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Abstract

In recent years, thin-shell structures with complex shapes are extensively used in civil
and architectural engineering due to the efficient load-carrying capacity. However, most
of the thin-shell structures are designed on the basis of architects’ aesthetic point of view,
rather than the mechanical performance. Therefore, this research demonstrates an optimal
thin-shell structure design method that integrates free-form surface technology with finite
element method and optimization theory in considering of both aesthetics and mechanical

behaviors.

Large-span shells generally require not only optimal geometric design but also addi-
tional support to improve the stiffness of the structures. Hence, it is crucial to decide the
way to fortify the structures. This research focuses on the optimization of the ribs attached
to the thin-shell structures, with particular emphasis on the layout of the ribs. The distribu-
tion of the ribs is based on the orientation of the principal stress lines which demonstrate
the paths of stress flow. In the optimization process, a variety of optimization algorithms

are combined to retrieve the optimal thin-shell structures with the highest stiffness.

To verify the optimization method, this research chooses The Church of St. Alioy-
sius in New Jersey, USA, as a case study. Comparing the analysis results between the
initial structure and the optimal design while taking the limitations of current codes and

load combinations into account, the stiffness of the structure has significantly improved.
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It shows that the optimal thin-shell structure design method by this research can indeed
enhance the mechanical performance of the structure while considering both aesthetics

and the limitations of the current codes.

Keywords: Thin-shell structure, Rib, Free-form surface, NURBS, Principal stress line, Struc-
tural optimization, Shape optimization, Size optimization, Genetic algorithm, SLSQP, Fi-
nite element method, CFD
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# 2.1: ABAQUS # & ~ % fasg %

Element Type Description Figure
B31 2-node first-order beam. 1 e S
— 1
3
3R 3-node triangular general-purpose shell, finite mem- X
brane strains (identical to element S3).
1 2
S3Relement
3
STRI3 3-node triangular facet thin shell.
1 2
STRI3 element

3
face 3 face 2
. . ) . 5
STRI65 6-node triangular thin shell, using five degrees of free-
dom per node. -

face 1

6-node element

3
4
34 4-node general-purpose shell, finite membrane
strains.

4-node full
integration element

3
4
4-node thin shell, reduced integration with hourglass
S4R5 .
control, using five degrees of freedom per node.

4-node reduced
integration element

4 7 3
8-node doubly curved thin shell, reduced integration, 8 o
S8R5 .
using five degrees of freedom per node. 1 . ,
8-node reduced

integration element
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<
1
|
[ 11

| |
| |
| |
| |
T==r
| |
| |

Bl 2.1:

242 RFBUASH

ﬁ: #ﬁ:q']—‘ X 'tJL f”’g\'ﬁ g ¥ T )/\.E'

S4:

1
! Hourglassing

’//%ﬁ»@»‘]‘ ,E,l%]

AEMBABO LS B RFTEE

ABAQUS [ 22 i5 i d2 > $Hff 2 BRetflg 4 AR TR~ HIELR T Bt B E]
BEBEDRES EE 3 o d NRAFT Y PEAEHN G P &4 (In-plane Stress)

b SRIGE B SR & - M [ s VA L K 8 L L
ﬁ%ﬁﬁ
F 28 HP nirBEEeZEirw & » T(n
d 2B R 2 4 EATEA 0 Aot (2.9) o
T™ =n-o or TZ-(")
Oxx  Tay
g =
Tay  Oyy

HELFE S RE % A

oij 0 P pE(29) ¢ cho ¥ it L O$ 4 48 (Diagonal Matrix) > @ i
TLA A S o F RS Gl B E
A e o R E B RERPLIZTG TR R

X (2.10) ¢ H B (2.10) {7 HHE A AT

e Rk B4 Tn s e

11

| & & B 04y > Oy~ B Ty

= Ol

n %1 > B

Be N AfT Rt EE
WL 2 AN (211) 0 T B

!

&+ 3% £ (Cauchy Stress Tensor) fr;;}’x R I Al L S A TR 1

HEFZEER 4 %RE Oij Al

(2.8)

(2.9)

BXERO  RiAjPo;=0i=7p

BRTERO
nkd 2 Tafli
FlEwe st N HE LT 4
Z_fFpciE >
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SESTEY RS TN SRR SR

T — o,n=)\n or Ti(n) = An; = 04jn; (2.10)

aijnj — )\nz = (Uij — Aéw)nj (211)

AFTRYBEAF TR ERE LR 22 R EEFRES T LE
IS BpEAER A M e & Ryp S P I ARG ho R A

(1~09) 12 B2 % (01~ 02) °

243 WmEHAME

B Y FE B R BT 242 D E A TR T It 0
REFEERER - B AR R 2R AL LRI M T
SRR DI P es FIMER T AFTEHEY PR Y P IEEZ (Lagrange

Interpolation) » F g, Bbénd 4 » ¥ U d w % S BN IS (F o 7 £ BlACE] 2.2 -

Vg
P; (x3,Y3) P4./
.\v. (X4, Ya)
3
Parbitrary v
O’/—P
(x,¥)
V1 /V'z

P; (x1,Y1) Py (x2,Y2)

B 2.2: gL iz R 82 % B N IET R B

PRYPIFEEENEE L LN 0N 212)0 2P Ny(z,y) 5 0 & 82 k&
Boov, frvy AHE ISR w2z oy AR (TY) FAEP ERBREE
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v, B, Rl EHERREZARY Peadr y LR BRHEDG VIR IR

B B S oo

Ni(a,y)= 222 YW Nyg,y) = 2DV

$1—1’2y1—y4’ $2—$1y2—y3’
T—Ty Y—Y T—T3 Y—Y
N3(:C7y) = . 2 ) N4(x73/) = > . )
T3 — T4 Y3 — Y2 Ty —T3Ys — Y1
4 4 (2.12)
= Uy = Z NZ(Tv g)%za Uy = ZNAE, y)viy
i=1 i=1

=V = Uyl + vy

244 TR AR

FED A F 2 (S AIE > B SEEE G B e RS T - A

FHNEEL LS 2w SR el R AL AT EE (2019) 2 2
A (Stream Line) e 4 (v 2.3) ) E L B2 2w B 5 Sl ZE2 R a7 AR

S N (2U13) £ 7 o N (214) P TR A LM R ERA W BHE o B A
W A e B TERES AR RARP TEBE BEHA LR @

B

T EFIAR R ARS TS A A M

Vector Field

Y

Numerical

Particle Tracing Integration

U

Stream Lines

B 2.3:insE 2 o7 LW (M & £ (2019)
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B AN 2.13
5 = olp(),1) (2.13)

t+At
p@+Aﬂ:mO+/‘ (p(t), t)dt (2.14)

t

SRR ENED AR LSRR AR R R
At R A IR ERBTER DL R B R AR A S TR
I A +1@4ﬁ:é%i@*mﬁﬂﬁ@’ﬁﬁ@4ﬁwgﬁﬁﬁ
Lo pEEA RS B R EY RERA EHR DT R K L it

E#cEAE A 3 F ¢ - FEM R 9 Euler Method ~ = F## & 12" Order Runge-Kutta
Method(* #- % Improved Euler Method) ~ 12 2 = F§ # & ¢ 4™ Order Runge-Kutta
Method (RK4) » i & 3¢ chie £ 307 11 % 9B B3k fafl - 2 {3 &
(2019) 2775 » E* MR L v FF > AMEL S LR FE AT FEPIBR G BE g
Order Runge-Kutta Method i* 5% #ciE ~ 472 1 & o

4" Order Runge-Kutta Method % % 2 7 & # & i 4 = 2 BB ff 4 = % >

&?ff g3t (215) P wACUSBE ) As G & o ﬂi/rfﬂ\ﬁr’% ‘ﬁ}i—;’r“;"vi
AL HELEEP S - g pl, B HELER Y e v BFL v AR BT L

E*@ﬁﬂiéﬁiﬁﬁ¥:%%%ﬁﬂﬁ%%@13&%@v2’ﬂ%kﬁw
FASRR BT P i R e 2 A L HE TR F 2 PR pd, T2 i
'T;"V?+1°§}~f;'ﬁ4fq47§»«] ERNEEFINOGEA:2:2:1) (FiplidR>
w2 fBE Gl HAHSEE D S FBEE R p b B A B R Y @R T - 2
Pir1 FEF2 N EFIEARAZEL RS R T LBT (F24)

1
Pit1 =P+ EAS(Vz‘ +2vi 2V Vi) (2.15)
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Vi1

—> Vit

Bl 2.4: RK4 #c &4t 4 7 & B
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25 RAALRMA

B AL EIACTI VAR PN R E S b R
M R AL F R BT R o 3 B ik R
AL i 2 rU4] 0 Arora 3t 1989 #d i i AR N et 2t w0 2

AT

2%

45 - B on 2ok 3t % #c (Design Variables x = (x1, 2, ..., x,)) T
BV BB T FGIZ T 0 R E 4% 2 (Equality Constraints) {7 %
394 1% i (Inequality Constraints) » & ¥ P & 3 #c (Objective Function) i 31| # + &

A

(Maximize) £ & -] & (Minimize) o + i#2 T &7 0 * T r A H N A

Min. or Max.:
f(x) = f(@1, 22, ..., 20) (2.16)
Subject to:
hi<X):hi(ml,l'g,...,l’n)zo, 7;:1,2,...7]? (217)
gj(X> = j(%l,xg, ,I‘n) S 0, ] = 1,2, . q (218)
(Timin)k < Tk < (Tmaz)ks k=1,2,..,n (2.19)

2o (2.16) e f(x) 2 P B Sulic o 8 (217) hh(x) 2 ERGE 0 5 (2.18) ehg(x)
RAENOR pEGRIANARERINET ZN 2 HHE N (2.19) D (T
'l;;:, (xmm)k AN 'B )’L%&é ’ %‘2 k fﬁ;{;"‘%ﬁtl‘k -L,_" T o

BREMRFEY RS AR ARG FREFIERLT 94 BIH
% & & #)& & v B 42 (Unconstrained Optimization Problem) ; #p & ¥ » & & if it I
F 94k 0 B S L8 i i B 3L (Constrained Optimization Problem) » 1 42 } ¢
B MEAAZTET RN Ba e F 0 RARDREGL L G A
WIET AR *Kﬂ".@ o FF o T S RN R B i (YRR o

PR SR PUHIIE R Y R A AR5 P A T R ATALZ S
R AR AL (Linear Programming Problem) ; & 2 ¢ 7 5 K3t f#cchzbam = f2

v

3o RIEF A 5 258U AL B AE (Nonlinear Programming Problem) » g4 i i < 3
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Fp i 2L PR AT o d N ISHER 3R Y & B2 25 9249 3% (Analytic Form) $i gt
Foi@ o b b pESFEE R UIER 0 & B R * ch% 4 2 (Variational Method)
7R AT HEA E R A (Kamat (1993)) 5 5 B AT S A i 1 B ERF
€1 A2 P RS B o E R AP & ohdic@ 2 2 (Numerical Method) ©

KR

pes

2.6 &#REL

%%ﬁ%ﬂ&@fﬁL%%mzﬂ%@zS%ﬁ’&isﬁéwa%a#%
W (Mde %70 <) ~ S X)W B 2 Ed B 1
s 0 12 #; K F N EREFTFEANE G R LB ETE 2 LT% o Fhek

PENN

Epaie 7 0 T RS e . wm*@a'&%’%#&&ﬂ?u%”
AAER A AR A LR e 0 B F L AT G oond g o
[ Formulate the problem )
as an optimization
problem
Collect data to describe _ U .
system Collect data to describe
Iy ’ l system
: — ) U
Estimate initial design
Iy} Estimate initial design
/{:.'> Analyze system v
) AnalyzeU system Q
Check performance
criteria Check constraints
U U
1 Yes Yes e P
Is design satisfactory? —= Stop <<= cosjsrgzﬁlt?encsr?telfig’?
% U
Update design based on Update design using
N— experience/ heuristics optimization concepts —

(a) (b)

Bl 2.5: (a) @23kt % 2 (b) BHEde ' 5 2 2 £ 8 (Arora (2017))

B 2.5(b) 5 ffade it 3k3h2 A Aindn o § £ F AT S E
BOAL D P R A Al B T R AT R Rl LE R S fop ke
TR A E ARSI E A S A KT F - ki

2R
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@»ﬁﬁgﬁ@—gf&%ﬁ’ww R S ATHET i 7 A 4T E AR
B3P RSdcicar s BT A A AT S

BRI RBERGE S s L2 A4S DAk E i (Shape Opti-
mization) ~ * < # i i* (Size Optimization) ~ £ 47 # i i* (Topology Optimization) °
iﬁﬁﬂfﬁﬂww’?%ﬁ~ﬁ%%ﬁﬁo@ga SPEA TR AR 0 TR RAL
SR REEAHIENFE 2L FTER c AT EREMN TR EEARE G
“ﬁéiﬁﬁﬁ?%w’%mk49¢mmﬁ&%ﬂ’§@$—z%%m$ﬁa

i KA o

2.6.1 HBREREL

Akt R BEEREHE AP RAR RS NGO I ¥R
2. PRS0l s SR (Compliance) o A7k B if it 3 * 3872 5 B4k s o
e AR B E R RS IRT AP BFEEE 22 & M8 5p d 0 G 2

ﬁﬁz% R LA RIS TR SRS YL R SR Sk = S
Mgy i B2 g R AIg ik B S HERSE S AR T
PARSc s SRR R AHEA > YHTHE LT R B EL P RS
LrEACECHBLITR -

%

/

N

2.6.2 R+®RAEL

z#&gu;g@&%%ﬁmzﬁ,w%:x‘ﬁ\%ﬁ%a’Ei‘m&
Benp Folicf2 o 5 AMAAER D] b o G R Y B MR S
agaﬁ’éﬁitéﬁﬁiiAﬁa@%gﬁﬁﬁi’Fz.méﬁﬁmx)’@fgﬁﬁHﬂﬁﬁV&ﬁ
2k o AT R A G B RARNEREE DR DR o BB BEHR
e s et MR R~ A~ fodkly B U400 0 PR Sl S B R Y
A YA RMAL Th) PR P RSl AR Ef P
B o
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277 RAECFENE

BB E A 1980 & RRAF R > 1S SFAFIEAN S E 0 RIpE B
EE R AR Y AR AT B S A RBEF R R T
LB L3 > E4EF (Global Search) ¥ % 32 #% (Local Search) -

271 2BESIRmBILFE

AFETEY 2 2B F S G2 5 John Holland (1962) 22 H 77 7 B Ff #7 4
i ek F1E B 2 (Genetic Algorithm, GA) - * = j# &_i% J5 Charles Darwin (1859) #%
et E o FL G PR FASL PR ERA ko 232 PR S
oo TAFRFERE A HFEY i B a4 > ¢ 70 4 (Selection) ~ %
fic (Crossover) ~ % % (Mutation) % ¥ 2% » e b 48 5 hPEg - 4 * 3045 f & Sueh

ET XY S

AFIFE 2 B85 BI0F > g ARREER S - i LRI H
(Chromosome) » @ # ¢ # 7 5 B 3 ~ 4L 5 A ¥] (Gene) > 4% F & #% B B 4~ 4 %
B FRREA) DG IER I A2 L % (Population) 13547 4 R B~ R
& #c (Fitness Function) .55 % $3 & 2 i P iR BE > RE FEEH ~ 2 fe >
SREI L P E B I L RE 5] 28 & & 2 (Global Optimal Solution) °

BEARAR VN H BEARE chB 1V 2 > A TR 2R S BEE o Tl
Frodd e FE otk FEST Y BAE BIPFRE L K hINE
4 f# (Local Optimal Solution) » @ F FI/# 5 % F] & b FRIL%EHY ) BB > &
FEAEBRRIE G % BIHF LT xR b dE e
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272 BEREFZIHELFE

BAPE B 10 A SRS RN 0 BT R P R R Rl 38
Eo e ol ERE AP e B R e edP as s uE
PlFrer g xtt) s HY chk L% b Send o At ks B A s
PR s JAR R Bl Bl SRR PRI L AT R LT feacd i
f# o

FoEbE R ERFUPEE S 5 & F] 5 & (Constrained Opti-
mization) ; & 2 RIAE 5 255 { & i * (Unconstrained Optimization) % % 3% 3" %
B A UHEE 2P RS & € 8 F) S dic (Penalty Function) 33 £ P 3 i
oo ) Sl ¥ A B Llp’mzk_&ﬁﬁﬁgp‘.jﬁ\zu»—l——mj*"?j—L A2 i LA IF
SR IR SR S R e AR ST SRR S Y ST

(Dynamic Penalty Function) °

AFTEY 2 RBPIEFEGE S E LA - & R3] (Sequential Quadratic
Programming, SQP) ® 14 7 & -] = 3k #41/2 (Sequential Least Squares Programming
Optimization Algorithm, SLSQP) » :z 2 £ #g ;% (Newton’s Method) 3+ & = =t jig & »&
Tz BAE o AR Rz hﬁ#ﬂ*ﬂwx%-ﬁa"ﬂﬁﬁiw%%ﬁfﬁ:ﬁ%%F;
B 3L -
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F=F HRIREX

iFii*iE%%ﬁﬁ%ﬂiﬁﬁﬁﬁﬁ3li LR ER-E Bt A
AR ARNER ¢ 7 A E AR AR T EES BRFAK S
F12)2 R HGILTE 24 0] FH2 PSR RETF R kA 8%

L
Convergence: inci
Modeling Finite Element Shape g StF:::sc:.?:tles
Method Optimization Distribution
t No Convergence:
lteration

Optimization
Results

Convergence:
< Size Optimization | << Ribs Selection

& No Convergence; ﬁ

Iteration

B 3.0 E ARG AR
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3.2 RXR#

75 LA % 4 ABAQUS shif * el ¢ 7 7 AU bR i LA 47 AL
> *’Fﬁ-ﬂﬂg} SR SRR o FI AT T E R ABAQUS FEHE A2
15 7% ABAQUS #73# & API 4 & (Application Programming Interface) °

iﬁ%?Hﬁméﬁ%ﬁ’%ﬁiﬁﬁﬂ?ﬁ%Mﬂ@Bﬁ%&?%ﬁﬂb
& 0 F i (Part) ~ #HAL2§T (Property) ~ 2% (Assembly) ~ 4 1545 2% (Step) ~ 2 3 B
% (Intersection) ~ §* & &2 3§ # iX * (Load) ~ 42|14 (Mesh) ~ 4 471 1% (Job) ~ ¥
AL 14 (Visualization) % #- % -

%

AL AR F T A S A AR S A b i 1 o A e TR AR
PRk AR AR s BT A RFEE
ABAQUS e 23] 4 (Mesh) # it -2 *» & & < £ ch< % (Element) » & §-#8:% %

AR T T T E T < (R

ToHFITEELAREE A EHNEESA R EE 2B R
AR ST S S S RUELG B EAK > FR AR A g S
EN SRS RS SUE S S IR SUREE IS 3 5 N VS SSE
Bl g L SRR AR AL SE A RS F L AET R T
231 47§ 5 SANURBS # 6 2 4.5 i Rl 4 2 7k o 4o Bl 320 2 B
0 WFE & @Y 0 42k (Control Point) » B3 5 A28 48 17 5 A5k B i 1 2
Boo T OUE R BB E Ak R Ed 2 NURBS & & chghfd > 4 ¥ r1303 g
LSTE P I i I § RER A I
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B 3.2: ©2 NURBS & & #7415 1£7)#% 7 & B (Espath et al. (2011))

2 NURBS & & ?i#;‘;?ﬁ].f‘:%f#iflj kgL BRI N F Z S HCEE nurbs 0 B F
KENURBS W & 7% 2 $8c> ¢ 7 T HFIBATR ~ub plEE o qlf2 - 2 &
2o § ’Zkiﬁgﬁiﬁiﬁﬁ;ﬁﬂ}#ﬁ»kl“ T% o BN R & 33 BB

G REE (73 mdE 3t o 3 @% NURBS & & 2. $#cfé > >t ¢ 3% (Python #4) £ 7 ¢
P PAK2 P E s T 2 BT ABAQUS #-A A ~F SRR
Gl %ﬁ- “iZ =02 NURBS ¢ 6 2 4 B4 B g2 B )k e 4] -

34 * NURBS & o chip #1282 R 8B B g2 B e aj ke 54408
TERE AR E G AP O RE RS ERESY A B
(2017~2020) A2 » 4oBl 3.3 0 A KT H A 5 AdeRAl2 22 F TR E A4
BEEMA od W HPAGRIRL L ATE > L RREF LR R FE
FIPL AR T TE 2 AR R FE R LR E 2727 A B2 BB o R
i (SLSQP) » 3! » Python 1 SciPy 2 * optimize $-2 p 2% ¢ SLSQP » % 3* % #c %
NURBS # & 2 #4185 f2 2 4% > B fSfc s SRR sk A > A THA
2T ho L P RS TR P L P

No Convergence:

Iteration

Free-Form Model Parameter Finite Element Optimization
Parameter Setting Setting Analysis Analysis

Shape Optimization Loop

Convergence

Optimum
Shape

B 330250 i A2 24
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3.3 EHIE:

AEET A AR ST L RFEARZ BHEROITLIEA B
AR RN FREERV AT LRST FREE GRS T AR o T
WA SEHIT R D b G B A AR R AR R T R B
B gBice 35 NURBS cndp 488 ~ Btk ~uw plf & v gl 2 &8k § &
Fedics 12 ABAQUS 2 e RiIA D EBAEE > B0 80 &EH AL o

331 FREEHNZBELBEHEBIHBRRELER

$- BRAERBES 6 (M- ) B LMW 34 R R 2
Y EFLT R a4 F 2 B (LOceanografic) ® 7% Frit # (Restaurante Submarino)
L (4o 3.5) 0 BIAE- dvie Ak A - BT S 10 2 8 2 FAEA TR KB S
382 24 RAAE S 3025 2% PIRe B d A B A & (Pin Support) & 4]0 H
FLEE 4o 1 7 S ik (Young’s Modulus) 3 30 GPa ~ 1 41+ (Poisson’s Ratio) 3
03~ %A 5 2500 2 F/% =% 2% o

10 m

Bl 3.4: [M3E- ] A48 7 & B
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] 3.5: Restaurante Submarino % fﬁ_%g’; B

AT R AR PEAIBE L B BRRL TR A 2 20 B
o % F1A 2 128 Bt o 2 2560 B A% o i AT AR TR 360 @& F
160 441 8E R BB E R g4z B e Ay o d 0B 116 $Hff2 # 14
@%uﬂ%@&w%&%mﬁﬂ%ﬁﬁ&%mﬁfa%&’$ﬁwa et

Alz_d @ o

16 meshes

)

\ 20 meshes -/

2560 elements

Bl 3.6: [»]3E— ] 4~ 401 R B

FIBEHC S 34 BT R BAe® 3.7 - B 3.7 ¢ 4 b
Al gEges o RN I8 B gy
BAL K B AIBL R R G AL TR AL H %o
DR BRI Bahg ARG R R AR S FIRE IR o
Fd dlgitdy 1/16 $HfEcndr arnd] o % - . B#’”#J«M 15 Bkl &
BB Lc? FEbz 3 N B o - RE IS BRI E BRLHS 2

»
~
>

~N

9 A

o &
o P
P n
/ "Il
S e
Iy ?ﬁ’
# F‘%'

o

)

3
¢
gg
ETIS

B ¥ 2 B VR ALY BT C mE N Blandrdl Bt AP EEE T 0 Tl
FD 12 BRG] R R LR AT L K R o B
RAD3 BRFREFR S 1B BRI A 8- o d 2l g
FRAEA LR TR BB R AR BT 00 F o
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wys
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NURBS & G 2. um pFd o qFFEHZ A 2 o d 2> KGR EER K
FI A RRSHTF P ALY B R A RAREREFTE AT ERE . AP
%4 Th4z 3w (2021) #7411 2 NURBS #4224 7% - fd 44 § 57 NURBS = ~
G Ehe § o it L ACHIT R o 0t A B eI BRE RS N B
A TRIZE AU AR R AR 2R R - BRI RRET L
FRAF S LHEME TS B2 IR R RS BER ST R
BEFRTER DRRA T PR BT o B2 RRARG gk P AN
Lprafenfed ~ 3 A3 VR T o 5o BidleE R g RA T BE R el
S BE XA Bl B Y- mir PR h{ AT E R R e

o A ) 2 R 2 R AT B Zmir B R EE A

B 3.8 [B14E- ] 7 FardI B eier®

i{ﬁﬁﬂéﬁﬁ%ﬂf’ﬁw%éiﬁﬁﬁéﬁ%%&&ﬂ,ﬁﬁﬁ%i
#3023 % o AegpAi R B g R A2 TSR A WAed 30~ & 32 9w o
B 2P ABEE - B s BB HREE g AR 3 Ak
Az A% 4 AR D s 52 gk ABAQUS shiE 2 Nap ke o Tt dkc
R - L B HE o 1) 13- B B S e PSR IR C R R Y
ﬂiﬁ“mpﬁ-il F01% 0 w=? 2 g RBRE B T UPIT BEZE DL R
Moo £ 32 %% Ha o N RAsenT @ FIAE R > SiEER F MR E 2 R A
BAR AE AR P RS BCE KT ) 96% 0 R HEER S BB R A5 E
¥ %36 0.07 FF o

/
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e 3 e dr Al AR B R (St SR A gk o HY 2 e
PSR M fpRE Z 22 AR 9 1.5% 2% 47 J‘zsggpg—ﬁ, ] 4
¥ = ‘iﬁr“'z,&gv&— AW BT g d RRR LB FI RPN S T
LR % 14% Bl & RF: %«.&iﬁﬂﬁ:ffn@,@&#g@%?gﬁ &

FEE R e B H{&t’ g FRA A R p o ReE e = Ay T RTS8
ARGk PSR LR W5 1.5% 0 Bor 7 oizdt NURBS 4 s 2%
R ER AR B Ry PRR DGR E R EEFRP g

CR R ARl S A S I

F 3.1 [b]RE- A4k 2 T 8 %

Case 1 CP 1-1 CP 1-2 CP 1-3
Figure
Degree 3 3 3
Variable 15 15 12
Vv (m3) 30 30 30

C' (N x m) 902.56 901.68 901.68

CV (N x m“) 27076.94 27050.66 27050.66

Umax (M) 0.0025 0.0025 0.0025
Uaye (M) 0.0010 0.0014 0.0014

28
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Case 1 CP 1-1 CP 1-2 CP 1-3

Figure

Degree 3 3 3

Variable 15 15 12

V (m?) 30 30 30

C' (N x m) 34.40 33.90 34.42

CV (N x m?) 1031.70 1016.98 1032.52

Umax (M) 7.271 x 1073 6.857 x 1073 6.215x 1073

Ugye (M) 4.617 x 107 5.173 x 10°° 5.087 x 1073
332 RRAEFBEAZFBREIRBLER

AT T - HGHFEFRI R ORI RERE N RPRRAHBL A REAE S
oo F - ABARZAAERSE (W) T B39 5B AR
2 LB BEARL 1022 ke R G 1142 Al 5 10803 = = 2
PR R AN AR MR ALt S 30 GPa s ta

R 03 ARG 2500 2 7/F 2 ok o g AT AFEE 5 16000 0 B w7

bR 2 g B R T w3100 2 L RA NG E - s B
PrABERE S e B - e g 160 B2 %Hlmm\ﬂwa‘ﬁix@@
F18E) > ST G- 2 % 2 edpdl g o Bl 0 12 B ES R dlekF ik

Bt 40
FlE

iban {2 4744 3.3~ & 3.4 9757 o

SRR S BRI R RS S 2560 (B I8 5T
BAAIR) £ 2 PR L) LT N 0

Bl Fa ks kit BT RMA o i
BEE G 2 PRI ELE > FL L 12% 3 F %S gy
#E7 J'-’rum*ﬁ&ﬁ)iu& Bk o RPNV BIEBEFLE AL AP
Podo- gy dlEh o 12 BT RECE 7R R A iiatli A TR
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#0330 [BIAE= ] 7 e andl B R 2 A de Ak A 47 %

Case 2 CP 2-1 CP2-2
Figure
Variable 12 21
Vv (m3) 10803 10803
C (N x m) 1.028 x 10° 1.023 x 10°

cVv (Nxm“) 1.111 x 1083 1.105 x 1013
Umayx (M) 5.71 5.62
Uaye (M) 3.58 3.70

2 34 [G1RE- ] F R dmlc R 2 Ak b it 2%

Case 2 CP 2-1 CP 2-2
Figure
Variable 12 21
Vv (m3) 10803 10803
C' (N x m) 3.491 x 10° 3.449 x 10°
CV (N x m*) 3.772 x 100 3.726 x 100
Umax (M) 0.013 0.013
Uaye (M) 0.011 0.011
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3 ABAQUS & 2 4= 403 » U2 iR B R EF44 0 314 2 2560 ~
10240 ~ 16000 ~ 12 2 41472 B =~ %) > *t p & ehfi ™ A W38 (725K d i 1 1 4E 3
Pl AT oAt BR A 35 BRAZS TN E T e 5 b A K
Bl G g iR Ak PP EFRRSNRARE 0 ~F R
PP SRR R Gk it 0 A R R FI L R R SRR AT AR e
FfEd B FRADRDFE o oER . RIS EFETRE PRSI E
gARBIE ) RS R LI EL I A B3I 2 AR AR EEF R P FSkK
B T URBRI A HEE PRSI AN > P BEF AR ER S 0P
1R B 10 IR R SIS 0 B BT ar o HIA S 10240 A F 2 WA BRI A S 41472 ~
AR > LWL 17% R HEAFTEE AP R RS B ERERE
ORE S A YR R AITE T ke B JURE R G A o

# 35 [MEE- ]2 A EZ B2 B AGRES

Case 2 2560 Elements | 10240 Elements | 16000 Elements | 41472 Elements
Figure
1% (m3) 10803 10803 10803 10803
C' (N x m) 3.307 x 10° 3.473 x 10° 3.491 x 10° 3.533 x 10°
CV (N xm*) | 3.572 x 10 3.752 x 100 3.772 x 100 3.816 x 100
Umax (M) 0.013 0.013 0.013 0.013
Ugye (M) 0.0010 0.010 0.011 0.011
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CV (Nx m*)
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3.60

5000 10000 15000 20000 25000 30000 35000 40000
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AREFAANE AP TR LE RS E AT X RS FL A %
ﬁ’&é”ﬂ?ﬁu£%#&ntﬂéo;a%31 %5+ 7 7 NURBS % #c#ic®

AR BR 2 4B FENHEERNC N 3 R &7 B SR
PR R &&mw*¢W%@w HOARE SR FAFELI 2 o R F
332RIF T 2 P AIBE SR R AR AT R R LB AR R

ﬁi’ﬁ$%$@§ﬁiﬁéﬁﬁ%“§$%ﬂ9ﬁﬁ@’9ﬁ%%ﬁéﬁﬁ’
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G EE S A
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Convergence:
S Size Optimization | << —— Ribs Selection
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Results
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4.2 HeZhFAE R AR
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A AW 420 EEER P DY el A @ F ekt 30
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A 1E
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A A R HE 2R (Part) TS AP RGHEM o EY ~F 5 B31(2-Node-
First-Order Beam Element) » ¥ 1% i :% #c %8 7% 3 B % (Intersection) fi= % # 7 Tie
Constraint 3 4 #-H 22 P BGE - T RIIF * 12 %17 72 EF A
beTNTEEZ LG T 0 R BA3IATT 0 T RIS AR 2 b
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Optimum
Shape

E
[F

inite Element
Analysis

U

Post Processing:

Eigen Analysis

>

Lagrange
Interpolatio

n] > [RKII Method

Principal
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4.3 FheShFEFETRAR
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431 jHeZhEIREF

BEEH2TI AL AFFEE  HH DR RARE R o 9 2 AT
FEE LR SAELASTRA44 5 - 8 o 1800 “HHf 2 = el Her] (5 %4
W) R AF- wh DRl A MY HE - BOE 1A (TEAT) ALF
RPN SR AT ET c R 4450 ZREE-LF e REAI W F - 9GS
W~ BAFIHS > PLAFio- PR AP > KBFT AP RDRE > B2
B (HI~H0) 2. P TR > Case L3 7 A7 e B~ Case2 R F 7 AT
Foete S v Case3 P AEHR T #L~H#H2 S U E HO ST EE TR 0 NSNS o

“

RIDS: w1 w2 #3 44 #5 6
cases:| 0 o] o] oo o> cene
Case2:| 1 ‘ 1 ‘ 1 ‘ 1 | 1 ‘ 1‘ » Chromosome
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E means removing this rib.

means selecting this rib.
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AT ZRTFNFE 2 AR AR 4.5 d LA B AL F AT d A2 Ao T IR g
ﬁ&i’¥Ziiai§ﬁﬁ@%’m%*ﬁﬁﬁ’ﬁuﬁﬂ&%ﬁﬁ°ﬂﬁ’
A=t R RCApe B EH L o ik % 2 (Roulette Wheel Selection) 22 #2 4 (4
46> HPrg 5 @ Ak g A% 3 ARED) > sm ﬁﬁﬁ%$%ﬁiﬁﬁ

%ﬁﬁﬁﬂﬁ%@%ﬁiﬁﬁﬁ PR B TR FREDPS BE - i
=3

WEL o F RHT R —s; FRERE B E) £ Ao S

mw%’u\mniéoﬂ iﬁ%@iﬁ@%%%’aiww*m?ﬂ&

(Contribution) » P; B % & F %3R35 Ik iE * 2 5 o

Genetic Algorithm Loop:

Initial : /1“ Generation ~ Size IZ;>
New Case Parept
Selection
Crossover &
\\ Mutation

B 4.5 MAFIFE FE LR \mﬁ@

Optimization
Results

Roulette Wheel Selection

Selection
Point

Rotation of the wheel

Bl 4.6: #dsi2 7 LW

. B A
C: where C; = Znergy: 4.1)

P =
Cotal’ Volume;
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P R Ao WmARE b 2 1S > WE Uk Tk (Population) < ] 4 {7
R ISR E At o8 I = (E g N SERE SR R S 1k
M2 %% (F53F i@ RA o Fitness) (75 T - gt 2 R NEH RIp > FHREE
fdiiz o PRSI RARMEARF I ARE LA N 42) A5 0 Y AR
PRt B RERE WY O XV R ARG E d a2 B BR
(SRR R A  n 2 FFE L] PRI R AZEARELS T - i)
R «c REREFAFFE 22 oo # 3¢ 2 fe (Crossover) & X % (Mutation) -
WAFAB] 4.7 #7or o %18 Crossover ¥ Mutation > fie ¥ 4! 2 et SR 0 & 5 & ,TA
A+ R PHFIREET-mah AR EFRE T EHHE FIE SR LD
-}};@;,i’.ﬁ\e- ﬁimﬁl},mﬁo bta;z;:)geij .]L—_&—éj.o

Pj= =g (4.2)
ijl(q.xv)z
Crossover
olol1|lo|l1]0 1l0|l1]0]|1]1
1/l0|o0| 1|11 olo|lo|l1]1]0
Mutation

ojlo|lo|oflo|1| = |o|lo|1|l0|o0]1

B 4.7: Crossover X 2 Mutation 2_ 7+ &, [B]
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432 R+HF4E

RGN o BT B R FLR R i R Bl Y (%
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4.4 FHIFR=

AEEFEF - A2dpA 0k 5 2 A2 E R “LT]%JF; B o BT AR Y ERE R
FHRPIARL LR SR BRI PP R RE 2 FERBFIETRG
SERLPE

441 EAZE

ARG (A2 ) A de BT R B4 4.9 FE 100 20 2 1 2 AT 4 5 4R
B 60 24 » BAAF 5 6000 = 2 2% 5w &% d g2 K (Pin Support) &

HHHE 4 S i dk (Young’s Modulus) 3 30 GPa ~ 4p ¥4 (Poisson’s Ratio) &
03~ %A 52500 2 7/& =3 2 ¢ o

0.6 m

‘M‘m

Bl 4.9: [GIAE= ] A2de Ayt 7 & B

FAHE=EFRS 3 A2 REGT > JURTF &L 5% H04E=
e F BB R TG 1600 B oo frA g adi e SN e B 4100 Fd 2R £ 64 B o
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W 4.10: [GH4E= ] 4184k r L W

F 41 [lREz]Bd Ak s RS

Case 3 Initial Shape Optimum Shape
Figure
V (m?) 6000 6000
C' (N x m) 6.716 x 10° 4.519 x 10°
CV (N x m*) 4.030 x 10" 2.712 x 10'°
Umax (M) 63.20 0.038
Ugye (M) 39.16 0.029
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B 4.13: [GIRE= ] 4 E A F 7 7 B

442 AeshEst

BHERIBEABRE 0 T o HBELDBEOFE N FRB ARG o F
LR RS T (R 60 24 BIEIEARE 100 24 0 B ES0 2
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A)E2FED FUAFATEEE - B R ST R (F AL BRI bom

414> A7 TRARBF F LRz e R -
Rib's Energy Ranking
1200
It =60 _ 1000
?:E 800
h' =100 g w0
g 400
b =50 Unit: cm e #  #11 #16 #£21 #26 31
(a) 4= 4547 5 A8 A (b) A= dpte T4 8 2 R R

Bl 4.14: [PAL= ] 4B F 2 FRER A 41 5 %

’;ﬂ;rj'g;;&)iv s o ”r’?x’z:i;ftﬁ431 Az iAo 2 H T RHMAE 5 6000 =
S ARG TRASRB R EPE  FREY AT R DR B LR
£ 2P fEP el > PR S  BEE DAt e R I 0V (T &
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¥R 65 23 F (Crossover Rate) T % 0.8 5 R % & (Mutation Rate) % 0.2 ;
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Rib's section
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F 42 [GHZ] 2 PHE2Z AT REZ SR ILR

Case 3 Number of Ribs =5 Number of Ribs =7 Number of Ribs =9
W
Figure
tshen (cm) 30.56 27.75 30.31
Vinen (m?) 3726 3384 3696
Viips (M) 2274 2616 2304
Viotal (m?) 6000 6000 6000
C' (N x m) 2.294 x 10° 2.449 x 10° 2.435 x 10°
CV (N x m?%) 1.376 x 10'° 1.469 x 10'° 1.461 x 10'°
Umax (M) 0.045 0.036 0.033
Ugye (M) 0.019 0.018 0.019

BLFA 422 Bdy o G B EA TR B2 R R o it 2 AR
WRERSHAT B R RS got AR S 2 BE RS (R 41) K0 T
50%  $HvZ 3 e P REEP 2 HEEEE 0 FLASRSEKEZSEF B
Z PRSI EEM . M VS 6% TR E T ER \-#ﬁ_sl\%;_ ETES
WAL T FAF AL g Mk E e B R RE > EH T BiFZ L
R R SRR o Pt B R AR R - A il g R
S PR RAZEODRIEL LR TP AF LR R SR o g
for =] ER LD R B R DR ERET -

d 442002 Bl416(a) TR D] AN T BB Rk BT REHE
Py B Sl RHADR2 LFFENBE S A H {)I‘ Fir L ERE R
Fos A Al e Flp AT N EE VR I eiEARY FE A 2 B BRG] D A g e AR T
FAR A A TR N 1L R %Qj}%éi,&éfﬁ%ﬁﬂﬁﬁ%?ﬁ%fi CE AR ERE S FBE

IS RRET - m PR Bl AT AWM 2 REHAT AR RS RLBR
BALSBRHE > R A
’;?%%ﬁ,iﬁaﬁﬁéﬁﬁéﬁ—ﬁyﬂ B 4.18(a) ~ (b) A W] 5 # &
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for PR R F A HOIEZ TR R R o B RER U A
Bt MR R Ao @] 419 o vt RO B S L BB VR ded 43 99T o

*»EREREIING  PREISIBRAFEFET NG6% BB 9F L o F
s s g A AFLER L B RER UL R R
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Bl 4.19: [GIAE= ] i 4c 479U4] 20 5 lode T 32 B i L 3k 3

L oA43 (WA ] B R ER LIS R 2 Bk L2t

Case 3

Optimum Result (Lowest C'V)

Optimum Design

Figure

tenerr (Cm) 30.56 30.38
Venen (m*) 3726 3704
Viibs (m?) 2274 2296
Viotal (m?) 6000 6000
C (N x m) 2.294 x 10° 2.432 x 10°
CV (N x m*) 1.376 x 10'° 1.459 x 10'°
Umax (M) 0.045 0.036
Ugye (M) 0.019 0.019
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Bl 5.3: [G13Ee ] W3 & % B2 H R E
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(\ o Y 4 a4 nY Fany f)
v A4 U N A4 N N N4 q
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5.3 RIFTHRA

O ERSHR o UIIE ST A S U AU s 28
PR GENEAE AL o S G 0 2 AR <R BHRFAE > F
TR EFH L2 AU 2R 0K (D) #1310 24 ~FR (h)
FEARHE B TR (i) 2 355 107 RPIUH > AE T LRI LT A
BERE S FERDER () FF 10 28 ~ LR ;ﬁ;;i\rv,f%:@( N HE
30 A 0 Faf2 st (50) 5 (5.2) 5 (53) s (54 £ T oo

b>10cm (5.1
h < 3.5 X byin (5.2)
t>10cm (5.3)
h' > 30 cm (5.4)

B B2 5 0 B B HRUR & (Ultimate Limit State, ULS) > *34] 84
P2 PR EEARBRES 2 RAQEHERE - bR Z P2 RED R
WA 5 30MPa(:t (5.5): @ W AR ML RS 2 B 3 £ R RS
T arE— AL s * 4y IR 52 2 (Steel Fiber Reinforced Concrete, SFRC) 2. #
F 5 BT YE 0 %% Abrishambaf et al. (2013) 2. F %% % » &% T 5 4.3 MPa (3¢
(56)° F I AGHZBEAL AL AFEEN A ACHITAL B B g F o
BETF 2 e R AR R RSB B o T AT R B3 0.5% ihaF A di i
R o BA RHNA > FTAR<RRET BHERFRPE> S - F 2508
BE R N BRTUKR A (Serviceability Limit State, SLS) » 7 it 42 18 2§ e 2

EE o U Nt (5.7) s B ZEA
Oimax < 3 MPa (5.5)
Oemax < 30 MPa (5.6)
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P2 E %’if‘%*f#}?ﬁ 4 }@..‘éﬁ;ﬂ;/ﬂ” PE Rn GRS AP TS - B ,ﬁx\ﬁ}
T2 BOl R E o T AT 5 @ R R TR R o F RS hjp R E
Bt g R TR E 0 B R AP R S S F e ] 0 T
AR Y R R 4 B R 45 (Burocode3) 11 2 4 B4 BRI RS 0 BOE M B HEAR
PO R AP R T3 A R R R R R 7 )
WS ERPG FT DR A SRR LA E G ITE AT 23R B
B R (58) &7 o

Amin = O (5.8)

t\@mi\g (L)~ 11 % ;;;L;\g- (W) > #pe t it %#ﬁ,,.\#{»;i\—g- IR O =
WEEEIURE (ULS) #9772 A d 2 8 (5 (5.9)~ 3 (5.10) ~ 5 B.AD) e f7

N S LSRR T L R R RS TS R R ETE
U =14D (5.9)

U =1.2D + 1.6L, + 0.8W (5.10)

U =1.2D+05L, + 1.6W (5.11)

Ph s R S B BT R P AR LR B (SLS) skt 0 AR
B BRE R L4t (5.12)

S =1.0L, (5.12)

57 doi:10.6342/NTU202201822


http://dx.doi.org/10.6342/NTU202201822

T ABAQUS i » f £ (D) 2 ERFETE (L) chiicsd (77 & 0 233
TP L F R iEE (Load) e ? R 2T T o 4R 1F2 07 g o AP E P
EohikiE S <E APEPRPEAEE MY 20 F > TR EDETRTH G 2 &
“éfi%ﬁ%%@5$’W%Eﬁ*i&%ﬁéﬁﬁélwol%éq,ﬁﬁﬁ
PEXRLLE6027E/E T3 0% 5 gL 600Pac R B ERE LK
TEFH 2 FP L A AT HHEO600Pa 2 BP LTI B A G 0 P

& (Computational Fluid Dynamics, CFD) 4~ #7 £ % » #3t F R 55 Ao ATy &
2z &4*3_&-% E T‘ “,‘56}731"‘—' fyt}_f’

<BEMBRIBEBISHS _ +71%>

2
EEE HEEE (m<)
<20 20~60 >60
I8
1/63K]1R 100 80 60
1/8#18
1/6~1/23]8
1/8~3/8#]7 80 70 60
>1/23K]R
>3/818 o0 o0 60

Unit: kgf/m?

B 5.5 <& RALBRRIE R 03 26 i > 2 BT e £ AP

?’@ﬁ%§%ﬁ%Wiii éﬁﬁ%BAﬁ# &@o#m<;’%—ﬁ%
FE AR RFARFTITRL B Ba Ak RS P R EARGEDET A
SHWERBAF 2 LY E o ABNAFRDBHHLET o FAF SR FT R
(Wind Tunnel Test) » 2% A fi8 {7 8 & X3P P8 > Bip A7k ¢ ¥ o 4 e %>
= PR D TR R e L R N
S HEBR RS P E A 44T (CFD) > S R GUcE A 1 K8
A F i e st KRNI E R F I R R R R R T 2

41

.r-g‘-;\z; o
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551 FEABEHEIMH

AF T EH Y ABAQUS 42354+ 5 (CFD) 2 A 451 & » 3% § 3% T
adr-#r3c 5271 (Reynolds Averaged Navier-Stokes, RANS) = /2 » #-h 3 p 07 §&
TR 1Y % - ¥ ot Hicd) (Turbulence Model) » # L B2 4 - < #0315 b 3o
EUS AV S N i %%“,T AT B AR ﬂisTJ o2 MR R R iR
Fd FoRA PR FY LB b 4 A F > L% ABAQUS # # ¢ Load
Mapping # it #-H & & = f;’f#jﬂ Zm TR 2R A o FHwmaduE AR R b F R
BERFFUEY AP BRI QIS F & 622 415 -

=)

552 RGEE

S E%E AT 5 ABAQUS i CFD A 45 F 2 b B A F £ F £ 12> %

' Cheng and Fu (2010) &%+ FIskRie T h F F R 2 B % o 372 pru (77
CBSG o AT ER R LB L1222 SR TR REF I H o BB S
Bi- *FR BBV RZZFUEFT CRAS L1842 7/F 23 %~ ZRF ik
5 2x 100 taf; Paxs)s Finss R 5 25% 5 » b B & Ald Q}I%ﬁ,d YRS 2
g5t (5.13) #7488 » 3¢ Re % §3#%#8k >~ p » M % & (Fluid Density) ~ v & /48
i# B (Flow Velocity) ~ p 5 ;w48 %> 4 4L & (Flow Dynamic Viscosity) ~ L % #ic& B

fn

w

(Characteristic Length) °

L
Re = 2% (5.13)

7
AL LT L F ST H Y L R RS R AR 5.6 1T 0 BLETR
* CFD A 452 % & j ,pgﬁfv%gmﬁ,\ﬂuiﬁ,\ bR GEET R ORRA TS
ATl R G ORZARRY P RER S > R R G R ERE RS o

o s s 2 x 100 SRR T (2 R B iE 5 2815 2 T /E )0 r L PR
R b RGEST (F57@0) 5 v fREELFR&KD B2 b B GEST o F
57(b) 5 2/ 3 £ CFD A {7 £ T 2 b B ialcs #) > A% 4R 5 4piT > & 0° 3
40° 5 LB ERTF o 3 A 90° TR Flh X ehf 4 o 44 ASCET-05 4 ¢ 3
REERZZ B Db od o] bR Bl 0.8 7 ko] bR Bl -1.20
Fhoh /BRGHER S 0.0- %—?I‘%‘*ﬁ,qja~ 1% CFD A 452 b B (A8 7] i o
w580 = F2 b BATREFAY T @t CFD A 727 fi
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Re =6.7 x 10* Re =5.2 x 10°
Jﬁ=1§é 0.8 > max C, > 0.6 “ﬁv %i 0.8 > max C, > 0.6
Al LS —08<minCy<—1 SN 1 < min ¢, < 12
T ’ gl i ’
th’/{) max C, = 0.713 @Wﬁ w, max C, = 0.730
WEST minc, = —0.928 .5 minc, = —0927
Re =1.2 x 105 Re = 8.4 x 10°
ﬁﬁrxhi 0.8 > max C, > 0.6 Al 08>maxc, > 0.6
,r-”)] tf . a\\) \& .
o mr-m3<mmg<—1 Wi W —08 <minCy<—1| f
‘Jag., i >J=-i £ is !:
\ \%éf a}” " | maxC, =0.719 ’J_jﬁ( ]}F; max C, = 0.732 w
) ’;\ e min C, = —0.921 A S min C, = —0.927

Re = 1.6 x 10°

Re =1.6 x 10°

—1<minCp< —12

0.8 >maxC, > 0.6

max C, = 0.722
min C, = —0.916

0.6 > max C, > 0.4
-1 <minCp< —1.2

max C, = 0.736
min C, = —0.936

Cp

Bl 5.6: 7 b 7 s i F A 1T %RE

05

Re Re

o 82E+05 & BIE+0S

° 9.6E4+05 e LOE+06

= LLIE+06 & 1.2E+06

0 20° 40°

-5 -

¢ 1.3E4+06 ¢ 14E+06
° LSE+06 |+ 1.6E+06
° L7TE+06  L.8E+06

* L.9E+06 + 2.0E+06

(a) b iF F %2 b R 2fcs # 2% (Cheng and Fu (2010))

Re= 1.6 X 106 ("™/s)

0.736
3
"
L)
.
L)
s
.
.
L)
.
L]
L/
8 .
.
-0z e
s
.
.
.
L
o

Degree

(b) CFD % 72 kb B tadcs # 2 %
Bl 5.7 XRHETFEHEL R BRAF HE
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Pressure work at Re=1.6 X10° ASCET7-05 This Research

St iy
R ” F13339 Lel
VT (e
,.s“’l"’* 5 N}« 214 1] Bk

Jit o

N Ta

RIS 0

q
Cheng, 2010 ASCE7-05 CFD Result

Bl 5.8: % %~ ASCE7-05 + 112 CFD g2 b B4 *

5.6 FHHT

Bl ERPIFAUEPEE LR FERIHNIAFTE BEFE I FHA4
T 5;17—, v»ﬁxlj;”‘p{fj'/ﬁfiffm«}tg‘x ‘E-f"ﬁhl_-h"‘ ;’L > B ’fgv‘-‘lﬁ'@:é%’f#"'ﬁj&;&
FOURRAE TR L T Bl B B RSl LT EA L H A 2

5.6.1 BRRAEILZZ

_F'I_-Q'H)«# /,v?‘ﬁxl Lo‘%‘d ﬁiﬁw‘&%@lﬂa Tilf ai;\_-é-ﬂU 1.4D
AP TR AL LA R AT U=14D FHlp el iRl - LR
PIE»HF T REEZAPFRGER A A d AR EF LT PN EX

g% ‘F}g‘ICFD/\*frlll IIEAGKHIEOR BRA T o EE T A F AT
FENp L e FE kR I g PEE L2 B

oA o

AT B B AR 2 AR R A S T BB R R A 16
NUHEL IS 2 HAEH28 AL A5V kAR LR YR E RS
(S =1.0L,) T chlictt » BpP % 5 U=14D 2 %% o 5d 2k b %2
B B RAAET 0 P ST E 35% 0 0 E A TR B E D 56% 5 bt E 4
(Oumae) 2B H L5 B 2 A& 1L b4 KR £ 5 0.12% % 3 610.04% -
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F 5.1 [BIRE® ] A= 4p A0k 87 B i 1L AR 2 T B %

Case 4 Initial Shape Optimum Shape

Figure

V(m?) 572 572
CV (N x m%) 4.975 x 107 3.188 x 107

Umax (M) 1.3 x 1073 3.5x107*
Ot.max (MPa) 5.89 5.69
Eleexceed (%) 0.12 0.04
Oc.max(MPa) 22.22 21.29
Elecxceed(%0) 0.00 0.00

Amin 28.74 24.00

562 HAEKEEE

Wt MBI i AR EE > T T 58 CFD A 493~ 3% 75,K S 2 b B A
Food RS VAR RAIZR AP 000 AFLRE BE AR
2 E R kRS eom L RACE 5.9 407 RHE fdcE - X F R HEA25 A
ZEFERAR G 1184 & T/E 25 2% AR il 2 x 100 taF) (Pa x s) »
Fimam AR L 25% b b2 <ZERPF AR RFRPEE fEER> 0P AR
B 42.5 2 U E ) o BENGT CFD A TG 2R ¢ § 0 s L A
FAN MR RS R RES T ERAG P EE S v - 2 WOEREAR G T
4oB 500~ B 501 WS120 2 @ KR 2w A S L b RS R R B 53

7F o
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Direct 1:

Direct 3:

B 5.9: [b13e] kk > %7 R B

Fluid properties (25°c, 1 atm):
p = 1.184 (kg/m?)
viscosity = 2 x 1075 (Pa x s)

Wind 1
Outlet

Wind 1 — |
Inlet __—
V=425 _— |
(mis)

10L

L = max(length, height) = 40 (m)
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PRESSURE
+9.772e402
+8.63%9e+02
+7.506e+02
+6.372e+02
+5.230e4+02
+4.106e+02
+2.973e+02
+1.840e+02

-2.693e+02
-3.826e+02
-4.960e+02
-6.003e+02
-7.226e+02
-8.359e+02
-0.492e+02
-1.063e+03
-1.176e+03

-1.629e+03
17456103

ODE: CFD_Japh.ade  Asqumi eIt

Slep: S
i

tepel
] nciement 10D Siep Timp
Primary Var: PRESSURE
Befaimed Yar: nal ==t Cefaimb

¥

PDLOAD

+1.333e+03
+1.257e+03
+1.181e+03
+1.106e+03
+1.030e+03
+9.549e+02
+8.794e+02
+8.03%9e+02
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+6.528e+02
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+5.018e+02
+4.263e+02
+3.507e+02
+2.752e+02
+1.997e+02
+1.242e+02
+4.863e+01
-2.68%9e+01

-1.024e+02

-1.779e+02

-2.535e+02

-3.290e+02

-4.045e+02

-4.800e+02

B 5.12:

[AEe] 2 - @ B b R GIF

64 doi:10.6342/NTU202201822


http://dx.doi.org/10.6342/NTU202201822

Direct 1:

Direct 2:

Direct 3:

& 0 X

B 5.13: [GldEe | b BRAF &5

65
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5.6.3 HeshE R

ToHBE BRSO G R 7 DR E R BE 0 E
B TR AT 2 B AR HFA R R g R e B2 e B
WA E YR 504 477 0 £ F 32 00 iy RAE o d U =14D L £~ 05
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(@) 2o 5 4 % B iR B (0) 42 5 % L
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% 5.2

[GJATm ] 403 2 B |

e

w2 A

Case 4

Best Result

Figure

Lshen (cm) 17.86
Vihell (m3) 335
Viibs (m?) 217
‘/total (m3) 572
1.462 x 107
CV (N x m*) (U = 1.4D)
- 4 x10~*
Umax (S=1.0L,)
4.07
Ot max (MPa) (U =1.2D + 05LT + 16W3)
Eleexceed (%) OOO
11.02
Ocmax (MPa) (U =1.2D + 1.6L, + 1.6W3)
Eleexceed (%) 0.00
5.00

>\min

(U=1.2D+1.6L, + 0.8W1)
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%ﬁﬁﬁaﬁﬁ%ﬁip*@%&@ﬁanyﬁwﬁa@gw7p;@%
REH s B A 530 TidE (2021) i H g BTG A 4 AUE (7 40 B 0 ek
B H2EIB RS R o ARG 2R R LB R P e (B
by gEmiFM) 1z EFRLER (D) B84 SIBRET D 5d AFFE 2

#*
ThELEFRBR OB G MR ZERSEE

FheSho Az 33 Al R 2 A DR
B2 T SR RARE 5% BT RES T 6%

<
(w
by
@
F
et

% 53 [0|dEw ] AFT 7 B2 Tk4E 5 (202]) 22 B F VR R F R

Case 4 Best Result k43 (2021)
Figure
tenent (CM) 17.86 15.00
Viherr (m”) 355 298
Viibs (m?) 217 274
V;otal (1’1’13) 572 572
1.462 x 107 1.547 x 10
4
O (W et (U = 1.4D) (U = 1.4D)
(m) 4x 1074 5% 1073
Hmax (S =1.0L,) (S =1.0L,)
4.07 3.25
umax (MPR) | 1 9p L 05L, + 1.6T) (U = 1.4D)
Eleexceed (%) 0.00 0.00
11.02 10.56
Temax (MPa) (U =1.2D + 1.6L, + 1.6W3) (U =1.4D)
Eleexceed (%) 0.00 0.00
N 5.00 13.27
min (U =1.2D + 1.6L, + 0.8W;) (U =1.2D + 1.6L, + 0.8W>)
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