Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86643
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor呂良正(Liang-Jenq Leu)
dc.contributor.authorChun-Ting Chenen
dc.contributor.author陳俊廷zh_TW
dc.date.accessioned2023-03-20T00:08:31Z-
dc.date.copyright2022-08-10
dc.date.issued2022
dc.date.submitted2022-08-04
dc.identifier.citationAbrishambaf, A., Barros, J. A., & Cunha, V. M. (2013). Relation between fibre distribution and post-cracking behaviour in steel fibre reinforced self-compacting concrete panels. Cement and Concrete Research, 51, 57–66. Arora, J. (2017). Introduction to optimum design. Elsevier. Bézier, P. (1968). How renault uses numerical control for car body design and tooling. Paper SAE 6800010. Cheng, C., & Fu, C. (2010). Characteristic of wind loads on a hemispherical dome in smooth flow and turbulent boundary layer flow. Journal of wind engineering and industrial aerodynamics, 98(6-7), 328–344. Espath, L., Linn, R. V., & Awruch, A. (2011). Shape optimization of shell structures based on nurbs description using automatic differentiation. International Journal for Numerical Methods in Engineering, 88(7), 613–636. Gordon, W. J., & Riesenfeld, R. F. (1974). B-spline curves and surfaces. In Computer aided geometric design (pp. 95–126). Elsevier. Halpern, A. B., Billington, D. P., & Adriaenssens, S. (2013). The ribbed floor slab systems of pier luigi nervi. In Proceedings of iass annual symposia (Vol. 2013, pp. 1–7). Ikeya, K., Shimoda, M., & Shi, J.-X. (2016). Multi-objective free-form optimization for shape and thickness of shell structures with composite materials. Composite Structures, 135, 262–275. Ismail, M. A., & Mueller, C. T. (2021). Minimizing embodied energy of reinforced concrete floor systems in developing countries through shape optimization. Engineering Structures, 246, 112955. Kamat, M. P. (1993). Structural optimization: Status and promise. NASA STI/Recon Technical Report A, 93, 30075. Kegl, M., & Brank, B. (2006). Shape optimization of truss-stiffened shell structures with variable thickness. Computer methods in applied mechanics and engineering, 195(19-22), 2611–2634. Li, W., Zheng, A., You, L., Yang, X., Zhang, J., & Liu, L. (2017). Rib-reinforced shell structure. In Computer graphics forum (Vol. 36, pp. 15–27). Marino, E., Salvatori, L., Orlando, M., & Borri, C. (2016). Two shape parametrizations for structural optimization of triangular shells. Computers & Structures, 166, 1–10. Michell, U. (1904). The limits of economy of material in frame structure. Philosophical Magazine, 8, 589–597. Rozvany, G. (1998). Exact analytical solutions for some popular benchmark problems in topology optimization. Structural optimization, 15(1), 42–48. Santoro, E. (1970). Representation of uniform b-spline curve by eulerian numbers. WIT Transactions on Information and Communication Technologies, 15. Tomás, A., & Martí, P. (2010). Shape and size optimisation of concrete shells. Engineering Structures, 32(6), 1650–1658. Versprille, K. J. (1975). Computer-aided design applications of the rational b-spline approximation form. Syracuse University. Zuo, Z. H., & Xie, Y. M. (2015). A simple and compact python code for complex 3d topology optimization. Advances in Engineering Software, 85, 1–11 內政部營建署 (2018)。建築物耐風設計規範及解說。 內政部營建署 (2021)。建築技術規則建築構造編。 內政部營建署 (2021)。混凝土結構設計規範。 中華民國風工程學會 (2016)。風工程理論及應用。 林享樑 (2018)。具自由曲面薄殼結構最佳化設計。國立臺灣大學工學院土木工程學系碩士論文。 林家萱 (2020)。曲面結構多層次最佳化。國立臺灣大學工學院土木工程學系碩士論文。 香港屋宇署 (2011)。香港鋼結構設計規範 孫鈺翔 (2021)。以 Python 整合有限元素軟體 ABAQUS 應用主應力線於版殼最佳化設計。國立臺灣大學工學院土木工程學系碩士論文。 連嘉玟 (2017)。以 Python 整合有限元素軟體 ABAQUS 於版殼結構最佳化。國立臺灣大學工學院土木工程學系碩士論文。 簡孟笙 (2019)。主應力線應用於結構最佳化設計。國立臺灣大學工學院土木工程學系碩士論文。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86643-
dc.description.abstract近年來隨著設計與分析工具的進步,建築師擁有更為多樣的設計選擇,其中形狀複雜且承載能力佳的薄殼結構成為了許多建築物的外型首選。本研究透過自由曲面建構技術,結合有限元素分析以及最佳化理論,推出一系列薄殼結構最佳化設計流程,供予建築師以及結構工程師們參考,以利設計出兼顧力學性質以及視覺美感之最佳薄殼結構。 對於大跨度之薄殼結構,為提高結構勁度,除了幾何形狀最佳化設計之外,須給予其額外之加勁輔助結構,因此加勁方式的設計至關重要。本研究著重於薄殼結構附屬加勁梁之最佳化設計,尤其以加勁梁之配置為重。以主應力線之走向作為加勁梁之分布依據,透過多種最佳化演算法,結合整體結構之尺寸最佳化,於固定體積下設計出具有最高勁度之薄殼結構。 於眾多聞名的薄殼結構中,選擇位於美國新澤西州 (New Jersey) 的聖阿洛伊修斯教堂 (The Church of St. Aloysius) 作為案例,根據本研究之薄殼結構最佳化設計流程進行設計以及探討。將現行規範之限制以及載重組合納入考量。比較該案例之初始結構與最佳化設計之結果,應證了本研究之薄殼結構最佳化設計確實能於兼顧現行規範以及美學觀感的同時,大幅提升結構之力學表現。zh_TW
dc.description.abstractIn recent years, thin-shell structures with complex shapes are extensively used in civil and architectural engineering due to the efficient load-carrying capacity. However, most of the thin-shell structures are designed on the basis of architects’ aesthetic point of view, rather than the mechanical performance. Therefore, this research demonstrates an optimal thin-shell structure design method that integrates free-form surface technology with finite element method and optimization theory in considering of both aesthetics and mechanical behaviors. Large-span shells generally require not only optimal geometric design but also additional support to improve the stiffness of the structures. Hence, it is crucial to decide the way to fortify the structures. This research focuses on the optimization of the ribs attached to the thin-shell structures, with particular emphasis on the layout of the ribs. The distribution of the ribs is based on the orientation of the principal stress lines which demonstrate the paths of stress flow. In the optimization process, a variety of optimization algorithms are combined to retrieve the optimal thin-shell structures with the highest stiffness. To verify the optimization method, this research chooses The Church of St. Alioysius in New Jersey, USA, as a case study. Comparing the analysis results between the initial structure and the optimal design while taking the limitations of current codes and load combinations into account, the stiffness of the structure has significantly improved. It shows that the optimal thin-shell structure design method by this research can indeed enhance the mechanical performance of the structure while considering both aesthetics and the limitations of the current codes.en
dc.description.provenanceMade available in DSpace on 2023-03-20T00:08:31Z (GMT). No. of bitstreams: 1
U0001-2807202213184200.pdf: 18945280 bytes, checksum: 73925855599d68e9b618c15cf66e9184 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontentsPage 口試委員審定書 i 致謝 iii 摘要 v Abstract vii 目錄 ix 圖目錄 xiii 表目錄 xv 第一章 緒論 1 1.1 研究動機 1 1.2 文獻回顧 2 1.3 研究內容 5 第二章 模型架構與最佳化理論 7 2.1 前言 7 2.2 程式語言與分析軟體選擇 7 2.3 自由取面之建構 7 2.3.1 NURBS介紹 8 2.4 主應力線之生成演算法 9 2.4.1 模型支援素選擇 9 2.4.2 特徵值分析 11 2.4.3 向量場內插 12 2.4.4 主應力生成 13 2.5 最佳化問題 16 2.6 結構最佳化 17 2.6.1 形狀最佳化 18 2.6.2 尺寸最佳化 18 2.7 最佳化方法介紹 19 2.7.1 全域搜尋之最佳化方法 19 2.7.2 區域搜尋之最佳化方法 20 第三章 薄殼之最佳設計 21 3.1 前言 21 3.2 程式架構 22 3.3 案例探討 24 3.3.1 不同控制點參數對應之形狀最佳化結果 24 3.3.2 不同控制點及元素數量之最佳化結果 29 3.4 小節 33 第四章 加勁梁之最佳設計 35 4.1 前言 35 4.2 加勁梁生成流程 36 4.2.1 主應力線之繪製 36 4.2.2 加勁梁之建構 36 4.3 加勁梁設計流程 38 4.3.1 加勁梁之選擇 38 4.3.2 尺寸最佳化 41 4.4 案例探討 42 4.4.1 模型建構 42 4.4.2 加勁梁設計 45 第五章 實際薄殼結構之最佳化設計 53 5.1 前言 53 5.2 案例介紹 53 5.3 設計限制 56 5.4 設計載重 57 5.5 風力模擬 58 5.5.1 計算流體力學分析 59 5.5.2 流場驗證 59 5.6 實際設計 61 5.6.1 形狀最佳化設計 61 5.6.2 風載重模擬 61 5.6.3 加勁梁最佳化設計 66 5.7 小結 69 第六章 結論與未來展望 71 6.1 結論 71 6.2 未來展望 72 參考文獻 73
dc.language.isozh-TW
dc.subject計算流體力學zh_TW
dc.subject薄殼結構zh_TW
dc.subject肋梁zh_TW
dc.subject自由曲面zh_TW
dc.subject非均勻有理 B 樣條zh_TW
dc.subject主應力線zh_TW
dc.subject結構最佳化zh_TW
dc.subject形狀最佳化zh_TW
dc.subject尺寸最佳化zh_TW
dc.subject基因演算法zh_TW
dc.subject序列最小二乘規劃法zh_TW
dc.subject有限元素法zh_TW
dc.subject計算流體力學zh_TW
dc.subject薄殼結構zh_TW
dc.subject肋梁zh_TW
dc.subject自由曲面zh_TW
dc.subject非均勻有理 B 樣條zh_TW
dc.subject主應力線zh_TW
dc.subject結構最佳化zh_TW
dc.subject形狀最佳化zh_TW
dc.subject尺寸最佳化zh_TW
dc.subject基因演算法zh_TW
dc.subject序列最小二乘規劃法zh_TW
dc.subject有限元素法zh_TW
dc.subjectPrincipal stress lineen
dc.subjectStructural optimizationen
dc.subjectShape optimizationen
dc.subjectSize optimizationen
dc.subjectGenetic algorithmen
dc.subjectSLSQPen
dc.subjectFinite element methoden
dc.subjectCFDen
dc.subjectRiben
dc.subjectFree-form surfaceen
dc.subjectNURBSen
dc.subjectPrincipal stress lineen
dc.subjectStructural optimizationen
dc.subjectShape optimizationen
dc.subjectSize optimizationen
dc.subjectGenetic algorithmen
dc.subjectSLSQPen
dc.subjectFinite element methoden
dc.subjectCFDen
dc.subjectRiben
dc.subjectThin-shell structureen
dc.subjectThin-shell structureen
dc.subjectNURBSen
dc.subjectFree-form surfaceen
dc.title最佳化演算法應用於薄殼結構之主應力線加勁設計zh_TW
dc.titleApplication of Optimization Algorithm in Design for Principal Stress Line Stiffeners Attached to Thin Shell Structuresen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃仲偉(Chung-Wei Huang),宋裕褀(Yu-Chi Sung),郭世榮(Shih-Rong Kou)
dc.subject.keyword薄殼結構,肋梁,自由曲面,非均勻有理 B 樣條,主應力線,結構最佳化,形狀最佳化,尺寸最佳化,基因演算法,序列最小二乘規劃法,有限元素法,計算流體力學,zh_TW
dc.subject.keywordThin-shell structure,Rib,Free-form surface,NURBS,Principal stress line,Structural optimization,Shape optimization,Size optimization,Genetic algorithm,SLSQP,Finite element method,CFD,en
dc.relation.page74
dc.identifier.doi10.6342/NTU202201822
dc.rights.note同意授權(全球公開)
dc.date.accepted2022-08-05
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept土木工程學研究所zh_TW
dc.date.embargo-lift2022-08-10-
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
U0001-2807202213184200.pdf18.5 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved