Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86530
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor夏俊雄(Chun-Hsiung Hsia)
dc.contributor.authorJin-Zhi Phoongen
dc.contributor.author馮晉知zh_TW
dc.date.accessioned2023-03-20T00:01:22Z-
dc.date.copyright2022-09-07
dc.date.issued2022
dc.date.submitted2022-08-15
dc.identifier.citation[1] R. Alexandre, Y. Morimoto, S. Ukai, C.-J. Xu, and T. Yang. The Boltzmann equation without angular cutoff in the whole space: Qualitative properties of solutions. Archive for Rational Mechanics and Analysis, 202(2):599–661, Jun 2011. [2] C. Bardos, R. E. Caflisch, and B. Nicolaenko. The Milne and Kramers problems for the Boltzmann equation of a hard sphere gas. Communications on pure and applied mathematics, 39(3):323–352, 1986. [3] L. Boltzmann. Weitere Studien über das Wärmegleichgewicht unter Gasmolekülen. k. und k. Hof- und Staatsdr., 1872. [4] C. Cercignani. Theory and application of the Boltzmann equation. Scottish Academic Press, 1975. [5] C. Cercignani et al. Mathematical methods in kinetic theory, volume 1. Springer, 1969. [6] I.-K. Chen. Boundary singularity of moments for the linearized Boltzmann equation. Journal of Statistical Physics, 153(1):93–118, 2013. [7] I.-K. Chen and C.-H. Hsia. Singularity of macroscopic variables near boundary for gases with cutoff hard potential. SIAM Journal on Mathematical Analysis, 47(6):4332–4349, 2015. [8] I.-K. Chen, T.-P. Liu, and S. Takata. Boundary singularity for thermal transpiration problem of the linearized Boltzmann equation. Archive for Rational Mechanics and Analysis, 212(2):575–595, 2014. [9] C. R. E. The Boltzmann equation with a soft potential. I. Comm. Math. Phys, 74:71– 95, 1980. [10] G. F. and P. F. Stationary solutions of the linearized Boltzmann equation in a halfsphere. Math. Methods Appl. Sci, 11:483–502, 1989. [11] Y.-H. Huang. Boundary singularity of macroscopic variables for linearized Boltzmann equation with cutoff soft potential. 2020. [12] S. R. M. Optimal time decay of the non cut-off Boltzmann equation in the whole space. Kinet. Relat. Models, 5:583–613, 2012. [13] Y. Onishi and Y. Sone. Kinetic theory of slightly strong evaporation and condensation– hydrodynamic equation and slip boundary condition for finite reynolds number– . Journal of the Physical Society of Japan, 47(5):1676–1685, 1979. [14] L. S. and Y. X. The initial boundary value problem for the Boltzmann equation with soft potential. Arch. Ration. Mech. Anal., 223:463–541, 2017. [15] U. S. and A. K. On the Cauchy problem of the Boltzmann equation with a soft potential. Publ. Res. Inst. Math. Sci., 11:477–519, 1982. [16] Y. Sone. Kinetic theory analysis of linearized Rayleigh problem. Journal of the Physical Society of Japan, 19(8):1463–1473, 1964. [17] Y. Sone. Effect of sudden change of wall temperature in rarefied gas. Journal of the Physical Society of Japan, 20(2):222–229, 1965. [18] Y. Sone. Kinetic theory of evaporation and condensation –linear and nonlinear problems–. Journal of the Physical Society of Japan, 45(1):315–320, 1978. [19] G. Y. and S. R. M. Exponential decay for soft potentials near Maxwellian. Arch. Ration. Mech. Anal., 187:287–339, 2008.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86530-
dc.description.abstract波茲曼方程是描述熱力學系統演化的重要數學模型。數學家已將其廣泛應用在各個科學領域,並對其進行了許多的研究。在本文中,我們回顧了波茲曼方程碰撞算子的性質。我們主要關注於 Milne 和 Kramers 問題的解的存在性,唯一性和漸近行為。我們也介紹近期線性波茲曼方程的宏觀變量的邊界奇點方面的工作。zh_TW
dc.description.abstractThe Boltzmann Equation is an important mathematical model that describes the evolution of a thermodynamic system. It has been studied and applied in various scientific areas. In this article, we review the properties of collision operator of Boltzmann equation. We will focus mainly on the well-posedness and the asymptotic behaviour of the Milne and Kramers problem as well as the recent work in the boundary singularity of macroscopic variables for linearized Boltzmann equation.en
dc.description.provenanceMade available in DSpace on 2023-03-20T00:01:22Z (GMT). No. of bitstreams: 1
U0001-1108202213214900.pdf: 509872 bytes, checksum: 38c78b589a9dade704a9e3ae5a4ed104 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontentsVerification Letter from the Oral Examination Committee i Acknowledgements iii 摘要 v Abstract vii Contents ix Chapter 1 Introduction 1 Chapter 2 The Milne Problem 7 Chapter 3 The Kramers Problem 31 Chapter 4 Boundary singularity 37 Chapter 5 Conclusion and Challenges 55 References 57
dc.language.isoen
dc.subject偏微分方程zh_TW
dc.subject波茲曼方程zh_TW
dc.subject邊界奇點zh_TW
dc.subject偏微分方程zh_TW
dc.subject波茲曼方程zh_TW
dc.subject邊界奇點zh_TW
dc.subjectPartial Differential Equationsen
dc.subjectPartial Differential Equationsen
dc.subjectBoltzmann Equationen
dc.subjectBoundary Singularitiesen
dc.subjectBoltzmann Equationen
dc.subjectBoundary Singularitiesen
dc.title波茲曼方程及其邊界奇點綜述zh_TW
dc.titleA review on the Boltzmann equation and its boundary singularitiesen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳逸昆(I-Kun Chen),吳恭儉(Kung-Chien Wu)
dc.subject.keyword偏微分方程,波茲曼方程,邊界奇點,zh_TW
dc.subject.keywordPartial Differential Equations,Boltzmann Equation,Boundary Singularities,en
dc.relation.page59
dc.identifier.doi10.6342/NTU202202294
dc.rights.note同意授權(全球公開)
dc.date.accepted2022-08-15
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept數學研究所zh_TW
dc.date.embargo-lift2022-09-07-
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
U0001-1108202213214900.pdf497.92 kBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved