Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 高分子科學與工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86719
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor童世煌(Shih-Huang Tung)
dc.contributor.authorFang-Ting Chenen
dc.contributor.author陳芳庭zh_TW
dc.date.accessioned2023-03-20T00:13:19Z-
dc.date.copyright2022-08-05
dc.date.issued2022
dc.date.submitted2022-08-01
dc.identifier.citation(1) Hassan, A. M.; Fadl, E. A.; Ebrahim, S. Electrospinning of polystyrene polybutadiene copolymer for oil spill removal. SN Applied Sciences 2020, 2 (3), 1-8. (2) Chen, P.-Y.; Tung, S.-H. One-step electrospinning to produce nonsolvent-induced macroporous fibers with ultrahigh oil adsorption capability. Macromolecules 2017, 50 (6), 2528-2534. (3) Zhu, H.; Qiu, S.; Jiang, W.; Wu, D.; Zhang, C. Evaluation of electrospun polyvinyl chloride/polystyrene fibers as sorbent materials for oil spill cleanup. Environmental Science & Technology 2011, 45 (10), 4527-4531. (4) Huang, C.; Thomas, N. Fabricating porous poly (lactic acid) fibres via electrospinning. European Polymer Journal 2018, 99, 464-476. (5) Liu, W.; Zhu, L.; Huang, C.; Jin, X. Direct electrospinning of ultrafine fibers with interconnected macropores enabled by in situ mixing microfluidics. ACS Applied Materials & Interfaces 2016, 8 (50), 34870-34878. (6) Kim, H.-J.; Park, S. J.; Park, C. S.; Le, T.-H.; Lee, S. H.; Ha, T. H.; Kim, H.-i.; Kim, J.; Lee, C.-S.; Yoon, H. Surface-modified polymer nanofiber membrane for high-efficiency microdust capturing. Chemical Engineering Journal 2018, 339, 204-213. (7) Luong-Van, E.; Grøndahl, L.; Chua, K. N.; Leong, K. W.; Nurcombe, V.; Cool, S. M. Controlled release of heparin from poly (ε-caprolactone) electrospun fibers. Biomaterials 2006, 27 (9), 2042-2050. (8) Kim, G. H.; Yoon, H. A direct-electrospinning process by combined electric field and air-blowing system for nanofibrous wound-dressings. Applied Physics A 2008, 90 (3), 389-394. (9) Mirjalili, M.; Zohoori, S. Review for application of electrospinning and electrospun nanofibers technology in textile industry. Journal of Nanostructure in Chemistry 2016, 6 (3), 207-213. (10) Chen, Y.-R.; Chung, H.-W.; Tung, S.-H. On the Formation Mechanism of Nonsolvent-Induced Porous Polylactide Electrospun Fibers. ACS Applied Polymer Materials 2021, 3 (10), 5096-5104. (11) Boys, C. V. LVII. On the production, properties, and some suggested uses of the finest threads. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 1887, 23 (145), 489-499. (12) Anton, F. Process and apparatus for preparing artificial threads. US Patent 1975504, 1934. (13) Taylor, G. I. Disintegration of water drops in an electric field. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences 1964, 280 (1382), 383-397. (14) Taylor, G. I. The force exerted by an electric field on a long cylindrical conductor. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences 1966, 291 (1425), 145-158. (15) Huang, Z.-M.; Zhang, Y.-Z.; Kotaki, M.; Ramakrishna, S. A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Composites Science and Technology 2003, 63 (15), 2223-2253. (16) Xue, J.; Wu, T.; Dai, Y.; Xia, Y. Electrospinning and electrospun nanofibers: Methods, materials, and applications. Chemical Reviews 2019, 119 (8), 5298-5415. (17) Zhou, Y.; Liu, Y.; Zhang, M.; Feng, Z.; Yu, D.-G.; Wang, K. Electrospun nanofiber membranes for air filtration: A review. Nanomaterials 2022, 12 (7), 1077. (18) Bhardwaj, N.; Kundu, S. C. Electrospinning: a fascinating fiber fabrication technique. Biotechnology Advances 2010, 28 (3), 325-347. (19) Doshi, J.; Reneker, D. H. Electrospinning process and applications of electrospun fibers. Journal of Electrostatics 1995, 35 (2-3), 151-160. (20) Chronakis, I. S. Micro-/nano-fibers by electrospinning technology: processing, properties and applications. Micromanufacturing Engineering and Technology 2010, 2010, 264-286. (21) Reneker, D. H.; Yarin, A. L. Electrospinning jets and polymer nanofibers. Polymer 2008, 49 (10), 2387-2425. (22) Reneker, D. H.; Yarin, A. L.; Fong, H.; Koombhongse, S. Bending instability of electrically charged liquid jets of polymer solutions in electrospinning. Journal of Applied Physics 2000, 87 (9), 4531-4547. (23) Košťáková, E.; Seps, M.; Pokorný, P.; Lukáš, D. Study of polycaprolactone wet electrospinning process. Express Polymer Letters 2014. (24) Haefner, S.; Benzaquen, M.; Bäumchen, O.; Salez, T.; Peters, R.; McGraw, J. D.; Jacobs, K.; Raphaël, E.; Dalnoki-Veress, K. Influence of slip on the Plateau–Rayleigh instability on a fibre. Nature Communications 2015, 6 (1), 1-6. (25) Eggers, J. Nonlinear dynamics and breakup of free-surface flows. Reviews of Modern Physics 1997, 69 (3), 865. (26) Valizadeh, A.; Mussa Farkhani, S. Electrospinning and electrospun nanofibres. IET Nanobiotechnology 2014, 8 (2), 83-92. (27) Jacobs, V.; Anandjiwala, R. D.; Maaza, M. The influence of electrospinning parameters on the structural morphology and diameter of electrospun nanofibers. Journal of Applied Polymer Science 2010, 115 (5), 3130-3136. (28) Beachley, V.; Wen, X. Effect of electrospinning parameters on the nanofiber diameter and length. Materials Science and Engineering: C 2009, 29 (3), 663-668. (29) Matabola, K.; Moutloali, R. The influence of electrospinning parameters on the morphology and diameter of poly (vinyledene fluoride) nanofibers-effect of sodium chloride. Journal of Materials Science 2013, 48 (16), 5475-5482. (30) Luo, C.; Stride, E.; Edirisinghe, M. Mapping the influence of solubility and dielectric constant on electrospinning polycaprolactone solutions. Macromolecules 2012, 45 (11), 4669-4680. (31) Thompson, C.; Chase, G. G.; Yarin, A.; Reneker, D. Effects of parameters on nanofiber diameter determined from electrospinning model. Polymer 2007, 48 (23), 6913-6922. (32) Lu, Z.; Zhang, B.; Gong, H.; Li, J. Fabrication of hierarchical porous poly (L-lactide)(PLLA) fibrous membrane by electrospinning. Polymer 2021, 226, 123797. (33) Zong, X.; Kim, K.; Fang, D.; Ran, S.; Hsiao, B. S.; Chu, B. Structure and process relationship of electrospun bioabsorbable nanofiber membranes. Polymer 2002, 43 (16), 4403-4412. (34) Yalcinkaya, F.; Yalcinkaya, B.; Jirsak, O. Influence of salts on electrospinning of aqueous and nonaqueous polymer solutions. Journal of Nanomaterials 2015, 2015. (35) Motamedi, A. S.; Mirzadeh, H.; Hajiesmaeilbaigi, F.; Bagheri-Khoulenjani, S.; Shokrgozar, M. Effect of electrospinning parameters on morphological properties of PVDF nanofibrous scaffolds. Progress in Biomaterials 2017, 6 (3), 113-123. (36) Jia, Z.; Li, Q.; Liu, J.; Yang, Y.; Wang, L.; Guan, Z. Preparation and properties of poly (vinyl alcohol) nanofibers by electrospinning. Journal of Polymer Engineering 2008, 28 (1-2), 87-100. (37) De Vrieze, S.; Van Camp, T.; Nelvig, A.; Hagström, B.; Westbroek, P.; De Clerck, K. The effect of temperature and humidity on electrospinning. Journal of Materials Science 2009, 44 (5), 1357-1362. (38) Mailley, D.; Hebraud, A.; Schlatter, G. A review on the impact of humidity during electrospinning: From the nanofiber structure engineering to the applications. Macromolecular Materials and Engineering 2021, 306 (7), 2100115. (39) Huang, L.; Bui, N. N.; Manickam, S. S.; McCutcheon, J. R. Controlling electrospun nanofiber morphology and mechanical properties using humidity. Journal of Polymer Science Part B: Polymer Physics 2011, 49 (24), 1734-1744. (40) Tripatanasuwan, S.; Zhong, Z.; Reneker, D. H. Effect of evaporation and solidification of the charged jet in electrospinning of poly (ethylene oxide) aqueous solution. Polymer 2007, 48 (19), 5742-5746. (41) Megelski, S.; Stephens, J. S.; Chase, D. B.; Rabolt, J. F. Micro-and nanostructured surface morphology on electrospun polymer fibers. Macromolecules 2002, 35 (22), 8456-8466. (42) Ding, J.; Zhang, A.; Bai, H.; Li, L.; Li, J.; Ma, Z. Breath figure in non-aqueous vapor. Soft Matter 2013, 9 (2), 506-514. (43) Li, L.; Jiang, Z.; Li, M.; Li, R.; Fang, T. Hierarchically structured PMMA fibers fabricated by electrospinning. RSC Advances 2014, 4 (95), 52973-52985. (44) Casper, C. L.; Stephens, J. S.; Tassi, N. G.; Chase, D. B.; Rabolt, J. F. Controlling surface morphology of electrospun polystyrene fibers: effect of humidity and molecular weight in the electrospinning process. Macromolecules 2004, 37 (2), 573-578. (45) Putti, M.; Simonet, M.; Solberg, R.; Peters, G. W. Electrospinning poly (ε-caprolactone) under controlled environmental conditions: Influence on fiber morphology and orientation. Polymer 2015, 63, 189-195. (46) Lu, P.; Xia, Y. Maneuvering the internal porosity and surface morphology of electrospun polystyrene yarns by controlling the solvent and relative humidity. Langmuir 2013, 29 (23), 7070-7078. (47) Fashandi, H.; Karimi, M. Comparative studies on the solvent quality and atmosphere humidity for electrospinning of nanoporous polyetherimide fibers. Industrial & Engineering Chemistry Research 2014, 53 (1), 235-245. (48) Zheng, J.; Zhang, H.; Zhao, Z.; Han, C. C. Construction of hierarchical structures by electrospinning or electrospraying. Polymer 2012, 53 (2), 546-554. (49) Fashandi, H.; Karimi, M. Pore formation in polystyrene fiber by superimposing temperature and relative humidity of electrospinning atmosphere. Polymer 2012, 53 (25), 5832-5849. (50) Qi, Z.; Yu, H.; Chen, Y.; Zhu, M. Highly porous fibers prepared by electrospinning a ternary system of nonsolvent/solvent/poly (l-lactic acid). Materials Letters 2009, 63 (3-4), 415-418. (51) McCann, J. T.; Marquez, M.; Xia, Y. Highly porous fibers by electrospinning into a cryogenic liquid. Journal of the American Chemical Society 2006, 128 (5), 1436-1437. (52) Ye, X.-Y.; Lin, F.-W.; Huang, X.-J.; Liang, H.-Q.; Xu, Z.-K. Polymer fibers with hierarchically porous structure: combination of high temperature electrospinning and thermally induced phase separation. RSC Advances 2013, 3 (33), 13851-13858. (53) Roulia, M.; Chassapis, K.; Fotinopoulos, C.; Savvidis, T.; Katakis, D. Dispersion and sorption of oil spills by emulsifier-modified expanded perlite. Spill Science & Technology Bulletin 2003, 8 (5-6), 425-431. (54) Buist, I.; Potter, S.; Nedwed, T.; Mullin, J. Herding surfactants to contract and thicken oil spills in pack ice for in situ burning. Cold Regions Science and Technology 2011, 67 (1-2), 3-23. (55) Lin, Q.; Mendelssohn, I. A.; Carney, K.; Miles, S. M.; Bryner, N. P.; Walton, W. D. In-situ burning of oil in coastal marshes. 2. Oil spill cleanup efficiency as a function of oil type, marsh type, and water depth. Environmental Science & Technology 2005, 39 (6), 1855-1860. (56) Sarbatly, R.; Krishnaiah, D.; Kamin, Z. A review of polymer nanofibres by electrospinning and their application in oil–water separation for cleaning up marine oil spills. Marine Pollution Bulletin 2016, 106 (1-2), 8-16. (57) Boopathy, R.; Shields, S.; Nunna, S. Biodegradation of crude oil from the BP oil spill in the marsh sediments of southeast Louisiana, USA. Applied Biochemistry and Biotechnology 2012, 167 (6), 1560-1568. (58) Li, P.; Qiao, Y.; Zhao, L.; Yao, D.; Sun, H.; Hou, Y.; Li, S.; Li, Q. Electrospun PS/PAN fibers with improved mechanical property for removal of oil from water. Marine Pollution Bulletin 2015, 93 (1-2), 75-80. (59) Choi, S.-J.; Kwon, T.-H.; Im, H.; Moon, D.-I.; Baek, D. J.; Seol, M.-L.; Duarte, J. P.; Choi, Y.-K. A polydimethylsiloxane (PDMS) sponge for the selective absorption of oil from water. ACS applied materials & interfaces 2011, 3 (12), 4552-4556. (60) Ceylan, D.; Dogu, S.; Karacik, B.; Yakan, S. D.; Okay, O. S.; Okay, O. Evaluation of butyl rubber as sorbent material for the removal of oil and polycyclic aromatic hydrocarbons from seawater. Environmental Science & Technology 2009, 43 (10), 3846-3852. (61) Lin, J.; Shang, Y.; Ding, B.; Yang, J.; Yu, J.; Al-Deyab, S. S. Nanoporous polystyrene fibers for oil spill cleanup. Marine Pollution Bulletin 2012, 64 (2), 347-352. (62) Wu, J.; Wang, N.; Wang, L.; Dong, H.; Zhao, Y.; Jiang, L. Electrospun porous structure fibrous film with high oil adsorption capacity. ACS Applied Materials & Interfaces 2012, 4 (6), 3207-3212. (63) Batchelor, G. K. An Introduction To Fluid Dynamics; 1967. (64) Lin, J.; Ding, B.; Yang, J.; Yu, J.; Sun, G. Subtle regulation of the micro-and nanostructures of electrospun polystyrene fibers and their application in oil absorption. Nanoscale 2012, 4 (1), 176-182. (65) Akhtar, K.; Khan, S. A.; Khan, S. B.; Asiri, A. M. Scanning electron microscopy: Principle and applications in nanomaterials characterization. In Handbook of Materials Characterization, Springer, 2018; pp 113-145. (66) Washburn, E. W. The dynamics of capillary flow. Physical Review 1921, 17 (3), 273. (67) Ritter, H.; Drake, L. Pressure porosimeter and determination of complete macropore-size distributions. . Industrial & Engineering Chemistry Analytical Edition 1945, 17 (12), 782-786. (68) Drake, L. Pore-size distribution in porous materials. Industrial & Engineering Chemistry 1949, 41 (4), 780-785. (69) Deschamps, G.; Caruel, H.; Borredon, M.-E.; Bonnin, C.; Vignoles, C. Oil removal from water by selective sorption on hydrophobic cotton fibers. 1. Study of sorption properties and comparison with other cotton fiber-based sorbents. Environmental Science & Technology 2003, 37 (5), 1013-1015. (70) Zhang, A.; Bai, H.; Li, L. Breath figure: a nature-inspired preparation method for ordered porous films. Chemical Reviews 2015, 115 (18), 9801-9868. (71) Wan, L.-S.; Ke, B.-B.; Zhang, J.; Xu, Z.-K. Pore shape of honeycomb-patterned films: modulation and interfacial behavior. The Journal of Physical Chemistry B 2012, 116 (1), 40-47. (72) Zhang, J.; Sun, B.; Huang, X.; Chen, S.; Wang, G. Honeycomb-like porous gel polymer electrolyte membrane for lithium ion batteries with enhanced safety. Scientific Reports 2014, 4 (1), 1-7. (73) Tanaka, M.; Nishikawa, K.; Okubo, H.; Kamachi, H.; Kawai, T.; Matsushita, M.; Todo, S.; Shimomura, M. Control of hepatocyte adhesion and function on self-organized honeycomb-patterned polymer film. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2006, 284, 464-469. (74) Nishikawa, T.; Nishida, J.; Ookura, R.; Nishimura, S.-I.; Wada, S.; Karino, T.; Shimomura, M. Honeycomb-patterned thin films of amphiphilic polymers as cell culture substrates. Materials Science and Engineering: C 1999, 8, 495-500. (75) Hirai, Y.; Yabu, H.; Matsuo, Y.; Ijiro, K.; Shimomura, M. Arrays of triangular shaped pincushions for SERS substrates prepared by using self-organization and vapor deposition. Chemical Communications 2010, 46 (13), 2298-2300. (76) Du, C.; Zhang, A.; Bai, H.; Li, L. Robust microsieves with excellent solvent resistance: cross-linkage of perforated polymer films with honeycomb structure. ACS Macro Letters 2013, 2 (1), 27-30. (77) Ma, H.; Cui, J.; Song, A.; Hao, J. Fabrication of freestanding honeycomb films with through-pore structures via air/water interfacial self-assembly. Chemical Communications 2011, 47 (4), 1154-1156.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86719-
dc.description.abstract本研究使用高分子苯乙烯-丙烯腈共聚物(SAN)與雙溶劑系統,在電紡過程中利用不同的相分離法,製備多樣形貌的微米級纖維,雙溶劑的選擇與比例皆會影響主導的相分離機制,進而產生表面巨孔或是內部小孔結構的電紡纖維。除了溶劑組合與溶劑比例外,高分子溶液、環境參數、加工參數也皆會影響纖維形貌,故實驗中改變參數的項目為:溶劑組合、溶劑比例、高分子濃度、環境相對濕度、進料流速、電壓及鹽類添加劑等。 實驗結果顯示,不同於以往製作表面多孔纖維大多使用良溶劑與非溶劑組合,本研究使用雙良溶劑系統,當較低沸點之不溶水溶劑及較高沸點之溶水溶劑,於特定溶劑比時,亦能製備出具表面孔洞的纖維,關鍵在選擇的較高沸點親水性溶劑與空氣中水氣的結合,水為高分子的非溶劑,當其凝結於電紡射流表面,會與親水性溶劑結合,促使相分離發生,形成更大的表面孔洞,親水性溶劑與水皆為相當重要的變數,因此我們歸納出一個新的相分離機制-親水性溶劑輔助之呼吸圖法(Hydrophilic Solvent Assitant Breath Figure, HSABF)。其中最佳溶劑組合時,能形成性質優異的表面巨孔纖維,纖維接觸角可達151°,具備超疏水的特性。在油的吸附實驗中,於高分子溶液加入少量鹽類,並調整流速所電紡的纖維,製備出直徑1 µm且表面為多孔結構的纖維,對於吸油有最好的效果,在矽油中的吸附能力可達228 g/g,較相同材料直徑3 µm無孔纖維之吸附能力高出4倍。zh_TW
dc.description.abstractIn this study, poly(styrene-co-acrylonitrile) (SAN) and dual solvents system was used to produce micron-sized fibers with different morphologies by different phase separation methods during electrospinning. The selection and ratio of the solvents affect the dominant phase separation mechanism, resulting in electrospun fibers with surface macroporous or internal small pore structures. In addition to solvent pair and solvent ratio, polymer solution, environmental parameters and processing parameters also affect the fiber morphology. Therefore, the following parameters were manipulated in the experiment: solvent pair, solvent ratio, polymer concentration, ambient relative humidity, feed flow rate, voltage, and salt additives. In the past, the pre-mixed polymer/good solvent/nonsolvent ternary solution was mostly used for fabricating surface porous fibers. In this study, however, we found that in the dual good solvent system, when the lower boiling point solvent is immiscible with water and the higher boiling point solvent is soluble with water, the fibers with surface pores can also be produced at specific solvent ratio. Water is a non-solvent for the polymer. The key point is that water from the surrounding air condenses on the fiber jets surface, the higher boiling point hydrophilic solvent can diffuse into the condensed water droplets to induce phase separation and cause larger surface pores. Both hydrophilic solvent and water are very important experimental variables, so we proposed a new phase separation mechanism - Hydrophilic Solvent Assistant Breath Figure (HSABF). The best solvent pair can form surface macroporous fibers with excellent properties, with the fiber contact angle reaching 151° and demonstrating superhydrophobic properties. In the oil adsorption experiment, we prepared porous fibers with 1 µm diameter, which show the best performance on oil adsorption. The adsorption capacity in silicone oil could reach 228 g/g, which was 4 times higher than the adsorption capacity of non-porous fibers with 3 µm diameter.en
dc.description.provenanceMade available in DSpace on 2023-03-20T00:13:19Z (GMT). No. of bitstreams: 1
U0001-2807202201385300.pdf: 9829380 bytes, checksum: da90ff60081bb6765fbe4e1b787c51b6 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents口試委員審定書 i 致謝 ii 摘要 iii Abstract iv 圖目錄 ix 表目錄 xiii 第一章 緒論 1 1.1前言及研究動機 1 第二章 文獻回顧 2 2.1靜電紡絲法 2 2.1.1概述 2 2.1.2過程及原理 2 2.1.3影響電紡之參數 6 2.2製造纖維孔洞之機制 9 2.2.1呼吸圖法(Breath Figure, BF) 9 2.2.2蒸氣誘導相分離法(Vapor-Induced Phase Separation, VIPS) 11 2.2.3非溶劑誘導相分離法(Nonsolvent-Induced Phase Separation, NIPS) 13 2.2.4熱誘導相分離法(Thermal-Induced Phase Separation, TIPS) 15 2.3油污的吸附 16 第三章 實驗內容 18 3.1實驗材料 18 3.1.1高分子 18 3.1.2溶劑 19 3.1.3鹽類 19 3.2電紡設備 20 3.3實驗分析儀器與基本原理 20 3.3.1場發射掃描式電子顯微鏡(Field Emission Scanning Electron Microscope, FE-SEM) 21 3.3.2白金濺鍍機 22 3.3.3壓汞測孔儀 23 3.3.4接觸角量測儀 23 3.4實驗步驟 24 3.4.1製備電紡溶液 24 3.4.2電紡實驗參數設定 24 3.4.3製備纖維截面 24 3.4.4纖維平均直徑測量 24 3.4.5油汙吸附實驗 25 3.4.6水接觸角之測試 25 第四章 實驗結果與討論 27 4.1實驗樣品命名 27 4.2溶劑性質與SAN溶解度測試 28 4.3溶劑之影響 29 4.3.1較低沸點溶劑不溶於水、較高沸點溶劑溶水之系統 29 4.3.2雙溶劑皆溶於水之系統 43 4.4環境濕度之影響 46 4.5電紡性 52 4.6進料流速之影響 56 4.7電壓之影響 58 4.8鹽類之影響 61 4.8.1單一溶劑 61 4.8.2雙溶劑 63 4.8.3進料流速 65 4.9油汙吸附 66 4.9.1纖維命名 66 4.9.2纖維形貌 67 4.9.3水接觸角 70 4.9.4油汙吸附測試 72 第五章 結論 75 第六章 未來研究方向 77 第七章 參考文獻 80
dc.language.isozh-TW
dc.subject呼吸圖法zh_TW
dc.subject靜電紡絲zh_TW
dc.subject多孔纖維zh_TW
dc.subject蒸氣誘導相分離法zh_TW
dc.subject油污吸附zh_TW
dc.subject靜電紡絲zh_TW
dc.subject多孔纖維zh_TW
dc.subject呼吸圖法zh_TW
dc.subject蒸氣誘導相分離法zh_TW
dc.subject油污吸附zh_TW
dc.subjectElectrospinningen
dc.subjectElectrospinningen
dc.subjectPorous fibersen
dc.subjectBreath figureen
dc.subjectVapor-induced phase separationen
dc.subjectOil adsorptionen
dc.subjectPorous fibersen
dc.subjectBreath figureen
dc.subjectVapor-induced phase separationen
dc.subjectOil adsorptionen
dc.title藉由靜電紡絲技術與相分離法製備多孔纖維zh_TW
dc.titleFabrication of Porous Fibers by Electrospinning and Phase Separation Methoden
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee賴偉淇(Wei-Chi Lai),陳錦文(Chin-Wen Chen),楊大毅(Ta-I Yang)
dc.subject.keyword靜電紡絲,多孔纖維,呼吸圖法,蒸氣誘導相分離法,油污吸附,zh_TW
dc.subject.keywordElectrospinning,Porous fibers,Breath figure,Vapor-induced phase separation,Oil adsorption,en
dc.relation.page88
dc.identifier.doi10.6342/NTU202201810
dc.rights.note同意授權(全球公開)
dc.date.accepted2022-08-01
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept高分子科學與工程學研究所zh_TW
dc.date.embargo-lift2022-08-05-
顯示於系所單位:高分子科學與工程學研究所

文件中的檔案:
檔案 大小格式 
U0001-2807202201385300.pdf9.6 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved