conditions (1.2)–(1.4) are

guaranteed by assumptions (BF2) and (BF5). Finally, condition (1.5) is weaker

than condition (2.5) of Theorem 2 of CLV, which we verify below. Next, we

verify conditions (2.1)–(2.6) of Theorem 2 in CLV. Condition (2.1) is also valid

by construction of the estimator θ̂BF , while condition (2.2) follows from assump-

tion (BF3)(v). Since ΓBF,a(θ, a0)[a − a0] = E
{

∂
∂ad(U, a0)[aθ(U)− a0(U)]

}
, where
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d(U, a) = E
[

∂

∂θ
L(θ, aθ)|U

]
, we have

MBF (θ, a)−MBF (θ, a0)− ΓBF,a(θ, a0)[a − a0]

= E
{
d(U, a)− d(U, a0)−

∂

∂ad(U, a0)[aθ(U)− a0(U)]

}
=

1

2
E
{

∂2

∂a2
d(U, ξ)[aθ(U)− a0(U)]2

}
,

(A.3)

where ξ(U) is in between aθ(U) and a0(U). Hence the norm of (A.3) is bounded by

a constant times ∥a− a0∥2∞. This shows the first part of (2.3). For the second part,

it follows from the proof of Theorem 2 in CLV that it suffices to show that

∥ΓBF,a(θ̂, a0)[â − a0]− ΓBF,a(θ0, a0)[â − a0]∥ = op(1)∥θ̂ − θ0∥,

and this follows from (BF2) (iii), (BF3) (iv) and (S2). Next, (2.4) follows from

(BF2) (i), while (2.5) is guaranteed by (BF4). It remains to verify (2.6). Since

ΓBF,a(θ0, a0)[â − a0] and MnBF (θ0, a0), where MnBF (θ0, a0) is sample version of

MBF (θ0, a0), are sums of i.i.d. terms plus negligible terms of lower order (see Lemma

A.2.), this follows immediately. The asymptotic normality of θ̂BF now follows.

89



B Proofs for Profile Likelihood Estimation

Denote

MPR (θ, a, a′) = E
{

∂

∂θ
L
(
θ, aθ

)
+

∂

∂aL
(
θ, aθ

)
a′
θ

}
and

ΓPR,a,a′(θ, a, a′)[ξ, ζ] = lim
τ→0

1

τ
{MPR(θ, a + τξ, a′ + τζ)−MPR(θ, a, a′)} .

The assumptions we need to impose are the following:

Regularity Conditions

(PR1) a0 is partially differentiable with respect to the components of θ, ∥ãθ−a0∥∞ =

oP (n
−1/4), and ∥ ∂

∂θ
ãθ − ∂

∂θ
a
0θ∥∞ = oP (n

−1/4)

(PR2) (i) L(θ, a) is differentiable with respect to θ and a.

(ii) ∂
∂aE

[
∂

∂θ
L
(
θ, a

0θ
)
|U
]

and ∂

∂θ
E
[

∂
∂aL

(
θ, a

0θ
)
|U
]

exist for all θ, and

they are equal.

(iii) ∂
∂a2 E

[
∂

∂θ
L
(
θ, a

0θ
)
|U
]

and ∂
∂a2 E

[
∂
∂aL

(
θ, a

0θ
)
|U
]

exist for all θ and a

and are bounded within the support of U .

(iv) G(θ) exists for θ in a neighborhood of θ0, is continuous at θ0 and G(θ0)

is of full rank.

(PR3)
∫∞
0

√
logN(ϵ1/sl , Â, ∥ · ∥∞)dϵ < ∞ for l = 1, · · · , q, where Â = {aθ(·) : a ∈

A,θ ∈ Θ}, N(ϵ,A, ∥ · ∥) is the minimal number of balls {η : ∥η − θ∥ < ϵ}.
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(PR4) (i) For all δ > 0, there exists a ϵ > 0 such that inf∥θ−θ0∥>δ
∥MPR

(
θ, a0,

∂

∂θ
a
0θ

)
∥ ≥

ϵ

(ii) For all θ, MPR (θ, a, a′) is continuous in (a, a′) at
(

a0,
∂

∂θ
a
0θ

)
(with

respect to the ∥ · ∥∞ norm).

Lemma B.1. Assume (PR1)–PR(4). Then, for any a(·), a′(·) and θ, ΓPR,a,a′(θ, a, a′)[ξ, ζ] =

0.

Proof:

ΓPR,a,a′(θ, a, a′)[ξ, ζ]

= lim
τ→0

1

τ
E
{

∂

∂θ
L
[
θ, (a0 + τξ)θ

]
− ∂

∂θ
L
[
θ, a

0θ0

]}
+ lim

τ→0

1

τ
E
{

∂

∂aL
[
θ, (a0 + τξ)θ

]
− ∂

∂aL
[
θ, a

0θ
]
(a0 + τζ)θ

}
+ lim

τ→0

1

τ
E
{

∂

∂aL
[
θ, a

0θ
]
τζθ

}
(B.1)

The third term of (B.1) equals E
{

E
(

∂
∂aL[θ, a0θ]|U

)
ζθ
}
= 0, since E

(
∂
∂aL[θ, a0θ]|U

)
=

0. The first term of (B.1) can be written as

E
{(

∂

∂aE
(

∂

∂θ
L
[
θ, a

0θ
]
|U
)
ξθ

)}
,

and the second term equals

E
{(

∂

∂aE
(

∂

∂aL
[
θ, a

0θ
]
|U
)
ξθ

)
∂

∂θ
a
0θ

}
=− E

{(
∂

∂θ
E
(

∂

∂aL
[
θ, a

0θ
]
|U
)
ξθ

)}
,

since
∂

∂θ
E
(

∂

∂aL
[
θ, a

0θ
]
|U
)
+

∂

∂aE
(

∂

∂aL
[
θ, a

0θ
]
|U
)

∂

∂θ
a
0θ = 0
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by E
(

∂
∂aL[θ, a0θ]|U

)
= 0. The result now follows by (PR2).

Proof of Theorem 2. In a manner similar to the backfitting procedure,

we proceed by checking the primitive conditions of Theorem CLV2 introduced in

the previous section. The verification of the conditions in that theorem is much

the same as for the backfitting procedure, except for conditions (2.3) and (2.5).

From the proof of Lemma B.1. that ΓPR,a,a′

(
θ, a0,

∂

∂θ
a
0θ[a − a0, η − ∂

∂θ
a
0θ]
)
=

E
{

∂
∂ad1(U, a0)[aθ(U)− a0(U)]

}
+E

{
∂
∂ad2(U, a0)[aθ(U)− a0(U)] ∂

∂θ
a0(U)

}
, where

d1(U, a) = E
[

∂

∂θ
L{θ, aθ(U)}|U

]
and d2(U, a) = E

[
∂
∂aL{θ, aθ(U)}|U

]
, we have

MPR(θ, a, η)−MPR(θ, a0,
∂

∂θ
a0)− ΓPR,a,η

(
θ, a0,

∂

∂θ
a
0θ[a − a0, η −

∂

∂θ
a
0θ

)
= E

{
d1(U, a)− d1(U, a0)−

∂

∂ad1(U, a0)(aθ − a0)(U)

}
+ E

{
d2(U, a)− d2(U, a0)−

∂

∂ad2(U, a0)(a − a0)(U)η(U)

}
+ E

{
d2(U, a0)

[
η − ∂

∂θ
a
0θ

]
(U)

}
+ E

{
∂

∂ad2(U, a0)(aθ − a0)(U)+

[
η − ∂

∂θ
a
0θ

]
(U)

}
=

1

2
E
{

∂2

∂θ2d1(U, ζ1)(aθ − a0)
2(U)

}
+

1

2
E
{

∂2

∂θ2d2(U, ζ2)(aθ − a0)
2(U)

∂

∂θ
a
0θ(U)

}
+ E

{
∂2

∂θ2d2(U, a0(aθ − a0)(U)

[
η − ∂

∂θ
a
0θ

]}
(B.2)
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since d2(U, a0) = 0, where ζ1(U) and ζ2(U) are in between aθ(U) and a0(U). Hence

the norm of (B.2) is bounded by a constant times ∥(a − a0, η − ∂

∂θ
a
0θ)∥

2
∞. This

shows the first part of (2.3), while the second part follows by Lemma B.1. Finally,

(2.5) is guaranteed by assumption (PR3). The result now follows.
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C Proofs for 2-Step Estimation

We impose the following technical conditions.

Regularity Conditions

(S1) Let Xj be the jth component of X. We assume that EX2s
j < ∞, j = 1, · · · , p,

for some s > 2.

(S2) Assume that aj(·) is twice continuously differentiable with a non vanishing

second derivative, äj(·), j = 1, · · · , ℓ.

(S3) The marginal density π(·) of U has a continuous second derivative, has a

compact support, and is bounded below.

(S4) The kernel function K(·) is a bounded, symmetric density function, has a

compact support, and satisfies a Lipschitz condition.

(S5) As n → ∞, h → 0, nhγ/ logh → ∞, h1 → 0, nhγ
1/ logh1 → ∞, for any

γ > s/(s− 2) with s given in Condition (S1).

(S6) Assume that f(y; X, θ, z) > 0, and f(y; X, θ, z) has a continuous, bounded

third derivative with respect to (θ, z).

(S7) There exists a positive constant λ0 such that the smallest eigenvalue of I(γ)

is greater than λ0. Also, assume that E(XXT ) is positive definite.
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Lemma C.1. Let (Z1,W1), ..., (Zn,Wn) be iid observations from a bivariate

random vector (Z,W ). Assume further that E|W |s < ∞ and sup
x

∫
|y|sζ(x, y)dy <

∞, where ζ denotes the joint density of (Z,W ). Let K be a bounded positive

function with a bounded support, satisfying a Lipschitz condition. Then

sup
x∈D

∣∣∣n−1

n∑
i=1

{
Kh(Zi − x)Wi − E[Kh(Zi − x)Wi]

}∣∣∣ = OP

(
{nh/ log(1/h)}−1/2

)
provided that n2ε−1h −→ ∞ for some ε < 1− s−1 and D is a compact set.

Proof: This follows immediately from the result of Mack and Silverman (1982).

Proof of Theorem 3. By abuse of notation, from here on, we use aj, bj, and

Vc to denote the true value of aj(u), ȧj(u), and Vc(u) for a generic point u. Define

z̃i = (θT, cT
i )

T, ci =
(

XT
i

{
a1 + b1(Ui − u)

}
, · · · , XT

i

{
aℓ + bℓ(Ui − u)

})T
,

ξ =
(
θT, aT

1, bT
1, · · · , aT

ℓ , bT
ℓ

)T
, γi =

(
θT, XT

i a1(Ui), · · · , XT
i aℓ(Ui)

)T
,

Hi = diag
(
Iq, Iℓ ⊗ (XT

i , (Ui − u)XT
i )

T) , B = diag
(

Iq, Iℓ ⊗
{

diag(1, h)⊗ Ip
})

.

We first prove that ξ̃ ≡
(
θ̃(u)T, ã1(u)

T, b̃1(u)
T, · · · , ãℓ(u)

T, b̃ℓ(u)
T
)T

, the maximizer

of L given in (4.8), is a consistent estimator of ξ.

Note that, given the sample, z̃i is a function of ξ and z̃i can be written as z̃i(ξ).

To prove ξ̃ is consistent, we first prove

P

( n∑
i=1

Kh(Ui−u) log {f (Yi; Xi, z̃i(ξ
′)) /f (Yi; Xi, z̃i(ξ))} < 0

)
−→ 1, as n −→ ∞,

(C.1)
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for any ξ′ ̸= ξ. By the law of large numbers, to prove (C.1), we need only prove

E
[
Kh(U1 − u) log

{
f (Y1; X1, z̃1(ξ

′)) /f (Y1; X1, z̃1(ξ))
}]

< 0. (C.2)

It is easy to see that

E
[
Kh(U1 − u) log

{
f (Y1; X1, z̃1(ξ

′)) /f (Y1; X1, z̃1(ξ))
}]

= π(u)E
[

log {f (Y1; X1, z̃1(ξ
′)) /f (Y1; X1, z̃1(ξ))} |U1 = u

]
+ o(1).

Because the log function is strictly concave, Jensen’s inequality shows that

E
[

log {f (Y1; X1, z̃1(ξ
′)) /f (Y1; X1, z̃1(ξ))} |U1 = u

]
< log

(
E
[
f (Y1; X1, z̃1(ξ

′)) /f (Y1; X1, z̃1(ξ)) |U1 = u
] )

= 0.

Thus (C.2) holds, and this implies that (C.1) holds.

Let ξ̃j and ξj be the jth components of ξ̃ and ξ, for any ε > 0,

P (∥ξ̃ − ξ∥ > ε) ≤
q+2pℓ∑
j=1

P (|ξ̃j − ξj| > ε1),

where ε1 = ε(q + 2pℓ)−1/2.

Note that conditions (6) and (7) imply that ξ̃ is the unique root of the function

L(ξ′′) =
n∑

i=1

Kh(Ui − u) log {f (Yi; Xi, z̃i(ξ
′′))} .

Thus for any fixed j, j = 1, · · · , q + 2pℓ, letting ξ−ε be ξ with the jth component

replaced by ξj − ε1 and letting ξε be ξ with the jth component replaced by ξj + ε1,
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we have

P (|ξ̃j − ξj| ≤ ε1) ≥ P
(
L(ξ) > L(ξ−ε), L(ξ) > L(ξε)

)
= 1− P

(
L(ξ) ≤ L(ξ−ε) or L(ξ) ≤ L(ξε)

)
≥ 1− P

(
L(ξ) ≤ L(ξ−ε)

)
− P

(
L(ξ) ≤ L(ξε)

)
.

By (C.1), we have

P
(
L(ξ) ≤ L(ξ−ε)

)
−→ 0, P

(
L(ξ) ≤ L(ξε)

)
−→ 0.

Thus,

P (|ξ̃j − ξj| ≤ ε1) −→ 1,

which leads to P (∥ξ̃ − ξ∥ > ε) −→ 0; that is, ξ̃ is consistent.

By Taylor’s expansion and conditions (2) and (3), we have

z̃i − γi = −
(
01×q, XT

i

{
a1(Ui)− a1 − b1(Ui − u)

}
, · · · , XT

i

{
aℓ(Ui)− aℓ − bℓ(Ui − u)

})T
= −2−1

(
01×q, XT

i ä1(u), · · · , XT
i äℓ(u)

)T
(Ui − u)2 + oP (h

2)

uniformly in i. Together with condition (6), the foregoing equality leads to

B−1∂L

∂ξ
=

n∑
i=1

Kh(Ui − u)B−1∂z̃i

∂ξ

∂ log f(Yi; Xi, z̃i)

∂z̃i

=
n∑

i=1

Kh(Ui − u)B−1Hig(Yi; Xi, z̃i)

=
n∑

i=1

Kh(Ui − u)B−1Hig(Yi; Xi, γi)

−2−1

n∑
i=1

Kh(Ui − u)B−1Hiġ(Yi; Xi, γi)
(

01×q, XT
i ä1(u), · · · , XT

i äℓ(u)
)T

×(Ui − u)2
{
1 + oP (1)

}
△
= A1 + A2

{
1 + oP (1)

}
.
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Let

Ω(u) = E
{

HI(γ)
(
01×q, XTä1(u), · · · , XTäℓ(u)

)T∣∣∣U = u
}
.

By Lemma C.1 and conditions (1) and (3)–(6), we have

1

n
A2 = 2−1π(u)Ω(u)µ2h

2
{
1 + oP (1)

}
.

It is easy to see that

n−1/2h1/2A1
D−→ N

(
0(2pℓ+q)×1, V(u)π(u)

)
,

where V(u) = E
{
ν0HI(γ)HT + ν2HcI(γ)HT

c

∣∣∣U = u
}
. By Lemma C.1 and condi-

tions (1)–(6),

B−1 ∂2L

∂ξ∂ξT B−1 =
n∑

i=1

Kh(Ui − u)B−1∂z̃i

∂ξ
ġ(Yi; Xi, γi)

(
∂z̃i

∂ξ

)T

B−1

=
n∑

i=1

Kh(Ui − u)B−1Hiġ(Yi; Xi, γi)HT
i B−1

= nVc(u)π(u)
{
1 + oP (1)

}
.

Thus,

(nh)1/2B
(

∂2L

∂ξ∂ξT

)−1

BA1
D−→ N

(
0(2pℓ+q)×1, Vc(u)

−1V(u)Vc(u)
−1 π(u)−1

)
,

B
(

∂2L

∂ξ∂ξT

)−1

BA2 = 2−1µ2h
2Vc(u)

−1Ω(u)
{
1 + oP (1)

}
.

By Taylor’s expansion and the consistency of ξ̃, we have

ξ̃ − ξ = −
(

∂2L

∂ξ∂ξT

)−1
∂L

∂ξ

{
1 + oP (1)

}
.
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This leads to

θ̃(u)− θ = −(Iq,0q×(2pℓ))

{
B
(

∂2L

∂ξ∂ξT

)−1

BA1 + B
(

∂2L

∂ξ∂ξT

)−1

BA2

}{
1 + oP (1)

}
.

Let Lj, A2,j and ξj be L, A2 and ξ but with u replaced by Uj. By Lemma C.

1 and conditions (1)–(6),

1

n

n∑
j=1

B
(

∂2Lj

∂ξj∂ξ
T
j

)−1

BA2,j = 2−1µ2h
2E
{

Vc(U)−1Ω(U)
}{

1 + oP (1)
}
.

Let A1,j, Vcj, and Hi,j be A1, Vc, and Hi but with u replaced by Uj. By

Lemma C.1, we have

n(θ̂ − θ) = (Iq,0q×(2pℓ))
n∑

j=1

B
(

∂2Lj

∂ξj∂ξ
T
j

)−1

BA1,j +OP (nh
2)

= (Iq,0q×(2pℓ))
n∑

j=1

{ n∑
k=1

Kh(Uk − Uj)B−1Hk,jġ(Yk; Xk, γk)HT
k,jB−1

}−1

×
n∑

i=1

Kh(Ui − Uj)B−1Hi,jg(Yi; Xi, γi) +OP (nh
2)

= n−1(Iq,0q×(2pℓ))
n∑

i=1

n∑
j=1

Kh(Ui − Uj)V−1
cj π(Uj)

−1B−1Hi,jg(Yi; Xi, γi)

×
{
1 + oP (1)

}
+OP (nh

2).

By tedious calculation, we have

n−3/2

n∑
i=1

n∑
j=1

Kh(Ui − Uj)V−1
cj π(Uj)

−1B−1Hi,jg(Yi; Xi, γi)

D−→ N
(
0(2pℓ+q)×1, E

{
Vc(U)−1V0(U)Vc(U)−1

})
,

which implies that if h = o(n−1/4), then

n1/2(θ̂ − θ)
D−→ N(0q×1, ∆).
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Proof of Theorem 4. Let

L1 =
n∑

i=1

Kh1(Ui − u) log f(Yi; Xi, θ, ci),

η = (aT
1, bT

1, · · · , aT
ℓ , bT

ℓ )
T, B1 = Iℓ ⊗ {diag(1, h1)⊗ Ip},

m(Yi; Xi, θ, zi) =
∂ log f(Yi; Xi, θ, zi)

∂zi

, zi = (XT
i a1(Ui), · · · , XT

i aℓ(Ui))
T,

ṁ(Yi; Xi, θ, zi) =
∂m(Yi; Xi, θ, zi)

∂zi

, Di = Iℓ ⊗ (XT
i , (Ui − u)XT

i )
T.

Let η̃ be the maximizer of L1 with respect to η. Using the same argument as in the

proof of Theorem 1, we can show that η̃ is a consistent estimator of η.

By simple calculation and conditions (2) and (6), we have

B−1
1

∂L1

∂η
=

n∑
i=1

Kh1(Ui − u)B−1
1

∂ci

∂η

∂ log f(Yi; Xi, θ, ci)

∂ci

=
n∑

i=1

Kh1(Ui − u)B−1
1 Di

∂ log f(Yi; Xi, θ, ci)

∂ci

=
n∑

i=1

Kh1(Ui − u)B−1
1 Dim(Yi; Xi, θ, zi)

−2−1

n∑
i=1

Kh1(Ui − u)B−1
1 Diṁ(Yi; Xi, θ, zi)

(
ä1(u), · · · , äℓ(u)

)T
Xi(Ui − u)2

×
{
1 + oP (1)

}
△
= J1 + J2

{
1 + oP (1)

}
.

By Lemma C.1 and conditions (1) and (3)–(6), it is easy to see that

1

n
J2 = 2−1Γµ2h

2
1π(u)

{
1 + oP (1)

}
.
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By the central limit theorem,

n−1/2h
1/2
1 J1

D−→ N
(

0(2pℓ)×1, Gπ(u)
)
.

By Lemma C.1 and conditions (1)–(6),

B−1
1

∂2L1

∂η∂ηT B−1
1 =

n∑
i=1

Kh1(Ui − u)B−1
1

∂ci

∂η
ṁ(Yi; Xi, θ, ci)

(
∂ci

∂η

)T

B−1
1

=
n∑

i=1

Kh1(Ui − u)B−1
1 Diṁ(Yi; Xi, θ, zi)DT

i B−1
1

= nGcπ(u)
{
1 + oP (1)

}
.

Thus,

(nh1)
1/2B1

(
∂2L1

∂η∂ηT

)−1

B1J1
D−→ N

(
0(2pℓ)×1, G−1

c GG−1
c π(u)−1

)
,

B1

(
∂2L1

∂η∂ηT

)−1

B1J2 = 2−1µ2h
2
1G−1

c Γ
{
1 + oP (1)

}
.

By Taylor’s expansion and the consistency of η̃, we have

η̃ − η = −
(

∂2L1

∂η∂ηT

)−1
∂L1

∂η

{
1 + oP (1)

}
.

Thus,

(nh1)
1/2
{

B1 (η̃ − η) + 2−1µ2h
2
1G−1

c Γ
} D−→ N

(
0(2pℓ)×1, G−1

c GG−1
c π(u)−1

)
.

Because θ̂ has the n−1/2 convergence rate, the maximizer of L1 with respect to η

would behave exactly the same as the maximizer of (4.10) asymptotically. Thus,

(nh1)
1/2(â − a +B)

D−→ N
(

0(pℓ)×1, Σ
)
.
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