請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86683
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 姜昱至(Yu-Chih Chiang) | |
dc.contributor.author | Wei-Che Hsu | en |
dc.contributor.author | 徐唯哲 | zh_TW |
dc.date.accessioned | 2023-03-20T00:11:03Z | - |
dc.date.copyright | 2022-10-20 | |
dc.date.issued | 2022 | |
dc.date.submitted | 2022-09-28 | |
dc.identifier.citation | Nanci, A., Ten Cate's Oral Histology - Pageburst on VitalSource: Development, Structure, and Function. 2007: Elsevier Health Sciences. Boushell, L.W. and J.R. Sturdevant, 1 - Clinical Significance of Dental Anatomy, Histology, Physiology, and Occlusion, in Sturdevant's Art and Science of Operative Dentistry, A.V. Ritter, L.W. Boushell, and R. Walter, Editors. 2019, Elsevier: St. Louis. p. 1-39. Featherstone, J.D., The science and practice of caries prevention. J Am Dent Assoc, 2000. 131(7): p. 887-99. Loesche, W.J., Role of Streptococcus mutans in human dental decay. Microbiol Rev, 1986. 50(4): p. 353-80. Hamada, S. and H.D. Slade, Biology, immunology, and cariogenicity of Streptococcus mutans. Microbiol Rev, 1980. 44(2): p. 331-84. Tanzer, J.M., J. Livingston, and A.M. Thompson, The microbiology of primary dental caries in humans. J Dent Educ, 2001. 65(10): p. 1028-37. Mitchell, T.J., The pathogenesis of streptococcal infections: from Tooth decay to meningitis. Nature Reviews Microbiology, 2003. 1(3): p. 219-230. Takahashi, N. and B. Nyvad, The role of bacteria in the caries process: ecological perspectives. J Dent Res, 2011. 90(3): p. 294-303. Meyer-Lueckel, H., et al., Caries Management: Science and Clinical Practice. 2013: Thieme. Ferreira Zandoná, A.G., A.V. Ritter, and R.S. Eidson, 2 - Dental Caries: Etiology, Clinical Characteristics, Risk Assessment, and Management, in Sturdevant's Art and Science of Operative Dentistry, A.V. Ritter, L.W. Boushell, and R. Walter, Editors. 2019, Elsevier: St. Louis. p. 40-94. Ogawa, K., et al., The ultrastructure and hardness of the transparent layer of human carious dentin. J Dent Res, 1983. 62(1): p. 7-10. Spencer, P., et al., Physicochemical interactions at the dentin/adhesive interface using FTIR chemical imaging. J Biomed Opt, 2005. 10(3): p. 031104. Suga, S., H. Soejima, and Y. Tanaka, Electron Probe X-Ray Microanalysis of Developing Erupted and Carious Dental Hard Tissues. Journal of Dental Research, 1967. 46(6p1s): p. 1251-&. Takuma, S., H. Ogiwara, and H. Suzuki, Electron-probe and electron microscope studies of carious dentinal lesions with a remineralized surface layer. Caries Res, 1975. 9(4): p. 278-85. Tjäderhane, L., E.L. Hietala, and M. Larmas, Mineral element analysis of carious and sound rat dentin by electron probe microanalyzer combined with back-scattered electron image. J Dent Res, 1995. 74(11): p. 1770-4. Daculsi, G., et al., Qualitative and quantitative data on arrested caries in dentine. Caries Res, 1979. 13(4): p. 190-202. Kuboki, Y., K. Ohgushi, and T. Fusayama, Collagen biochemistry of the two layers of carious dentin. J Dent Res, 1977. 56(10): p. 1233-7. Ogushi, K. and T. Fusayama, Electron microscopic structure of the two layers of carious dentin. J Dent Res, 1975. 54(5): p. 1019-26. Berman, L.H. and K.M. Hargreaves, Cohen's Pathways of the Pulp Expert Consult - E-Book. 2015: Elsevier Health Sciences. Nakajima, M., et al., Elemental distributions and microtensile bond strength of the adhesive interface to normal and caries-affected dentin. J Biomed Mater Res B Appl Biomater, 2005. 72(2): p. 268-75. Daculsi, G., et al., Possible physico-chemical processes in human dentin caries. J Dent Res, 1987. 66(8): p. 1356-9. Nakajima, M., et al., Tensile bond strength and SEM evaluation of caries-affected dentin using dentin adhesives. J Dent Res, 1995. 74(10): p. 1679-88. Hosoya, Y., et al., Microhardness of carious deciduous dentin. Oper Dent, 2000. 25(2): p. 81-9. Marshall, G.W., et al., Nanomechanical properties of hydrated carious human dentin. J Dent Res, 2001. 80(8): p. 1768-71. Schwendicke, F., Management of Deep Carious Lesions. 2018: Springer International Publishing. Eliades, G., D.C. Watts, and T. Eliades, Dental Hard Tissues and Bonding: Interfacial Phenomena and Related Properties. 2005: Springer. Yoshiyama, M., et al., Comparison of conventional vs self-etching adhesive bonds to caries-affected dentin. Oper Dent, 2000. 25(3): p. 163-9. Pashley, D.H., et al., Permeability of dentin to adhesive agents. Quintessence Int, 1993. 24(9): p. 618-31. Sencer, P., et al., Molecular structure of acid-etched dentin smear layers--in situ study. J Dent Res, 2001. 80(9): p. 1802-7. Nakajima, M., et al., Bonding to caries-affected dentin. Japanese Dental Science Review, 2011. 47(2): p. 102-114. Isolan, C., et al., Bonding to Sound and Caries-Affected Dentin: A Systematic Review and Meta-Analysis. The journal of adhesive dentistry, 2018. 20: p. 1-12. Yu, O.Y., et al., A Review of the Common Models Used in Mechanistic Studies on Demineralization-Remineralization for Cariology Research. Dent J (Basel), 2017. 5(2). Lobo, M.M., et al., Chemical or microbiological models of secondary caries development around different dental restorative materials. J Biomed Mater Res B Appl Biomater, 2005. 74(2): p. 725-31. Zhang, A., et al., A Review of Mechano-Biochemical Models for Testing Composite Restorations. J Dent Res, 2021. 100(10): p. 1030-1038. García-Godoy, F. and M.J. Hicks, Maintaining the integrity of the enamel surface: the role of dental biofilm, saliva and preventive agents in enamel demineralization and remineralization. J Am Dent Assoc, 2008. 139 Suppl: p. 25s-34s. Sissons, C.H., L. Wong, and M. Shu, Factors affecting the resting pH of in vitro human microcosm dental plaque and Streptococcus mutans biofilms. Arch Oral Biol, 1998. 43(2): p. 93-102. Carrera, C.A., et al., Interfacial degradation of adhesive composite restorations mediated by oral biofilms and mechanical challenge in an extracted tooth model of secondary caries. J Dent, 2017. 66: p. 62-70. Joves, G.J., et al., Mineral density, morphology and bond strength of natural versus artificial caries-affected dentin. Dent Mater J, 2013. 32(1): p. 138-43. Joves, G.J., et al., Nanoindentation hardness of intertubular dentin in sound, demineralized and natural caries-affected dentin. J Mech Behav Biomed Mater, 2014. 32: p. 39-45. Buzalaf, M.A., S. Charone, and L. Tjaderhane, Role of host-derived proteinases in dentine caries and erosion. Caries Res, 2015. 49 Suppl 1: p. 30-7. Thomas, P., et al., Optimization of single plate-serial dilution spotting (SP-SDS) with sample anchoring as an assured method for bacterial and yeast cfu enumeration and single colony isolation from diverse samples. Biotechnology Reports, 2015. 8: p. 45-55. Pearce, E.I., A microradiographic and chemical comparison of in vitro systems for the simulation of incipient caries in abraded bovine enamel. J Dent Res, 1983. 62(9): p. 969-74. Tjäderhane, L., et al., The activation and function of host matrix metalloproteinases in dentin matrix breakdown in caries lesions. J Dent Res, 1998. 77(8): p. 1622-9. Nakornchai, S., et al., Partial biochemical characterisation of collagen in carious dentin of human primary teeth. Arch Oral Biol, 2004. 49(4): p. 267-73. Mollica, F.B., et al., Dentine microhardness after different methods for detection and removal of carious dentine tissue. J Appl Oral Sci, 2012. 20(4): p. 449-54. Marquezan, M., et al., Artificial methods of dentine caries induction: A hardness and morphological comparative study. Arch Oral Biol, 2009. 54(12): p. 1111-7. Kleter, G.A., et al., The influence of the organic matrix on demineralization of bovine root dentin in vitro. J Dent Res, 1994. 73(9): p. 1523-9. Harrington, D.J. and R.R. Russell, Identification and characterisation of two extracellular proteases of Streptococcus mutans. FEMS Microbiol Lett, 1994. 121(2): p. 237-41. Jackson, R.J., D.V. Lim, and M.L. Dao, Identification and analysis of a collagenolytic activity in Streptococcus mutans. Curr Microbiol, 1997. 34(1): p. 49-54. Damé-Teixeira, N., et al., Gene expression of bacterial collagenolytic proteases in root caries. J Oral Microbiol, 2018. 10(1): p. 1424475. Zhang, A., et al., Development and calibration of biochemical models for testing dental restorations. Acta Biomater, 2020. 109: p. 132-141. Doerner, M.F. and W.D. Nix, A method for interpreting the data from depth-sensing indentation instruments. Journal of Materials Research, 1986. 1(4): p. 601-609. Van Meerbeek, B., et al., Assessment by nano-indentation of the hardness and elasticity of the resin-dentin bonding area. J Dent Res, 1993. 72(10): p. 1434-42. Urabe, I., et al., Physical properties of the dentin-enamel junction region. Am J Dent, 2000. 13(3): p. 129-35. Meredith, N., et al., Measurement of the microhardness and Young's modulus of human enamel and dentine using an indentation technique. Arch Oral Biol, 1996. 41(6): p. 539-45. Yoshiyama, M., et al., Bonding of self-etch and total-etch adhesives to carious dentin. J Dent Res, 2002. 81(8): p. 556-60. McComb, D., Caries-detector dyes--how accurate and useful are they? J Can Dent Assoc, 2000. 66(4): p. 195-8. Pugach, M.K., et al., Dentin caries zones: mineral, structure, and properties. J Dent Res, 2009. 88(1): p. 71-6. Zheng, L., et al., Hardness and Young's modulus of transparent dentin associated with aging and carious disease. Dent Mater J, 2005. 24(4): p. 648-53. Yoshida, Y., et al., Comparative study on adhesive performance of functional monomers. J Dent Res, 2004. 83(6): p. 454-8. Yoshida, Y., et al., Evidence of Chemical Bonding at Biomaterial-Hard Tissue Interfaces. Journal of Dental Research, 2000. 79(2): p. 709-714. Ito, S., et al., Water content and apparent stiffness of non-caries versus caries-affected human dentin. J Biomed Mater Res B Appl Biomater, 2005. 72(1): p. 109-16. Zheng, L., et al., Dentin caries activity status related to hardness and elasticity. Eur J Oral Sci, 2003. 111(3): p. 243-52. Singh, Y., et al., 3 - Joining behavior of natural fiber reinforced polymer composites, in Joining Processes for Dissimilar and Advanced Materials, P. Rakesh and J.P. Davim, Editors. 2022, Woodhead Publishing. p. 33-63. Wang, Y. and P. Spencer, Analysis of acid-treated dentin smear debris and smear layers using confocal Raman microspectroscopy. J Biomed Mater Res, 2002. 60(2): p. 300-8. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86683 | - |
dc.description.abstract | 目前用於體外牙本質模擬齲齒去礦化牙本質進行牙本質黏著劑的黏著強度測試的模型可分為兩類:利用致齲細菌形成生物膜產生酸性環境,或不同酸鹼值的去礦化與再礦化循環溶液。然而,但是目前為止,尚沒有體外人工齲齒牙本質模型能製造具有類似自然牙齒牙本質小管內硬化結晶之結構成分與形態,亦即讓牙本質產生去礦化型態的受齲齒影響牙本質(caries affected dentin),並能廣泛用於w體外試驗模擬各種真實臨床狀況。 先前實驗室配置的sclerotic dentin simulation solution可以成功地深入牙本質小管內產生仿生結晶。因此本研究目的為: 建立標準化體外人工齲齒模型,且能應用於受齲齒影響牙本質黏著測試。 本研究總共分為兩大部分:第ㄧ部分主要是建立標準化的體外人工齲齒實驗模型並進行影像觀察與硬度測試,第二部份則是利用建立出的體外人工齲齒進行牙本質黏著劑之微伸拉黏著強度測試。 結果顯示兩種人工去礦化模型皆能成功模擬自然受影響牙本質的型態,但生物膜模型表層去礦化更明顯、且影響深度更深。然而在Clearfil SE bond、G2-BOND universal、Palfique universal bond三種自酸蝕黏著劑中,自然健康牙本質之黏著強度皆顯著高於自然和人工牙本質,而自然齲齒牙本質和兩種人工牙本質三者間並無顯著差異。 | zh_TW |
dc.description.abstract | At present, the common artificial carious dentin models used for in vitro dentin adhesives study can be classified into two categories: the biofilm model and the pH cycling model. Up-to-date, there is no artificial carious dentin model can mimic the natural caries affected dentin with demineralized dentin and intratubular mineral deposits. Our laboratory previously proposed a solution to produce artificial sclerotic dentin and successfully explore the crystal growth in the intratubular crystals. Therefore, we aimed to establlish an artificial caries model in vitro to simulate the caries affected dentin based on the proposed solution and compare microtensile bond strength (μ-TBS) of natural and artificial caries affected dentin. This study was carried out in two parts, Part I: to establish a standardized in vitro artificial carious dentin experimental model and carry out SEM image observation and hardness test. Part ΙΙ: To perform the μ-TBS of the dental adhesive with artificial carious dentin, natural carious dentin and sound dentin. The results show that both artificial caries affected dentin models can successfully simulate the morphology of natural affected dentin, but the biofilm model has more aggressive surface demineralization and a deeper impact. However, among the three self-etching adhesives, Clearfil SE bond, G2-BOND universal, and Palfique universal bond, the bond strength of natural healthy dentin was significantly higher than that of natural and artificial caries affected dentin. While natural caries affected dentin and two artificial caries dentin, there was no significant difference among the three. | en |
dc.description.provenance | Made available in DSpace on 2023-03-20T00:11:03Z (GMT). No. of bitstreams: 1 U0001-2709202211453900.pdf: 16657931 bytes, checksum: 45d6db3b1dcba89c2060e7248f1123b6 (MD5) Previous issue date: 2022 | en |
dc.description.provenance | Item reinstated by admin ntu (admin@lib.ntu.edu.tw) on 2023-04-20T03:43:31Z Item was in collections: 臨床牙醫學研究所 (ID: 4d343cdd-89a9-448d-b26d-b213667df1fe) No. of bitstreams: 1 U0001-2709202211453900.pdf: 16657931 bytes, checksum: 45d6db3b1dcba89c2060e7248f1123b6 (MD5) | en |
dc.description.tableofcontents | 中文摘要 i 英文摘要 ii 第一章 緒論 1 1.1 自然之齲齒牙本質 1 1.1.1 牙齒結構 1 1.2 自然齲齒牙本質之形成 1 1.2.1 齲齒的致病機制 1 1.2.2 牙本質齲齒 3 1.2.3 Caries affected dentin特徵 4 1.3 牙本質黏著劑 6 1.3.1 牙本質黏著劑之作用機制 6 1.3.2 Caries affected dentin對牙本質黏著劑之影響 7 1.4 目前人工齲齒模型及其應用於牙本質黏著強度測試之限制 9 第二章 實驗動機與目的 12 第三章 實驗步驟與方法 13 3.1 實驗架構 13 3.2 牙齒蒐集及樣本製備 13 3.2.1 自然齲齒 13 3.2.2 人工齲齒模型 14 3.2.2.1 人工硬化牙本質之建立 14 3.2.2.2 表面去礦化模型之建立:生物膜模型 14 3.2.2.3 樣本與細菌共同培養 15 3.2.3 表面去礦化模型之建立:酸鹼循環模型 15 3.3 自然齲齒與人工齲齒模型之性質分析 16 3.3.1 掃瞄式電子顯微觀察(Scanning Electron Microscope, SEM) 16 3.3.2 微硬度(Micro-hardness)測試 16 3.3.3 奈米壓痕(Nano-hardness)測試 17 3.3.4 微伸拉(micro-tensile)黏著強度測試 17 3.3.4.1 統計方法 21 3.3.5 掃瞄式電子顯微觀察(Scanning Electron Microscope, SEM) 21 第四章 實驗結果 22 4.1 自然齲齒模型之顯微結構分析 22 4.2 人工牙本質齲齒模型之顯微結構分析 22 4.2.1 生物膜模型 22 4.2.1.1 細菌生長曲線 22 4.2.1.2 生物膜模型顯微結構分析 23 4.2.2 酸鹼循環模型 23 4.3 微硬度測試 23 4.3.1 自然齲齒牙本質微硬度測試 23 4.3.2 人工牙本質齲齒模型微硬度測試 24 4.3.2.1 生物膜模型 24 4.3.2.2 酸鹼循環模型 24 4.4 奈米壓痕測試 24 4.5 微伸拉黏著強度測試 24 第五章 討論 26 5.1 人工齲齒模型之探討 26 5.1.1 SEM下結構之討論 26 5.1.2 微硬度(Micro-hardness)測試 27 5.1.3 奈米硬度測試 28 5.2 微拉伸測著鍵結強度測試 29 5.2.1 標準化實驗介面 29 5.2.2 微拉伸實驗測試 30 5.3 SEM下黏著界面影像觀察 30 第六章 結論 32 參考文獻 33 圖目錄 圖1-1 2 圖1-2 2 圖1-3 4 圖1-4 5 圖1-5 7 圖1-6 8 圖1-7 8 圖1-8 9 圖1-9 10 圖1-10 11 圖3-1 20 圖4-1 38 圖4-2 39 圖4-3 40 圖4-4 41 圖4-5 42 圖4-6 43 圖4-7 44 圖4-8 44 圖4-9 45 圖4-10 45 圖4-11 45 圖4- 12 46 圖4- 13 46 圖4-14 47 圖4-15 48 圖4-16 49 圖4-17 50 圖4-18 51 圖4-19 52 圖5-1 53 圖5-2 28 圖5-3 54 圖5-4 54 圖5-5 31 表目錄 表3-1 18 表4-1 55 | |
dc.language.iso | zh-TW | |
dc.title | 建立體外人工齲齒模型用於微伸拉強度測試 | zh_TW |
dc.title | Establishment of an in vitro artificial caries model for micro-tensile bond strength test | en |
dc.type | Thesis | |
dc.date.schoolyear | 110-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 李伯訓(Bor-Shiunn Lee),林弘萍(Hong-Ping Lin) | |
dc.subject.keyword | 牙本質齲齒,受齲齒影響牙本質,微硬度測試,牙本質黏著劑,微拉伸黏著強度, | zh_TW |
dc.subject.keyword | dentin caries,caries-affected dentin,microhardness test,dental adhesive,microtensile adhesive strength, | en |
dc.relation.page | 55 | |
dc.identifier.doi | 10.6342/NTU202204148 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2022-09-28 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 臨床牙醫學研究所 | zh_TW |
dc.date.embargo-lift | 2027-09-30 | - |
顯示於系所單位: | 臨床牙醫學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-2709202211453900.pdf 此日期後於網路公開 2027-09-30 | 16.27 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。