請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86555完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳耀銘(Yaow-Ming Chen) | |
| dc.contributor.author | Chang-Chun Yeh | en |
| dc.contributor.author | 葉昶均 | zh_TW |
| dc.date.accessioned | 2023-03-20T00:02:56Z | - |
| dc.date.copyright | 2022-08-19 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-08-11 | |
| dc.identifier.citation | [1] P. K. Pathak and A. R. Gupta, 'Battery Energy Storage System,' 2018 4th International Conference on Computational Intelligence & Communication Technology (CICT), 2018, pp. 1-9, doi: 10.1109/CIACT.2018.8480377. [2] N. Kawakami and Y. Iijima, 'Overview of battery energy storage systems for stabilization of renewable energy in Japan,' 2012 International Conference on Renewable Energy Research and Applications (ICRERA), 2012, pp. 1-5, doi: 10.1109/ICRERA.2012.6477391. [3] N. Chatrung, 'Battery Energy Storage System (BESS) and Development of Grid Scale BESS in EGAT,' 2019 IEEE PES GTD Grand International Conference and Exposition Asia (GTD Asia), 2019, pp. 589-593, doi: 10.1109/GTDAsia.2019.8715953. [4] M. Stecca, L. R. Elizondo, T. B. Soeiro, P. Bauer and P. Palensky, 'A Comprehensive Review of the Integration of Battery Energy Storage Systems Into Distribution Networks,' in IEEE Open Journal of the Industrial Electronics Society, vol. 1, pp. 46-65, 2020, doi: 10.1109/OJIES.2020.2981832. [5] P. F. Ribeiro, B. K. Johnson, M. L. Crow, A. Arsoy and Y. Liu, 'Energy storage systems for advanced power applications,' in Proceedings of the IEEE, vol. 89, no. 12, pp. 1744-1756, Dec. 2001, doi: 10.1109/5.975900. [6] W. C. Liao et al., 'Study and implementation of a novel bidirectional DC-DC converter with high conversion ratio,' 2011 IEEE Energy Conversion Congress and Exposition, 2011, pp. 134-140, doi: 10.1109/ECCE.2011.6063760. [7] K. N. Hasan, M. E. Haque, M. Negnevitsky and K. M. Muttaqi, 'Control of energy storage interface with a bidirectional converter for photovoltaic systems,' 2008 Australasian Universities Power Engineering Conference, 2008, pp. 1-6. [8] W. T. Yan, L. S. Yang, C. M. Hong, T. J. Liang, J. F. Chen and H. T. Yang, 'Fuel cell and battery hybrid supplied power system,' 2008 International Conference on Electrical Machines and Systems, 2008, pp. 2676-2680. [9] R. Hidalgo-León et al., 'A survey of battery energy storage system (BESS), applications and environmental impacts in power systems,' 2017 IEEE Second Ecuador Technical Chapters Meeting (ETCM), 2017, pp. 1-6, doi: 10.1109/ETCM.2017.8247485. [10] M. T. Lawder et al., 'Battery Energy Storage System (BESS) and Battery Management System (BMS) for Grid-Scale Applications,' in Proceedings of the IEEE, vol. 102, no. 6, pp. 1014-1030, June 2014, doi: 10.1109/JPROC.2014.2317451. [11] H. Matsuo and F. Kurokawa, 'New Solar Cell Power Supply System Using a Boost Type Bidirectinal DC-DC Converter,' in IEEE Transactions on Industrial Electronics, vol. IE-31, no. 1, pp. 51-55, Feb. 1984, doi: 10.1109/TIE.1984.350020. [12] F. Caricchi, F. Crescimbini, G. Noia and D. Pirolo, 'Experimental study of a bidirectional DC-DC converter for the DC link voltage control and the regenerative braking in PM motor drives devoted to electrical vehicles,' Proceedings of 1994 IEEE Applied Power Electronics Conference and Exposition - ASPEC'94, 1994, pp. 381-386 vol.1, doi: 10.1109/APEC.1994.316373. [13] R. D. Middlebrook, S. Cuk and W. Behen, 'A new battery charger/discharger converter,' 1978 IEEE Power Electronics Specialists Conference, 1978, pp. 251-255, doi: 10.1109/PESC.1978.7072361. [14] M. Dantas, F. Oliveira, L. Albuquerque, I. Freitas and R. Andersen, 'A Hybrid Bidirectional Push-Pull DC-DC Converter with a Ladder Switched-Capacitor Cell,' 2019 IEEE 15th Brazilian Power Electronics Conference and 5th IEEE Southern Power Electronics Conference (COBEP/SPEC), 2019, pp. 1-6, doi: 10.1109/COBEP/SPEC44138.2019.9065614. [15] K. Venkatesan, 'Current mode controlled bidirectional flyback converter,' 20th Annual IEEE Power Electronics Specialists Conference, 1989, pp. 835-842 vol.2, doi: 10.1109/PESC.1989.48567. [16] Hui Li, Fang Zheng Peng and J. S. Lawler, 'A natural ZVS medium-power bidirectional DC-DC converter with minimum number of devices,' in IEEE Transactions on Industry Applications, vol. 39, no. 2, pp. 525-535, March-April 2003, doi: 10.1109/TIA.2003.808965. [17] S. A. Gorji, H. G. Sahebi, M. Ektesabi and A. B. Rad, 'Topologies and Control Schemes of Bidirectional DC–DC Power Converters: An Overview,' in IEEE Access, vol. 7, pp. 117997-118019, 2019, doi: 10.1109/ACCESS.2019.2937239. [18] B. Zhao, Q. Song, W. Liu and Y. Sun, 'Overview of Dual-Active-Bridge Isolated Bidirectional DC–DC Converter for High-Frequency-Link Power-Conversion System,' in IEEE Transactions on Power Electronics, vol. 29, no. 8, pp. 4091-4106, Aug. 2014, doi: 10.1109/TPEL.2013.2289913. [19] S. Yao, G. Liu, Y. Zhao, Z. Zhu and B. Zhao, 'Optimal control strategy of dual-active-bridge converter for battery energy storage system,' 2014 China International Conference on Electricity Distribution (CICED), 2014, pp. 1220-1224, doi: 10.1109/CICED.2014.6991901. [20] S. Inoue and H. Akagi, “A bidirectional isolated dc-dc converter as a core circuit of the next-generation medium-voltage power conversion system,” IEEE Trans. Power Electron., vol. 22, no. 2, pp. 535–542, Mar. 2007. [21] B. Zhao, Q. Yu, and W. Sun, “Extended-phase-shift control of isolated bidirectional dc-dc converter for power distribution in microgrid,” IEEE Trans. Power Electron., vol. 27, no. 11, pp. 4667–4680, Nov. 2012. [22] T. Hirose and H. Matsuo, “A consideration of bidirectional superposed dual active bridge dc-dc converter,” in Proc. 2nd IEEE Int. Symp. Power Electron. Distrib. Generation Syst., 2010, pp. 39–46. [23] F. Krismer and J. W. Kolar, “Accurate small-signal model for the digital control of an automotive bidirectional dual active bridge,” IEEE Trans. Power Electron., vol. 24, no. 12, pp. 2756–2768, Dec. 2009. [24] X. Li and A. K. S. Bhat, “Analysis and design of high-frequency isolated dual-bridge series resonant dc/dc converter,” IEEE Trans. Power Electron., vol. 25, no. 4, pp. 850–862, Apr. 2010. [25] W. Chen, P. Rong, and Z. Y. Lu, “Snubberless bidirectional DC-DC converter with new CLLC resonant tank featuring minimized switching loss,” IEEE Trans. Ind. Electron., vol. 57, no. 9, pp. 3075–3086, Sep. 2010. [26] J. H. Jung, H. S. Kim, M. H. Ryu, and J. W. Baek, “Design methodology of bidirectional CLLC resonant converter for high-frequency isolation of dc distribution systems,” IEEE Trans. Power Electron., vol. 28, no. 4, pp. 1741–1755, Apr. 2013. [27] P. Xuewei and A. K. Rathore, 'Novel bidirectional snubberless soft-switching naturally clamped zero current commutated current-fed dual active bridge (CFDAB) converter for fuel cell vehicles,' 2013 IEEE Energy Conversion Congress and Exposition, 2013, pp. 1894-1901, doi: 10.1109/ECCE.2013.6646939. [28] K. Wang, C. Y. Lin, L. Zhu, D. Qu, F. C. Lee and J. S. Lai, 'Bi-directional DC to DC converters for fuel cell systems,' Power Electronics in Transportation (Cat. No.98TH8349), 1998, pp. 47-51, doi: 10.1109/PET.1998.731056. [29] X. Pan, H. Li, Y. Liu, T. Zhao, C. Ju and A. K. Rathore, 'An Overview and Comprehensive Comparative Evaluation of Current-Fed-Isolated-Bidirectional DC/DC Converter,' in IEEE Transactions on Power Electronics, vol. 35, no. 3, pp. 2737-2763, March 2020, doi: 10.1109/TPEL.2019.2931739. [30] J. A. Sabate, V. Vlatkovic, R. B. Ridley and F. C. Lee, 'High-voltage, high-power, ZVS, full-bridge PWM converter employing an active snubber,' [Proceedings] APEC '91: Sixth Annual Applied Power Electronics Conference and Exhibition, 1991, pp. 158-163, doi: 10.1109/APEC.1991.146157. [31] Jung G. Cho, Geun H. Rim and F. C. Lee, 'Zero voltage and zero current switching full bridge PWM converter using secondary active clamp,' PESC Record. 27th Annual IEEE Power Electronics Specialists Conference, 1996, pp. 657-663 vol.1, doi: 10.1109/PESC.1996.548651. [32] Kunrong Wang, F. C. Lee and J. Lai, 'Operation principles of bi-directional full-bridge DC/DC converter with unified soft-switching scheme and soft-starting capability,' APEC 2000. Fifteenth Annual IEEE Applied Power Electronics Conference and Exposition (Cat. No.00CH37058), 2000, pp. 111-118 vol.1, doi: 10.1109/APEC.2000.826092. [33] Kunrong Wang, Lizhi Zhu, Dayu Qu, H. Odendaal, J. Lai and F. C. Lee, 'Design, implementation, and experimental results of bi-directional full-bridge DC/DC converter with unified soft-switching scheme and soft-starting capability,' 2000 IEEE 31st Annual Power Electronics Specialists Conference. Conference Proceedings (Cat. No.00CH37018), 2000, pp. 1058-1063 vol.2, doi: 10.1109/PESC.2000.879959. [34] 許蕙瀅(2021)。二次側調變方法之主動箝位電流饋入式雙主動橋式轉換器。國立臺灣大學電機工程學研究所碩士論文,台北市。 [35] Zhiliang Zhang and Xinbo Ruan, 'A novel double phase-shift control scheme for full-bridge three-level converter,' Twentieth Annual IEEE Applied Power Electronics Conference and Exposition, 2005. APEC 2005., 2005, pp. 1240-1245 Vol. 2, doi: 10.1109/APEC.2005.1453162. [36] H. Bai and C. Mi, 'Eliminate Reactive Power and Increase System Efficiency of Isolated Bidirectional Dual-Active-Bridge DC–DC Converters Using Novel Dual-Phase-Shift Control,' in IEEE Transactions on Power Electronics, vol. 23, no. 6, pp. 2905-2914, Nov. 2008, doi: 10.1109/TPEL.2008.2005103. [37] S. Bal, D. B. Yelaverthi, A. K. Rathore and D. Srinivasan, 'Improved Modulation Strategy Using Dual Phase Shift Modulation for Active Commutated Current-Fed Dual Active Bridge,' in IEEE Transactions on Power Electronics, vol. 33, no. 9, pp. 7359-7375, Sept. 2018, doi: 10.1109/TPEL.2017.2764917. [38] Brown, J. (n.d.), Power MOSFET Basics: Understand-ing Gate Charge and Using It To Assess Switching Performance, Vishay Siliconix, 2016. [39] Laszlo Balogh, Fundamentals of MOSFET and IGBT Gate Driver Circuits. Texas Instruments, 2018. [40] Texas Instruments, “TMS320F2833x, TMS320F2823x Digital Signal Controllers (DSCs),” F28335 datasheet, Feb. 2021. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86555 | - |
| dc.description.abstract | 本論文提出一個適用於主動箝位電流饋入型雙主動橋式轉換器(Active-clamped current-fed dual active bridge, AC-CFDAB)的雙向控制策略,透過雙重相位移的控制實現雙向能量傳輸,並擁有比現行調變方式更好的換向暫態,同時也可以讓電路操作在當前輸出功率下的最大效率點。 AC-CFDAB的低壓側漣波小且可以達到雙向能量傳輸,非常適合用於電池儲能應用於低壓側電源的場合。然而,現階段對於實現軟切換的開關調變方法研究多只適用於單向的能量傳輸,雙向操作需要涉及兩個不同控制方法的轉換,若是兩個控制方式差異過大,換向瞬間的暫態突波會十分明顯,嚴重時會損壞整體電路。 本文首先提出一個可以實現雙向能量傳輸的修改型雙重相位移的開關調變方式,由於在雙向操作時並不需要變換調變方式,可以大幅降低改變功率流向操作時的暫態突波。同時只要設定足夠的停滯時間,全部的開關都可以實現零電壓切換。此外,雙重相位移也提供更高的控制自由度,除了傳輸能量之外,轉換效率也有機會被提升。本論文透過對雙重相位移的解耦合與相關分析,提出可以達到最大效率操作點的雙向控制策略。 為了驗證所提控制策略的正確性,本論文實作一組48V/400V, 720W的原型電路。電腦模擬與實驗結果皆符合驗證所提控制策略的正確性。 | zh_TW |
| dc.description.abstract | This thesis proposes a bidirectional control strategy for the active-clamped current-fed dual active bridge(AC-CFDAB) converter. By controlling the dual phase-shifts, the bidirectional power transmission can be achieved, the bidirectional transient is better than conventional modulation methods, and the maximum efficiency point can be tracked. The AC-CFDAB converter has the small low-voltage-side current ripple and the ability of bidirectional power transmission, which is very suitable for energy storage applications. However, research of soft switching modulation method listed in literature only focus on the unidirectional power transmission. Two different modulation methods are required to achieve the bidirectional power transmission. Usually, an obvious current spike will be generated during the transition of the two modulation mothods. In the worst case, the converter may be damaged. This thesis first proposes a modified dual-phase-shift modulation(MDPSM) method for the bidirectional operation of the AC-CFDAB. Since there is no change of the modulation method for MDPSM, the current spike of the bidirectional operation transient can be mitigated dramatically. Also, the zero-voltage-switching feature for all the switches can be achieved by adding the proper deadtime. Additionally, the control of dual-phase-shift provides an additional degree of freedom to control, so that improve the efficiency of the converter. In this thesis, the proposed MDPSM is used to realize the maximum efficiency tracking of the converter. To validated the performance of the proposed MSPSM modhod, a 48V/400V, 720W AC-CFDAB prototype is built and tested. Computer simulations and experiment results are provided to the performance of the AC-CFDAB with the proposed MDPSM method. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-20T00:02:56Z (GMT). No. of bitstreams: 1 U0001-0908202201264000.pdf: 10280077 bytes, checksum: 30f3b2383c0656ad2bd82a3c41b11c4e (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 口試委員審定書 i 致謝 ii 摘要 iii ABSTRACT iv 目錄 v 圖目錄 vii 表目錄 xi Chapter 1 Introduction 1 1.1 Background 1 1.2 Paper Review and Motive 2 1.3 Outline 3 Chapter 2 MDPSM for AC-CFDAB 5 2.1 Introduction to AC-CFDAB 5 2.1.1 AC-CFDAB Topology 5 2.1.2 Existing Modulation Methods 7 2.2 Modified Dual Phase Shift Modulation 9 2.2.1 Modulation Method 10 2.2.2 Circuit Operation 13 2.2.3 ZVS Condition 20 2.3 Power Transmission Control 27 2.4 Bidirectional Transient Response 31 Chapter 3 Power Efficiency Improvement 34 3.1 Efficiency Equation 34 3.2 Maximum Efficiency Point Tracking Strategy 41 3.2.1 Operation region 41 3.2.2 Efficiency Analysis 43 3.2.3 Strategy Scheme 45 3.3 Parameter Design 48 Chapter 4 Hardware Implement 49 4.1 Hardware Design 49 4.1.1 Power Stage Circuits 50 4.1.2 Control Stage Circuits 56 4.2 DSP Program 61 4.2.1 Main Program 61 4.2.2 Interrupt Functions 64 Chapter 5 Simulation and Experimental Verification 67 5.1 Test Environment 67 5.2 Steady-state Waveforms 69 5.3 Bidirectional Transient 88 5.4 Maximum Efficiency Point Tracking Strategy 92 Chapter 6 Conclusion and Future Work 99 6.1 Summary 99 6.2 Future Works 100 REFERENCES 101 | |
| dc.language.iso | en | |
| dc.subject | 主動箝位電流饋入型雙主動橋式轉換器 | zh_TW |
| dc.subject | 主動箝位電流饋入型雙主動橋式轉換器 | zh_TW |
| dc.subject | 雙重相位移控制 | zh_TW |
| dc.subject | 最大效率追蹤 | zh_TW |
| dc.subject | 零電壓切換 | zh_TW |
| dc.subject | 雙重相位移控制 | zh_TW |
| dc.subject | 零電壓切換 | zh_TW |
| dc.subject | 最大效率追蹤 | zh_TW |
| dc.subject | daul-phase-shift control | en |
| dc.subject | maximum efficiency point tracking | en |
| dc.subject | zero voltage switching | en |
| dc.subject | daul-phase-shift control | en |
| dc.subject | dual active bridge converter | en |
| dc.subject | maximum efficiency point tracking | en |
| dc.subject | zero voltage switching | en |
| dc.subject | dual active bridge converter | en |
| dc.title | 主動箝位電流饋入型雙主動橋式轉換器之雙向控制策略 | zh_TW |
| dc.title | Bidirectional Control Strategy for Active-clamp Current-fed Dual Active Bridge Converters | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳偉倫(Woei-Luen Chen),唐丞譽 (Cheng-Yu Tang),楊士進(Shih-Chin Yang),陳景然(Ching-Jan Chen),黃仁宏(Peter J. Huang) | |
| dc.subject.keyword | 主動箝位電流饋入型雙主動橋式轉換器,雙重相位移控制,零電壓切換,最大效率追蹤, | zh_TW |
| dc.subject.keyword | dual active bridge converter,daul-phase-shift control,zero voltage switching,maximum efficiency point tracking, | en |
| dc.relation.page | 106 | |
| dc.identifier.doi | 10.6342/NTU202202177 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2022-08-12 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電機工程學研究所 | zh_TW |
| dc.date.embargo-lift | 2024-09-01 | - |
| 顯示於系所單位: | 電機工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0908202201264000.pdf | 10.04 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
