Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86097
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor李世光zh_TW
dc.contributor.advisorChih-Kung Leeen
dc.contributor.author蔡俊雄zh_TW
dc.contributor.authorChun-Hsiung Tsaien
dc.date.accessioned2023-03-19T23:36:42Z-
dc.date.available2023-11-10-
dc.date.copyright2023-09-15-
dc.date.issued2022-
dc.date.submitted2002-01-01-
dc.identifier.citationReference
[1] Ann Kelleher (2022, Feb). Moore’s law – now and in the future.
https://www.intel.com/content/www/us/en/newsroom/opinion/moore-law-now-and-in-the-future.html. Intel.
[2] Max Roser, Hannah Ritchie (2022, Nov). A logarithmic graph showing the timeline of how transistor counts in microchips are almost doubling every two years from 1970 to 2020; Moore's Law. https://ourworldindata.org/uploads/ 2020/11/Transistor-Count-over-time.png. Our world in data.
[3] Moore. (1998). Cramming More Components Onto Integrated Circuits. Proceedings of the IEEE, 86(1), 82–85. https://doi.org/10.1109/ JPROC.1998.658762.
[4] Apple. (2022, March). Apple unveils M1 ultra, the world's most powerful chip for a personal compute. Apple newsroom.
[5] Shankland, Stephen (2022, March). Meet apple's enormous 20-core M1 ultra processor, the brains in the new mac studio machine. CNET.
[6] Hruska, Joel (2019, August). Cerebras systems unveils 1.2 trillion transistor wafer-scale processor for AI. https://www.extremetech.com/extreme/296906-cerebras-systems-unveils-1-2-trillion-transistor-wafer-scale-processor-for-ai. ExtremeTech.
[7] Feldman, Michael (2019, August). Machine Learning chip breaks new ground with waferscale integration. https://www.nextplatform.com/2019/08/21/machine-learning-chip-breaks-new-ground-with-waferscale-integration/. The next platform.
[8] Cutress, Ian (2019, August). Cerebras' 1.2 trillion transistor deep learning Processor. https://www.anandtech.com/show/14758/hot-chips-31-live-blogs-cerebras-wafer-scale-deep-learning. Anandtech.
[9] Burg, & Ausubel, J. H. (2021). Moore’s Law revisited through Intel chip density. PloS One, 16(8), e0256245–e0256245.
[10] Everett, Joseph (August 26, 2020). World's largest CPU has 850,000 7 nm cores that are optimized for AI and 2.6 trillion transistors. TechReportArticles.
[11] Agha, Naif, Y., & Shakib, M. (2021). Review of Nanosheet Transistors Technology. Tikrit Journal of Engineering Sciences, 28(1), 40–48 .
[12] Zhang. (2020). Review of Modern Field Effect Transistor Technologies for Scaling. Journal of Physics. Conference Series, 1617(1), 12054.
[13] Wang, Luo, J., Qin, C., Cui, H., Liu, J., Jia, K., Li, J., Yang, T., Li, J., Yin, H., Zhao, C., Ye, T., Yang, P., Jayakumar, G., & Radamson, H. H. (2016). Integration of Selective Epitaxial Growth of SiGe/Ge Layers in 14nm Node FinFETs. ECS Transactions, 75(8), 273–279.
[14] Jeong, Yoon, J.-S., Lee, S., & Baek, R.-H. (2020). Comprehensive Analysis of Source and Drain Recess Depth Variations on Silicon Nanosheet FETs for Sub 5-nm Node SoC Application. IEEE Access, 8, 35873–35881. .
[15] Rosseel, Profijt, H. B., Hikavyy, A. Y., Tolle, J., Kubicek, S., Mannaert, G., L’abbe, C., Wostyn, K., Horiguchi, N., Clarysse, T., Parmentier, B., Dhayalan, S., Bender, H., Maes, J. W., Mehta, S., & Loo, R. (2014). Characterization of Epitaxial Si:C:P and Si:P Layers for Source/Drain Formation in Advanced Bulk FinFETs. ECS Transactions, 64(6), 977–987 .
[16] Rosseel, E., Dhayalan, S. K., Hikavyy, A. Y., Loo, R., Profijt, H. B., Kohen, D., & Tolle, J. (2016). Selective epitaxial growth of high-P Si: P for source/drain formation in advanced Si nFETs. ECS Transactions, 75(8), 347.
[17] Li, X., Dube, A., Ye, Z., Sharma, S., Kim, Y., & Chu, S. (2014). Selective epitaxial Si: P film for nMOSFET application: high phosphorous concentration and high tensile strain. ECS Transactions, 64(6), 959.
[18] Weinrich, Li, X., Sharma, S., Craciun, V., Ahmed, M., Sanchez, E. A. C., Moffatt, S., & Jones, K. S. (2019). Dopant-defect interactions in highly doped epitaxial Si:P thin films. Thin Solid Films, 685, 1–7 .
[19] Dennard, Gaensslen, F., Yu, H.-N., Rideout, V., Bassous, E., & LeBlanc, A. (1974). Design of ion-implanted MOSFET’s with very small physical dimensions. IEEE Journal of Solid-State Circuits, 9(5), 256–268.
[20] Moore. (2006). Progress in digital integrated electronics. IEEE Solid-State Circuits Society Newsletter, 11(3), 36–37.
[21] Schaller, R. R. (1997). Moore's law: past, present and future. IEEE spectrum, 34(6), 52-59.
[22] Cuniberti, G., Fagas, G., & Richter, K. (2006). Introducing molecular electronics: A brief overview. Introducing molecular electronics, 1-10..
[23] Dennard, Gaensslen, F., Hwa-Nien Yu, Rideout, V., Bassous, E., & Leblanc, A. (1999). Design Of Ion-implanted MOSFET’s with Very Small Physical Dimensions. IEEE Journal of Solid-State Circuits, 87(4), 668–678.
[24] Iwai, H., & Ohmi, S. (2002). Trend of CMOS downsizing and its reliability. Microelectronics Reliability, 42(9-11), 1251-1258.
[25] Meindl, J. D., Chen, Q., & Davis, J. A. (2001). Meindl, Chen, Q., & Davis, J. A. (2001). Limits on Silicon Nanoelectronics for Terascale Integration. Science (American Association for the Advancement of Science), 293(5537), 2044–2049 . Science, 293(5537), 2044-2049.
[26] Seshan. (2018). Chapter 2 - Limits and Hurdles to Continued CMOS Scaling. In Handbook of Thin Film Deposition (Fourth Edition, 19–41). Elsevier Inc.
[27] S Bespalov, V. A., Dyuzhev, N. A., & Kireev, V. Y. (2022). Possibilities and Limitations of CMOS Technology for the Production of Various Microelectronic Systems and Devices. Nanobiotechnology Reports, 17(1), 24-38.
[28] Packan, P. A. (1999). Pushing the limits. Science, 285(5436), 2079-2081. 9.
[29] Kish, L. B. (2002). End of Moore's law: thermal (noise) death of integration in micro and nano electronics. Physics Letters A, 305(3-4), 144-149.
[30] Chaudhry. (2013). Fundamentals of Nanoscaled Field Effect Transistors (2013th ed.), 25-37, Springer, New York, USA.
[31] Dennard, Gaensslen, F. H., Kuhn, L., & Yu, H. N. (2007). Design of micron MOS switching devices. IEEE Solid-State Circuits Society Newsletter, 12(1), 35–35.
[32] Moore. (1998). Cramming More Components Onto Integrated Circuits. Proceedings of the IEEE, 86(1), 82–85 .
[33] Bohr, M. T., Young, I. A. (2017). CMOS scaling trends and beyond. IEEE Micro, 37(6), 20-29.
[34] Ostendorf, A., & König, K. (2015). Tutorial: Laser in material nanoprocessing.
[35] Iwai. (2004). CMOS scaling for sub-90 nm to sub-10 nm. Proceedings of the 17th International Conference on VLSI Design. 30–35.
[36] Chen, T. C. (2006, October). Overcoming research challenges for CMOS scaling: Industry directions. Proceedings of 8th International Conference on Solid-State and Integrated Circuit Technology, pp. 4-7, doi: 10.1109/ICSICT.2006.306040.
[37] Haron, & Hamdioui, S. (2008). Why is CMOS scaling coming to an END? Proceedings of 2008 3rd International Design and Test Workshop, 98–103.
[38] Lécuyer, C. (2022). Driving semiconductor innovation: Moore’s law at Fairchild and Intel. Enterprise & Society, 23(1), 133-163.
[39] Levinson, H. J., & Brunner, T. A. (2018, October). Current challenges and opportunities for EUV lithography. In International Conference on Extreme Ultraviolet Lithography, 10809, pp. 5-11. SPIE.
[40] Fu, Liu, Y., Ma, X., & Chen, Z. (2019). EUV Lithography: State-of-the-Art Review. Journal of Microelectronic Manufacturing, 2(2), 1–6 .
[41] Seisyan, R. P. (2011). Nanolithography in microelectronics: A review. Technical Physics, 56(8), 1061-1073.
[42] Wong, & Kakushima, K. (2022). On the Vertically Stacked Gate-All-Around Nanosheet and Nanowire Transistor Scaling beyond the 5 nm Technology Node. Nanomaterials (Basel, Switzerland), 12(10), 1739.
[43] Nagy, Espineira, G., Indalecio, G., Garcia-Loureiro, A. J., Kalna, K., & Seoane, N. (2020). Benchmarking of FinFET, Nanosheet, and Nanowire FET Architectures for Future Technology Nodes. IEEE Access, 8, 53196–53202.
[44] Razavieh, A., Zeitzoff, P., & Nowak, E. J. (2019). Challenges and limitations of CMOS scaling for FinFET and beyond architectures. IEEE Transactions on Nanotechnology, 18, 999-1004..
[45] Zhao, Y., Gobbi, M., Hueso, L. E., & Samorì, P. (2021). Molecular Approach to Engineer Two-Dimensional Devices for CMOS and beyond-CMOS Applications. Chemical Reviews, 122(1), 50-131.
[46] Lemme, M. C., Akinwande, D., Huyghebaert, C., & Stampfer, C. (2022). 2D materials for future heterogeneous electronics. Nature Communications, 13(1), 1-5.
[47] Thiele, Kinberger, W., Granzner, R., Fiori, G., & Schwierz, F. (2018). The prospects of transition metal dichalcogenides for ultimately scaled CMOS. Solid-State Electronics, 143, 2–9.
[48] Taur, Yuan.,Wind, S., Wong, Hon-Sum., Buchanan, D., Chen, Wei., Frank, D., Ismail, K., Lo, Shih-Hsien., Sai-Halasz, G., Viswanathan, R., & Wann, H.-J. . (1997). CMOS scaling into the nanometer regime. Proceedings of the IEEE, 85(4), 486–504 .
[49] Skotnicki, T., Hutchby, J. A., King, T. J., Wong, H. S., & Boeuf, F. (2005). The end of CMOS scaling: toward the introduction of new materials and structural changes to improve MOSFET performance. IEEE Circuits and Devices Magazine, 21(1), 16-26.
[50] Xie, Xu, J., & Taur, Y. (2012). Review and Critique of Analytic Models of MOSFET Short-Channel Effects in Subthreshold. IEEE Transactions on Electron Devices, 59(6), 1569–1579.
[51] Chaudhry, A., & Kumar, M. J. (2004). Controlling short-channel effects in deep-submicron SOI MOSFETs for improved reliability: a review. IEEE Transactions on Device and Materials Reliability, 4(1), 99-109.
[52] Sleva, S., & Taur, Y. (2005). The influence of source and drain junction depth on the short-channel effect in MOSFETs. IEEE transactions on electron devices, 52(12), 2814-2816.
[53] Lapedus. (2021, January). New Transistor Structures At 3nm/2nm. https://semiengineering.com/new-transistor-structures-at-3nm-2nm/. Semiconductor Engineering.
[54] Pandey, A. (2022). Recent Trends in Novel Semiconductor Devices. Silicon, 1-12.
[55] Shin, J., & Shin, C. (2019). Experimental observation of zero DIBL in short-channel hysteresis-free ferroelectric-gated FinFET. Solid-State Electronics, 153, 12-15.
[56] Bansal, A., Mukhopadhyay, S., & Roy, K. (2007). Device-optimization technique for robust and low-power FinFET SRAM design in nanoscale era. IEEE Transactions on Electron Devices, 54(6), 1409-1419.
[57] Gaynor, B. D., & Hassoun, S. (2014). Fin shape impact on FinFET leakage with application to multithreshold and ultralow-leakage FinFET design. IEEE Transactions on Electron Devices, 61(8), 2738-2744.
[58] Raj, B., Saxena, A. K., & Dasgupta, S. (2011). Nanoscale FinFET based SRAM cell design: Analysis of performance metric, process variation, underlapped FinFET, and temperature effect. IEEE Circuits and Systems Magazine, 11(3), 38-50.
[59] Jurczak, Collaert, N., Veloso, A., Hoffmann, T., & Biesemans, S. (2009). Review of FINFET technology. Proceedings of 2009 IEEE International SOI Conference, 1–4.
[60] Qin, Yin, H., Wang, G., Zhang, Y., Liu, J., Zhang, Q., Zhu, H., Zhao, C., & Radamson, H. H. (2019). A novel method for source/drain ion implantation for 20 nm FinFETs and beyond. Journal of Materials Science. Materials in Electronics, 31(1), 98–104.
[61] Kawasaki, Khater, M., Guillorn, M., Fuller, N., Chang, J., Kanakasabapathy, S., Chang, L., Muralidhar, R., Babich, K., Yang, Q., Ott, J., Klaus, D., Kratschmer, E., Sikorski, E., Miller, R., Viswanathan, R., Zhang, Y., Silverman, J., Ouyang, Q., Ishimaru, K. (2008). Demonstration of highly scaled FinFET SRAM cells with high-κ/metal gate and investigation of characteristic variability for the 32 nm node and beyond. Proceedings of 2008 IEEE International Electron Devices Meeting, 1–4.
[62] He, C., Chen, L., Zhang, D. W., Hong, J., Jin, G., Zhang, J., & Chen, J. (2016, May). FinFET doping with PSG/BSG glass mimic doping by ultra low energy ion implantation. Proceedings of 2016 16th International Workshop on Junction Technology (IWJT), 64-67.
[63] Pipes, L. C., McGill, L., & Jahagirdar, A. (2014, June). NMOS source-drain extension ion implantation into heated substrates. Proceedings of 2014 20th International Conference on Ion Implantation Technology, 1-6.
[64] Tsutsumi, & Lee, J. (2014). Study of threshold voltage fluctuation caused by source and drain extensions doping variation of tri-gate fin-type FET using three-dimensional device simulation. Japanese Journal of Applied Physics, 53(6S), 6–1–06JE06–6.
[65] Gossmann, Agarwal, A., Parrill, T., Rubin, L., & Poate, J. (2003). On the FinFET extension implant energy. IEEE Transactions on Nanotechnology, 2(4), 285–290.
[66] Razavieh, A., Zeitzoff, P., & Nowak, E. J. (2019). Challenges and limitations of CMOS scaling for FinFET and beyond architectures. IEEE Transactions on Nanotechnology, 18, 999-1004.
[67] Rudenko, T., Kilchytska, V., Collaert, N., Jurczak, M., Nazarov, A., & Flandre, D. (2008). Carrier mobility in undoped triple-gate FinFET structures and limitations of its description in terms of top and sidewall channel mobilities. IEEE Transactions on Electron Devices, 55(12), 3532-3541.
[68] Maity, N. P., Maity, R., Maity, S., & Baishya, S. (2019). Comparative analysis of the quantum FinFET and trigate FinFET based on modeling and simulation. Journal of Computational Electronics, 18(2), 492-499.
[69] Bae, D. I., & Choi, B. D. (2020). Short channels and mobility control of GAA multi stacked nanosheets through the perfect removal of SiGe and post treatment. Electronics Letters, 56(8), 400-402.
[70] Bufler, Ritzenthaler, R., Mertens, H., Eneman, G., Mocuta, A., & Horiguchi, N. (2018). Performance Comparison of n–Type Si Nanowires, Nanosheets, and FinFETs by MC Device Simulation. IEEE Electron Device Letters, 39(11), 1628–1631.
[71] Gundu, A. K., & Kursun, V. (2022). 5-nm Gate-All-Around Transistor Technology With 3-D Stacked Nanosheets. IEEE Transactions on Electron Devices, 69(3), 922-929.
[72] Rathore, S., Jaisawal, R. K., Suryavanshi, P., & Kondekar, P. N. (2022). Investigation of ambient temperature and thermal contact resistance induced self-heating effects in nanosheet FET. Semiconductor Science and Technology, 37(5), 055019.
[73] Lin, Yang, Y.-Y., Lin, Y.-H., Kurniawan, E. D., Yeh, M.-S., Chen, L.-C., & Wu, Y.-C. (2018). Performance of Stacked Nanosheets Gate-All-Around and Multi-Gate Thin-Film-Transistors. IEEE Journal of the Electron Devices Society, 6, 1187–1191
[74] Gundu, A. K., & Kursun, V. (2022). 5-nm Gate-All-Around Transistor Technology With 3-D Stacked Nanosheets. IEEE Transactions on Electron Devices, 69(3), 922-929.
[75] Ryu, D., Kim, M., Yu, J., Kim, S., Lee, J. H., & Park, B. G. (2020). Investigation of sidewall high-k interfacial layer effect in gate-all-around structure. IEEE Transactions on Electron Devices, 67(4), 1859-1863.
[76] Kumari, N. A., & Prithvi, P. (2022). Performance evaluation of GAA nanosheet FET with varied geometrical and process parameters. Silicon, 1-11.
[77] Yadav, N., Jadav, S., & Saini, G. (2022). Geometrical Variability Impact on the Performance of Sub-3 nm Gate-All-Around Stacked Nanosheet FET. Silicon, 1-13.
[78] Yakimets, Bardon, M. G., Jang, D., Schuddinck, P., Sherazi, Y., Weckx, P., Miyaguchi, K., Parvais, B., Raghavan, P., Spessot, A., Verkest, D., & Mocuta, A. (2017). Power aware FinFET and lateral nanosheet FET targeting for 3nm CMOS technology. 2017 IEEE International Electron Devices Meeting (IEDM), 20.4.1–20.4.4.
[79] Veloso, A., Huynh-Bao, T., Matagne, P., Jang, D., Eneman, G., Horiguchi, N., & Ryckaert, J. (2020). Nanowire & nanosheet FETs for ultra-scaled, high-density logic and memory applications. Solid-State Electronics, 168, 107736.
[80] Li, C., Yu, Y., Chi, M., & Cao, L. (2013). Epitaxial nanosheet–nanowire heterostructures. Nano letters, 13(3), 948-953.
[81] Wang, L., Brown, A. R., Cheng, B., & Asenov, A. (2012, November). Simulation of 3D FinFET doping profiles by ion implantation. Proceedings of AIP Conference, 1496(1), 217-220.
[82] Duffy, R., & Shayesteh, M. (2011, January). FinFET doping; material science, metrology, and process modeling studies for optimized device performance. Proceedings of AIP Conference, 1321(1), 17-22.
[83] Zhou, Q., Koh, S. M., Thanigaivelan, T., Henry, T., & Yeo, Y. C. (2013). Contact resistance reduction for strained N-MOSFETs with silicon-carbon source/drain utilizing aluminum ion implant and aluminum profile engineering. IEEE transactions on electron devices, 60(4), 1310-1317.
[84] Hao Yu, Schaekers, M., Peter, A., Pourtois, G., Rosseel, E., Joon-Gon Lee, Woo-Bin Song, Keo Myoung Shin, Everaert, J.-L., Soon Aik Chew, Demuynck, S., Daeyong Kim, Barla, K., Mocuta, A., Horiguchi, N., Thean, A. V.-Y., Collaert, N., & De Meyer, K. (2016). Titanium Silicide on Si:P With Precontact Amorphization Implantation Treatment: Contact Resistivity Approaching 1 x 10-9 -cm2. IEEE Transactions on Electron Devices, 63(12), 4632–4641.
[85] Bauer, M., Machkaoutsan, V., & Arena, C. (2006). Highly tensile strained silicon–carbon alloys epitaxially grown into recessed source drain areas of NMOS devices. Semiconductor science and technology, 22(1), S183.
[86] Bauer, Machkaoutsan, V., Zhang, Y., Weeks, D., Spear, J., Thomas, S., Verheyen, P., Kerner, C., Clemente, F., Bender, H., Shamiryan, D., Loo, R., Hikavyy, A., Hoffmann, T., Absil, P., & Biesemans, S. (2008). SiCP Selective Epitaxial Growth in Recessed Source/Drain Regions yielding to Drive Current Enhancement in n-channel MOSFET. ECS Transactions, 16(10), 1001–1013.
[87] Bauer, M., Weeks, D., Zhang, Y., & Machkaoutsan, V. (2006). Tensile strained selective silicon carbon alloys for recessed source drain areas of devices. ECS Transactions, 3(7), 187.
[88] Zhang, Frougier, J., Greene, A., Miao, X., Yu, L., Vega, R., Montanini, P., Durfee, C., Gaul, A., Pancharatnam, S., Adams, C., Wu, H., Zhou, H., Shen, T., Xie, R., Sankarapandian, M., Wang, J., Watanabe, K., Bao, R., Liu, X., Park, C., Shobha, H., Joseph, P., Kong, D., De La Pena, A. Arceo., Li, J., Conti, R., Dechene, D., Loubet, N., Chao, R., Yamashita, T., Robison, R., Basker, V., Zhao, K., Guo, D., Haran, B., Divakaruni, R., & Bu, H. (2019). Full Bottom Dielectric Isolation to Enable Stacked Nanosheet Transistor for Low Power and High Performance Applications. Proceedings of 2019 IEEE International Electron Devices Meeting (IEDM), 11.6.1–11.6.4 .
[89] Gu, Zhang, Q., Wu, Z., Luo, Y., Cao, L., Cai, Y., Yao, J., Zhang, Z., Xu, G., Yin, H., Luo, J., & Wang, W. (2022). Narrow Sub-Fin Technique for Suppressing Parasitic-Channel Effect in Stacked Nanosheet Transistors. IEEE Journal of the Electron Devices Society, 10, 35–39.
[90] Li, X., Dube, A., Ye, Z., Sharma, S., Kim, Y., & Chu, S. (2014). Selective epitaxial Si: P film for nMOSFET application: high phosphorous concentration and high tensile strain. ECS Transactions, 64(6), 959.
[91] Rosseel, Dhayalan, S. K., Hikavyy, A. Y., Loo, R., Profijt, H. B., Kohen, D., Kubicek, S., Chiarella, T., Yu, H., Horiguchi, N., Mocuta, D., Barla, K., Thean, A., Bartlett, G., Margetis, J., Bhargava, N., & Tolle, J. (2016). (Invited) Selective Epitaxial Growth of High-P Si:P for Source/Drain Formation in Advanced Si nFETs. ECS Transactions, 75(8), 347–359.
[92] Rosseel, Profijt, H. B., Hikavyy, A. Y., Tolle, J., Kubicek, S., Mannaert, G., L’abbe, C., Wostyn, K., Horiguchi, N., Clarysse, T., Parmentier, B., Dhayalan, S., Bender, H., Maes, J. W., Mehta, S., & Loo, R. (2014). Characterization of Epitaxial Si:C:P and Si:P Layers for Source/Drain Formation in Advanced Bulk FinFETs. ECS Transactions, 64(6), 977–987.
[93] Dhayalan, Kujala, J., Slotte, J., Pourtois, G., Simoen, E., Rosseel, E., Hikavyy, A., Shimura, Y., Iacovo, S., Stesmans, A., Loo, R., & Vandervorst, W. (2016). On the manifestation of phosphorus-vacancy complexes in epitaxial Si:P films. Applied Physics Letters, 108(8), 82106.
[94] Bauer, M., & Thomas, S. (2010). Selective epitaxial growth (SEG) of highly doped Si: P on Source/Drain areas of NMOS devices using Si3H8/PH3/Cl2 chemistry. ECS Transactions, 33(6), 629.
[95] Liu, Y., Wu, Q., Zhu, J., Wu, Q., & Chen, S. (2020, November). A brief review of source/drain engineering in CMOS technology and future outlook. 2020 IEEE 15th International Conference on Solid-State & Integrated Circuit Technology (ICSICT),1-4.
[96] Mertens, Ritzenthaler, R., Pena, V., Santoro, G., Kenis, K., Schulze, A., Litta, E. D., Chew, S. A., Devriendt, K., Chiarella, R., Demuynck, S., Yakimets, D., Jang, D., Spessot, A., Eneman, G., Dangol, A., Lagrain, P., Bender, H., Sun, S., Korolik, M., Kioussis, D., Kim, M., Bu., Chen, S. C., Cogorno, M., Devrajan, J., Machillot, J., Yoshida, N., Kim, N., Barla, K., Mocuta, D & Horiguchi, N. (2017). Vertically stacked gate-all-around Si nanowire transistors: Key Process Optimizations and Ring Oscillator Demonstration. Proceedings of 2017 IEEE International Electron Devices Meeting (IEDM), 37.4.1–37.4.4.
[97] Wang, W. C., Chang, S. T., Huang, J., & Kuang, S. J. (2009). 3D TCAD simulations of strained Si CMOS devices with silicon-based alloy stressors and stressed CESL. Solid-state electronics, 53(8), 880-887.
[98] Washington, Nouri, F., Thirupapuliyur, S., Eneman, G., Verheyen, P., Moroz, V., Smith, L., Xiaopeng Xu, Kawaguchi, M., Huang, T., Ahmed, K., Balseanu, M., Li-Qun Xia, Meihua Shen, Yihwan Kim, Rooyackers, R., Kristin De Meyer, & Schreutelkamp, R. (2006). pMOSFET with 200% mobility enhancement induced by multiple stressors. IEEE Electron Device Letters, 27(6), 511–513.
[99] Kyong Taek Lee, Chang Yong Kang, Min-Sang Park, Byoung Hun Lee, Ho Kyung Park, Hyun Sang Hwang, Hsing-Huang Tseng, Jammy, R., & Yoon-Ha Jeong. (2009). A Study of Strain Engineering Using CESL Stressor on Reliability Comparing Effect of Intrinsic Mechanical Stress. IEEE Electron Device Letters, 30(7), 760–762.
[100] Yang, Takalkar, R., Ren, Z., Black, L., Dube, A., Weijtmans, J. ., Li, J., Johnson, J. ., Faltermeier, J., Madan, A., Zhu, Z., Turansky, A., Xia, G., Chakravarti, A., Pal, R., Chan, K., Reznicek, A., Adam, T. ., de Souza, J., Harley, E.C.T., Greene, B., Gehring, A., Cai, M., Aime, D., Sun, S., Meer, H., Holt, J., Theodore, D., Zollner, S., Grudowski, P., Sadana, D., Park, D.-G., Mocuta, D., Schepis, D., Maciejewski, E., Luning, S., Pellerin, J & Leobandung, E. (2008). High-performance nMOSFET with in-situ phosphorus-doped embedded Si:C (ISPD eSi:C) source-drain stressor. 2008 IEEE International Electron Devices Meeting, 1–4.
[101] Yang, Ren, Z., Takalkar, R., Black, L. R., Dube, A., Weijtmans, J. W., Li, J., Chan, K., Souza, J. P. de, Madan, A., Xia, G., Zhu, Z., Faltermeier, J., Reznicek, A., Adam, T. N., Chakravarti, A., Pei, G., Pal, R., Yang, B., Harley, Eric C., Greene, B., Gehring, A., Cai, M., Sadana, D., Park, D., Mocuta, D., Schepis, Dominic J., Maciejewski, E., Luning, S & Leobandung, E. (2008). Recent Progress and Challenges in Enabling Embedded Si:C Technology. ECS Transactions, 16(10), 317–323.
[102] Lin, Chang, S.-T., Huang, J., Wang, W.-C., & Fan, J.-W. (2007). Impact of Source/Drain Si 1- y C y Stressors on Silicon-on-Insulator N-type Metal–Oxide–Semiconductor Field-Effect Transistors. Japanese Journal of Applied Physics, 46(4B), 2107–2111. .
[103] Koh, S. M., Samudra, G. S., & Yeo, Y. C. (2012). Contact technology for strained nFinFETs with silicon–carbon source/drain stressors featuring sulfur implant and segregation. IEEE transactions on electron devices, 59(4), 1046-1055.
[104] Madan, Li, J., Ren, Z., Yang, B. F., Harley, E. C., Adam, T. N., Loesing, R., Zhu, Z., Pinto, T., Chakravarti, A., Dube, A., Takalkar, R., Weijtmans, J. W., Black, L. R., & Schepis, D. J. (2008). Effect of Ion Implantation and Anneals on Fully-strained SiC and SiC:P Films using Multiple Characterization Techniques. ECS Transactions, 16(10), 325–332.
[105] Sekar, K., Krull, W. A., & Horsky, T. N. (2008). Optimization of Stressor Layers Created by ClusterCarbon™ Implantation. MRS Online Proceedings Library (OPL), 1070.
[106] Kuppurao, S., Kim, Y., Cho, Y., Chopra, S., Ye, Z., Sanchez, E., & Chu, S. (2008). Integrating Selective Epitaxy in Advanced Logic & Memory Devices. ECS Transactions, 16(10), 415.
[107] Mochizuki, S., Loesing, R., Wang, Y. Y., & Jagannathan, H. (2017). Study of phosphorus doped Si: C films formed by in situ doped Si epitaxy and implantation process for n-type metal-oxide-semiconductor devices. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, 35(2), 021208.
[108] Gannavaram, Pesovic, N., & Ozturk, C. (2000). Low temperature (800 oC) recessed junction selective silicon-germanium source/drain technology for sub-70 nm CMOS. Proceedings of International Electron Devices Meeting 2000. Technical Digest. IEDM (Cat. No.00CH37138), 437–440.
[109] Jeong, J., Yoon, J. S., Lee, S., & Baek, R. H. (2020). Comprehensive analysis of source and drain recess depth variations on silicon nanosheet FETs for sub 5-nm node SoC application. IEEE Access, 8, 35873-35881.
[110] Yoon, J. S., Jeong, J., Lee, S., & Baek, R. H. (2019). Punch-through-stopper free nanosheet FETs with crescent inner-spacer and isolated source/drain. IEEE Access, 7, 38593-38596.
[111] Yoo, S., & Kim, S. (2022). Leakage Optimization of the Buried Oxide Substrate of Nanosheet Field-Effect Transistors. IEEE Transactions on Electron Devices, 69(8), 4109-4114.
[112] Applied Materials (2022). Centura-Epi-200mm.
https://www.appliedmaterials.com/content/applied-
materials/us/en/semiconductor/semiconductor-technologies/epitaxy
[113] Seon, Y., Chang, J., Yoo, C., & Jeon, J. (2021). Device and circuit exploration of multi-nanosheet transistor for sub-3 nm technology node. Electronics, 10(2), 180.
[114] Rao, K. V., Ni, C. N., Khaja, F. A., Li, X., Sharma, S., Hung, R., Chudzik,M., Wood, B., Shim, K., Henry, T & Variam, N. (2015, June). NMOS contact engineering for CMOS scaling. 2015 15th International Workshop on Junction Technology (IWJT), 44-49.
[115] Vandooren, A., Witters, L., Franco, J., Mallik, A., Parvais, B., Wu, Z & Collaert, N. (2018, June). Sequential 3D: Key integration challenges and opportunities for advanced semiconductor scaling. 2018 International Conference on IC Design & Technology (ICICDT),145-148.
[116] Ye, Z., Chen, M. C., Chang, F., Wu, C. Y., Li, X., Dube, A., Liu, P., Chopra, S & Chu, S. (2020). Activation and Deactivation in Ultra-Highly Doped n-Type Epitaxy for nMOS Applications. ECS Transactions, 98(5), 239.
[117] Li, X., Dube, A., Ye, Z., Sharma, S., Kim, Y., & Chu, S. (2014). Selective epitaxial Si: P film for nMOSFET application: high phosphorous concentration and high tensile strain. ECS Transactions, 64(6), 959.
[118] Fu, Wang, Y., Xu, P., Yue, L., Sun, F., Zhang, D. W., Zhang, S.-L., Luo, J., Zhao, C., & Wu, D. (2017). Understanding the microwave annealing of silicon. AIP Advances, 7(3), 35214–035214–7.
[119] Henke, Knaut, M., Hossbach, C., Geidel, M., Rebohle, L., Albert, M., Skorupa, W., & Bartha, J. W. (2014). Flash-Lamp-Enhanced Atomic Layer Deposition of Thin Films. ECS Transactions, 64(9), 167–189.
[120] Tsai, Hsu, Y. H., Santos, I., Pelaz, L., Kowalski, J. E., Liou, J. W., Woon, W. Y., & Lee, C. K. (2021). Achieving junction stability in heavily doped epitaxial Si:P. Materials Science in Semiconductor Processing, 127, 105672 .
[121] Larsen, A. N., Larsen, K. K., Andersen, P. E., & Svensson, B. G. (1993). Heavy doping effects in the diffusion of group IV and V impurities in silicon. Journal of applied physics, 73(2), 691-698.
[122] RANKI, & SAARINEN, K. (2004). Formation of thermal vacancies in highly As and P doped Si. Physical Review Letters, 93(25), 255502.1–255502.4.
[123] Yu, Schaekers, M., Rosseel, E., Peter, A., Lee, J.-G., Song, W.-B., Demuynck, S., Chiarella, T., Ragnarsson, J.-A., Kubicek, S., Everaert, J., Horiguchi, N., Barla, K., Kim, D., Collaert, N., Thean, A. V.-Y., & De Meyer, K. (2015). 1.5×10−9  cm2 Contact resistivity on highly doped Si:P using Ge pre-amorphization and Ti silicidation. 2015 IEEE International Electron Devices Meeting (IEDM), 21.7.1–21.7.4.
[124] Kresse, G., & Furthmüller, J. (1996). Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review B, 54(16), 11169.
[125] Kresse, G., & Furthmüller, J. (1996). Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational materials science, 6(1), 15-50.
[126] Kresse, G., & Joubert, D. (1999). From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B, 59(3), 1758..
[127] Burke, K., Perdew, J. P., & Ernzerhof, M. (1998). Why semilocal functionals work: Accuracy of the on-top pair density and importance of system averaging. The Journal of chemical physics, 109(10), 3760-3771.
[128] Monkhorst, H. J., & Pack, J. D. (1976). Special points for Brillouin-zone integrations. Physical Review B, 13(12), 5188.
[129] Limas, N. G., & Manz, T. A. (2016). Introducing DDEC6 atomic population analysis: part 2. Computed results for a wide range of periodic and nonperiodic materials. RSC advances, 6(51), 45727-45747.
[130] Manz, T. A., & Limas, N. G. (2016). Introducing DDEC6 atomic population analysis: part 1. Charge partitioning theory and methodology. RSC advances, 6(53), 47771-47801.
[131] Manz, T. A., & Limas, N. G. (2017). Chargemol program for performing DDEC analysis. https://sourceforge.net/projects/ddec/
[132] Manz, T. A. (2017). Introducing DDEC6 atomic population analysis: part 3. Comprehensive method to compute bond orders. RSC advances, 7(72), 45552-45581.
[133] Limas, N. G., & Manz, T. A. (2018). Introducing DDEC6 atomic population analysis: part 4. Efficient parallel computation of net atomic charges, atomic spin moments, bond orders, and more. RSC advances, 8(5), 2678-2707.
[134] Dabrowski, J., & Kissinger, G. (2015). Supercell-size convergence of formation energies and gap levels of vacancy complexes in crystalline silicon in density functional theory calculations. Physical Review B, 92(14), 144104.
[135] Makkonen, I., & Puska, M. J. (2007). Energetics of positron states trapped at vacancies in solids. Physical Review B, 76(5), 054119.
[136] Chen, R., Trzynadlowski, B., & Dunham, S. T. (2014). Phosphorus vacancy cluster model for phosphorus diffusion gettering of metals in Si. Journal of Applied Physics, 115(5), 054906.
[137] Lee, M., Ryu, H. Y., Ko, E., & Ko, D. H. (2019). Effects of phosphorus doping and postgrowth laser annealing on the structural, electrical, and chemical properties of phosphorus-doped silicon films. ACS Applied Electronic Materials, 1(3), 288-301.
[138] Sahli, B., Vollenweider, K., & Fichtner, W. (2009). Ab initio calculations for point defect clusters with P, As, and Sb in Si. Physical Review B, 80(7), 075208.
[139] Vohra, Khanam, A., Slotte, J., Makkonen, I., Pourtois, G., Porret, C., Loo, R., & Vandervorst, W. (2019). Heavily phosphorus doped germanium: Strong interaction of phosphorus with vacancies and impact of tin alloying on doping activation. Journal of Applied Physics, 125(22), 225703 .
[140] Stuerga, D. A. C., & Gaillard, P. (1996). Microwave Athermal Effects in Chemistry: A Myth’s Autopsy: Part I: Historical background and fundamentals of wave-matter interaction. Journal of microwave power and electromagnetic energy, 31(2), 87-100.
[141] Stuerga, D. A. C., & Gaillard, P. (1996). Microwave Athermal Effects in Chemistry: A Myth’s Autopsy: Part II: Orienting effects and thermodynamic consequences of electric field. Journal of microwave power and electromagnetic energy, 31(2), 101-113.
[142] Stuerga, D., & Gaillard, P. (1996). Microwave heating as a new way to induce localized enhancements of reaction rate. Non-isothermal and heterogeneous kinetics. Tetrahedron, 52(15), 5505-5510.
[143] de la Hoz, A., Diaz-Ortiz, A., & Moreno, A. (2005). Microwaves in organic synthesis. Thermal and non-thermal microwave effects. Chemical Society Reviews, 34(2), 164-178.
[144] Dudley, G. B., Richert, R., & Stiegman, A. E. (2015). On the existence of and mechanism for microwave-specific reaction rate enhancement. Chemical science, 6(4), 2144-2152
[145] Kappe, C. O., Pieber, B., & Dallinger, D. (2013). Microwave effects in organic synthesis: myth or reality? Angewandte Chemie International Edition, 52(4), 1088-1094.
[146] Ramamoorthy, & Pantelides, S. (1996). Complex dynamical phenomena in heavily arsenic doped silicon. Physical Review Letters, 76(25), 4753–4756. .
[147] Ranki, Nissilä, J., & Saarinen, K. (2002). Formation of vacancy-impurity complexes by kinetic processes in highly As-doped Si. Physical Review Letters, 88(10), 105506–105506 .
[148] Ranki, V., Saarinen, K., Fage-Pedersen, J., Hansen, J. L., & Larsen, A. N. (2003). Electrical deactivation by vacancy-impurity complexes in highly As-doped Si. Physical Review B, 67(4), 041201.
[149] Dunham, S. T., & Wu, C. D. (1995). Atomistic models of vacancy‐mediated diffusion in silicon. Journal of Applied Physics, 78(4), 2362-2366.
[150] Phillips, M., & Fritzsche, H. Encyclopædia Britannica (2022) Electromagnetic spectrum. 7. https://www.britannica.com/science/electromagnetic-radiation/ Continuous-spectra-of-electromagnetic-radiation#/media/1/183228/1367.
[151] Prucnal, S., Rebohle, L., & Skorupa, W. (2017). Doping by flash lamp annealing. Materials Science in Semiconductor Processing, 62, 115-127.
[152] Rebohle, L., Prucnal, S., & Skorupa, W. (2016). A review of thermal processing in the subsecond range: semiconductors and beyond. Semiconductor Science and Technology, 31(10), 103001.
[153] Gelpey, J. C., McCoy, S., Camm, D., & Lerch, W. (2008). An overview of ms annealing for deep sub-micron activation. Materials Science Forum, 573, 257-267.
[154] Reichel, D., Skorupa, W., Lerch, W., & Gelpey, J. C. (2011). Temperature measurement in rapid thermal processing with focus on the application to flash lamp annealing. Critical reviews in solid state and materials sciences, 36(2), 102-128.
[155] Tsai, C. H., Aboy, M., Pelaz, L., Hsu, Y. H., Woon, W. Y., Timans, P. J., & Lee, C. K. (2022). Rapid thermal process driven intra-die device variations. Materials Science in Semiconductor Processing, 152, 107052.
[156] Timans, P., Gelpey, J., McCoy, S., Lerch, W., & Paul, S. (2006). Millisecond annealing: Past, present and future. Proceedings of MRS Online Library, 912.
[157] Feng, L. M., Wang, Y., & Markle, D. A. (2006, May). Minimizing pattern dependency in millisecond annealing. Proceedings of 2006 International Workshop on Junction Technology, 25-30.
[158] Kubo, T., Sukegawa, T., Takii, E., Yamamoto, T., Satoh, S., & Kase, M. (2007, October). First quantitative observation of local temperature fluctuation in millisecond annealing. 2007 15th International Conference on Advanced Thermal Processing of Semiconductors, 321-326.
[159] Hamm, McCoy, S., Timans, P. ., Cibere, J., & Xing, G. (2014). Millisecond Annealing for Semiconductor Device Applications. Subsecond Annealing of Advanced Materials: Annealing by Lasers, Flash Lamps and Swift Heavy Ions, 192, 229–270.
[160] Rybakov, K. I., Semenov, V. E., Egorov, S. V., Eremeev, A. G., Plotnikov, I. V., & Bykov, Y. V. (2006). Microwave heating of conductive powder materials. Journal of applied physics, 99(2), 023506.
[161] Michael P áMingos, D. (1991). Tilden Lecture. Applications of microwave dielectric heating effects to synthetic problems in chemistry. Chemical Society Reviews, 20(1), 1-47.
[162] Metaxas, A. C. (1991). Microwave heating. Power Engineering Journal, 5(5), 237-247.
[163] Grant, E., & Halstead, B. J. (1998). Dielectric parameters relevant to microwave dielectric heating. Chemical society reviews, 27(3), 213-224.
[164] El Khaled, D., Novas, N., Gazquez, J. A., & Manzano-Agugliaro, F. (2018). Microwave dielectric heating: Applications on metals processing. Renewable and Sustainable Energy Reviews, 82, 2880-2892.
[165] Hulls, P., & Shute, R. (1981). Dielectric heating in industry application of radio frequency and microwaves. IEE Proceedings A (Physical Science, Measurement and Instrumentation, Management and Education, Reviews), 128(9), 583-588.
[166] Jacob, J., Chia, L. H. L., & Boey, F. Y. C. (1995). Thermal and non-thermal interaction of microwave radiation with materials. Journal of materials science, 30(21), 5321-5327.
[167] Chandrasekaran, S., Ramanathan, S., & Basak, T. (2012). Microwave material processing-a review. AIChE Journal, 58(2), 330-363.
[168] Belyaev, I. (2005). Non-thermal biological effects of microwaves. Microwave Review, 11(2), 13-29.
[169] Shazman, A., Mizrahi, S., Cogan, U., & Shimoni, E. (2007). Examining for possible non-thermal effects during heating in a microwave oven. Food Chemistry, 103(2), 444-453.
[170] Nozariasbmarz, A., Dsouza, K., & Vashaee, D. (2018). Field induced decrystallization of silicon: Evidence of a microwave non-thermal effect. Applied Physics Letters, 112(9), 093103.
[171] Ismail, N. H., & Mustapha, M. (2018). A review of thermoplastic elastomeric nanocomposites for high voltage insulation applications. Polymer Engineering & Science, 58(S1), E36-E63.
[172] Michael P áMingos, D. (1991). Tilden Lecture. Applications of microwave dielectric heating effects to synthetic problems in chemistry. Chemical Society Reviews, 20(1), 1-47.
[173] Michael P áMingos, D. (1992). Superheating effects associated with microwave dielectric heating. Journal of the Chemical Society, Chemical Communications, (9), 674-677.
[174] Rigosi, Glavin, N. R., Liu, C., Yang, Y., Obrzut, J., Hill, H. M., Hu, J., Lee, H., Hight Walker, A. R., Richter, C. A., Elmquist, R. E., & Newell, D. B. (2017). Preservation of Surface Conductivity and Dielectric Loss Tangent in Large‐Scale, Encapsulated Epitaxial Graphene Measured by Noncontact Microwave Cavity Perturbations. Small (Weinheim an Der Bergstrasse, Germany), 13(26), 1700452.
[175] Jacomaci, Silva Junior, E., Oliveira, F. M. B. de, Longo, E., & Zaghete, M. A. (2019). Dielectric Behavior of α-Ag2WO4 and its Huge Dielectric Loss Tangent. Materials Research (São Carlos, São Paulo, Brazil), 22(4).
[176] Gabriel, Gabriel, S., H. Grant, E., S. J. Halstead, B., & Michael P. Mingos, D. (1998). Dielectric parameters relevant to microwave dielectric heating. Chemical Society Reviews, 27(3), 213.
[177] Wood, C., & Jena, D. (Eds.). (2007). Polarization effects in semiconductors: from ab initio theory to device applications. Springer Science & Business Media, 1-24.
[178] Zhang, S. L., Buchta, R., & Sigurd, D. (1994). Rapid thermal processing with microwave heating. Thin Solid Films, 246(1-2), 151-157.
[179] Zohm, H., Kasper, E., Mehringer, P., & Müller, G. A. (2000). Thermal processing of silicon wafers with microwave co-heating. Microelectronic engineering, 54(3-4), 247-253.
[180] Pankratov. (2008). Redistribution of dopant in a multilayer structure during annealing of radiation defects by laser pulses for production an implanted-junction rectifier. Physics Letters. A, 372(24), 4510 .
[181] D. C. Thompson, H. C. Kim, T. L. Alford, and J. W. Mayer, Appl. Phys. Lett. 83, Alford, T. L., Thompson, D. C., Mayer, J. W., & Theodore, N. D. (2009). Dopant activation in ion implanted silicon by microwave annealing. Journal of Applied Physics, 106(11), 114902
[182] Thompson, Alford, T. L., Mayer, J. W., Hochbauer, T., Nastasi, M., Lau, S. S., Theodore, N. D., Henttinen, K., Suni, llkka, & Chu, P. K. (2005). Microwave-cut silicon layer transfer. Applied Physics Letters, 87(22), 224103–224103–3.
[183] Alford, T. L., Thompson, D. C., Mayer, J. W., & Theodore, N. D. (2009). Dopant activation in ion implanted silicon by microwave annealing. Journal of Applied Physics, 106(11), 114902.
[184] Satō, T. (1967). Spectral emissivity of silicon. Japanese Journal of Applied Physics, 6(3), 339.
[185] Doolittle, L. R. (1985). Nuclear Instruments and Methods in Phys. Res. B, 9, 344.
[186] Lojek. (2008). Low temperature microwave annealing of S/D. 2008 16th IEEE Proceedings of International Conference on Advanced Thermal Processing of Semiconductors, 201–209.
[187] Liu, Xu, F., Li, Y., Hu, X., Dong, B., & Xiao, Y. (2016). Discussion on Microwave-Matter Interaction Mechanisms by In Situ Observation of “Core-Shell” Microstructure during Microwave Sintering. Materials, 9(3), 120–120.
[188] Tsai, Savant, C. P., Asadi, M. J., Lin, Y.-M., Santos, I., Hsu, Y.-H., Kowalski, J., Pelaz, L., Woon, W.-Y., Lee, C.-K., & Hwang, J. C. M. (2022). Efficient and stable activation by microwave annealing of nanosheet silicon doped with phosphorus above its solubility limit. Applied Physics Letters, 121(5).
[189] Renyu Chen, Trzynadlowski, B., & Dunham, S. T. (2014). Phosphorus vacancy cluster model for phosphorus diffusion gettering of metals in Si. Journal of Applied Physics, 115(5), 054906.
[190] Siegel, R. W. (1980). Positron annihilation spectroscopy. Annual Review of Materials Science, 10(1), 393-425.
[191] Čížek, J. (2018). Characterization of lattice defects in metallic materials by positron annihilation spectroscopy: A review. Journal of Materials Science & Technology, 34(4), 577-598.
[192] Gidley, D. W., Peng, H. G., & Vallery, R. S. (2006). Positron annihilation as a method to characterize porous materials. Annual Review of Materials Research, 36(1), 49-79.
[193] Dhayalan, Kujala, J., Slotte, J., Pourtois, G., Simoen, E., Rosseel, E., Hikavyy, A., Shimura, Y., Iacovo, S., Stesmans, A., Loo, R., & Vandervorst, W. (2016). On the manifestation of phosphorus-vacancy complexes in epitaxial Si:P films. Applied Physics Letters, 108(8), 82106.
[194] Ranki, V., Pelli, A., & Saarinen, K. (2004). Formation of vacancy-impurity complexes by annealing elementary vacancies introduced by electron irradiation of As-, P-, and Sb-doped Si. Physical Review B, 69(11), 115205.
[195] Saarinen, K., & Ranki, V. (2003). Identification of vacancy complexes in Si by positron annihilation. Journal of Physics: Condensed Matter, 15(39), S2791.
[196] Ranki, V., & Saarinen, K. (2003). Formation of vacancy-impurity complexes in highly As-and P-doped Si. Physica B: Condensed Matter, 340, 765-768.
[197] Ranki, V., & Saarinen, K. (2004). Formation of thermal vacancies in highly As and P doped Si. Physical review letters, 93(25), 255502.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86097-
dc.description.abstract在現代 CMOS 3D 晶體管架構、FinFET 和環柵 (GAA) 納米片晶體管中,源漏形成需要原位重摻雜外延矽層來滿足器件性能要求。然而,在過去 30 年中,眾所周知,施者(donor)在高摻雜半導體中往往會失活。當矽中的施者濃度高於 2 x 1020 at/cm3 時,將漸漸開始觀察到施者的失活並導致電導率下降。相關研究工作表明施者喜好以圍繞空缺(Vacancy)組態出現, 而根據摻雜濃度的高低施者失活機制是由於低階PV通過遷移和動態聚集(DnV,n=1-4)轉變為更高階P2V、P3V. 甚至在濃度高到1 x 1021 at/cm3 可進一步轉化為P4V等施者空位簇 (donor-vacancy cluster)。這是由於其負形成能P3V 和 P4V 在熱力學上是較有利的配置。因此,Si中的施者濃度越高,其表現出的熱穩定性越低,這造成可用的自由載流子濃度因此受到限制並且不能隨著供體化學濃度的增加而增加。現代 FinFET 和環柵(GAA)納米片晶體管結構的源漏極中使用的典型磷濃度通常高於 2 x 1021 at/cm3,因此源漏結存在嚴重的熱穩定性問題。然而,據目前所知,儘管施者失活的機制透過過去四十年各方研究已得到完整的理解, 但到目前為止,施者失活仍被視為熱回火的本徵問題因此還沒有關於這種現像是否可以得到緩解和解決的討論。雖然通過最先進的閃光或激光退火進行額外的外延後摻雜劑活化是目前增加活化摻雜劑的唯一方法,但其回火後活化摻雜劑的熱穩定性問題仍然存在。本研究的目的是進一步揭示供體失活的機制並提供有關施者空位簇 (DnV) 的更有用的電子特性,以便能鑒往知來可以開發一種替代退火解決方案,該解決方案不僅可以激活摻雜劑,還可以解決熱穩定性問題。通過從頭計算(ab initio calculation),我發現了施者空位簇更多有用的電子特性,如偶極矩、晶格振動頻率和形成能。本研究逐步應用這些特性之間的關係來開發實用的退火解決方案,以克服長期存在的供體失活問題並將早期關於供體失活機制的研究,即磷空位簇(PnV,n = 1-4)動態聚集形成模型擴展到 PnV 偶極矩的從頭計算。結合已知的 PnV 形成能,理論計算證明熱不穩定的低階 PnV(n = 1-3)總具有非零偶極矩而熱穩定的高階PnV則不具有淨偶極矩. 這個特別偶極矩分佈可被用於透過與震盪電場選擇性的交互作用實現選擇性摻雜劑激活。通過穩定和不穩定摻雜劑-空位簇之間的偶極矩區別,本研究嘗試開發一種能量選擇性相互作用退火方法來實現高 n 摻雜 Si 的熱穩定結(Junction)。選擇性摻雜劑激活工藝方案的實施有望通過消除不穩定的 PnV 來實現回火後只存在熱穩定的P4V從而實現穩定結。但對於擇性摻雜劑激活所需震盪電場邊界條件並非簡單可得,本研究將通過引入各種感受器(susceptor)配置來探索各種微波腔設置,以探索在低於 700 攝氏度的最佳感受器配置下選擇性摻雜劑激活是否可被實現,在最佳感受器配置找到之後再根據微波腔中感受器設置的位置及其相對於諧振腔的臨界尺寸對微波場的分佈進行了建模。 得出的結論是,在三重平行感受器基座之間建立駐波的能力是將微波能量有效耦合到矽晶格中的非活性摻雜劑結構的關鍵。最後,通過涉及霍爾測量、二次離子質譜 (SIMS) 和 XRD 以及正電子湮沒技術的薄膜表徵技術,以實驗與分析方法驗證選擇性摻雜激活的機制。zh_TW
dc.description.abstractIn modern CMOS 3D transistor architectures, FinFETs, and gate-all-around (GAA) nanosheet transistors, source-drain formation requires in-situ heavily doped epitaxial silicon layers to meet device performance requirements. However, it has been known for the past 40 years that donors tend to be deactivated in highly doped Si. When the donor concentration of phosphorus in silicon is higher than 2 x 1020 at/cm3, deactivation of the donors will start to be observed and lead to a decrease in conductivity. Relevant research has shown that donors prefer to move toward and form a structure around vacancies. At the doping concentration of 2 x 1020 at/cm3, through the migration and dynamic aggregation of donors and vacancies, the deactivation mechanism can asymptotically transform donors into PV pairs, P2V, and higher-order P3V, etc. P3V can be further converted into donor vacancy clusters such as P4V at concentrations up to 1 x 1021 at/cm3. This effect is due to the negative formation energy, which leads to the thermodynamically favorable configuration of P3V and P4V. Therefore, the higher the donor concentration in Si, the lower its thermal stability. This results in the available free carrier concentration being thus limited and challenging to increase with increasing donor chemical concentration. Typical phosphorous concentrations used in the source-drain of modern FinFET and gate-all-around (GAA) nanosheet transistor structures are typically higher than 2 x 1021 at/cm3, so the source-drain junction has serious thermal stability issues. To the best of our knowledge, although the mechanism of donor inactivation has been well understood through tremendous studies over the past four decades, donor deactivation has so far been regarded as an inherent problem of thermal annealing. Thus, no discussion existed on whether this phenomenon can be alleviated and resolved. Although additional post-epitaxial dopant activation by state-of-the-art flash or laser annealing is currently the only way to increase activated dopants, the problem of thermal stability of their post-annealing activated dopants persists. This study aims to reveal the mechanism of donor deactivation further and to investigate more useful electronic properties of donor vacancy clusters (DnVs) so that an alternative annealing solution beyond existing ones based purely on thermal effects can be developed. It not only activates dopants but also addresses long-term thermal stability issues associated with thermal-based annealing. Through ab initio calculations, several important electronic properties of donor-vacancy clusters, such as dipole moment, lattice vibrational frequency, and formation energy, are revealed in this work. The relationship between these properties will be used to develop practical annealing solutions to overcome the long-standing problem of donor deactivation. This work extended an earlier study on the mechanism of donor inactivation, namely the dynamic aggregation formation model of phosphorus-vacancy (PnV, n = 1-4) clusters, to calculate PnV dipole moments. Combining with the known PnV formation energies, theoretical calculations have demonstrated that thermally unstable lower-order PnVs (n = 1-3) always have a non-zero dipole moment while thermally stable higher-order PnV s do not have a net dipole moment. Particularly, the distribution of this dipole moment can be used to achieve selective dopant activation through selective interaction with Microwave oscillating electric fields. Due to the clear difference between stable and unstable dopant-vacancy clusters, I am trying to develop an energy-selective interaction annealing method to achieve thermally stable junctions of highly n-doped Si. Interaction of microwave electric fields with polar phosphorus vacancy clusters (PnV) is expected to eliminate unstable low-order PnV (n=1-3) structures, which are the major contribution to the de-activation process. As a result, the typical donor deactivation phenomenon can be effectively suppressed. However, the oscillating electric field boundary conditions required for selective dopant activation are not readily available. Various microwave cavity setups are explored by introducing various susceptor configurations to choose the optimal susceptor configuration. After finding the optimal susceptor configuration, selective dopant activation is successfully achieved. A model is also built for the microwave field distribution according to the location and dimension of the susceptor set in the microwave cavity. It is concluded that the ability to establish standing waves between triple-parallel pedestals is the key to the efficient coupling of microwave energy into inactive dopant structures in the silicon lattice. Finally, Hall measurements, secondary ion mass spectrometry (SIMS) and XRD, and positron annihilation techniques are applied for characterizations. It is experimentally and analytically verified to support the mechanism of selective doping activation.en
dc.description.provenanceMade available in DSpace on 2023-03-19T23:36:42Z (GMT). No. of bitstreams: 1
U0001-2609202201485700.pdf: 20069125 bytes, checksum: 671169093da21dc854c5b3b1edf4b184 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontentsCONTENTS

口試委員會審定書 #
誌謝 i
中文摘要 ii
ABSTRACT iv
CONTENTS vii
LIST OF FIGURES x
LIST OF TABLES xvii
Chapter 1 Introduction 1
Chapter 2 CMOS Scaling 12
2.1 Technology scaling and its limits 12
2.1.1 CMOS scaling theory 13
2.1.2 Moore’s Law 15
2.1.3 Scaling to the limits 16
2.1.4 The effect of scaling on the circuit performance 18
2.2 Short channel effects 19
2.2.1 The “short channel” definition 19
2.2.2 Drain-induced-barrier-lowering (DIBL) 20
2.3 3D FinFET and Nano-Sheet-Transistor structures 22
2.4 Challenge of junction formation in 3D structure devices 26
Chapter 3 Selective Epitaxial Si:P Source-Drain Formation in 3D CMOS Transistor Structures 29
3.1 The design consideration of epitaxial S/D for NMOS 29
3.2 Recessed source-drain 32
3.3 Selective epitaxial Si:P growth 35
3.4 Epitaxial Si:P sample preparation 37
3.5 Dopant activation annealing 37
Chapter 4 Electronic properties of inactive dopant structures 45
4.1 Ab Initio Calculations 45
4.2 Energetic characterization 46
4.3 Electronic density distribution of PnV clusters 48
4.4 Dipole moment calculations 52
4.5 Lattice vibrational mode calculations 54
4.6 Dynamical donor-vacancy clustering phenomena in highly n-doped silicon 58
4.7 Selective dopant activation through polar- DnV structures by Microwave annealing 60
Chapter 5 Susceptor-assisted Microwave Selective Dopant Activation Annealing 63
5.1 Motivation of dopant activation by microwave annealing 64
5.2 The interaction of microwave with Si 66
5.3 Dielectric heating 71
5.4 Suscetpor-assisted microwave annealing 80
5.5 Simulation of the electric field distribution in the cavity 91
5.6 Selective dopant activation phenomena 93
Chapter 6 Conclusion 99
6.1 Summary of research work 99
6.2 Future work 101
Reference 103
-
dc.language.isozh_TW-
dc.subject熱穩定結zh_TW
dc.subject退火zh_TW
dc.subject外延矽zh_TW
dc.subject磷空位簇zh_TW
dc.subject施者zh_TW
dc.subject摻雜劑激活zh_TW
dc.subject微波回火zh_TW
dc.subject摻雜劑空位簇zh_TW
dc.subject施者失活zh_TW
dc.subjectphosphorus vacancy clustersen
dc.subjectdopant vacancy clustersen
dc.subjectdonor deactivationen
dc.subjectthermally stable junctionsen
dc.subjectdopant activationen
dc.subjectdonorsen
dc.subjectepitaxial Si:Pen
dc.subjectannealingen
dc.subjectmicrowave annealingen
dc.title微波選擇性摻雜劑激活機制的發現及其在實現重 n 型摻雜矽接面穩定性的作用zh_TW
dc.titleDiscovery of a novel microwave-selective dopant activation mechanism and its role in junction stability for highly n-doped siliconen
dc.typeThesis-
dc.date.schoolyear110-2-
dc.description.degree博士-
dc.contributor.coadvisor許聿翔zh_TW
dc.contributor.coadvisorYu-Hsiang Hsuen
dc.contributor.oralexamcommittee陳建彰;張存續;溫偉源;林佑明;柯建安zh_TW
dc.contributor.oralexamcommitteeJian-Zhang Chen;Tsun-Hsu Chang;Wei-Yen Woon;Yu-Ming Lin;Jian-An Keen
dc.subject.keyword施者失活,摻雜劑空位簇,微波回火,熱穩定結,摻雜劑激活,施者,磷空位簇,外延矽,退火,zh_TW
dc.subject.keyworddonor deactivation,dopant vacancy clusters,microwave annealing,thermally stable junctions,dopant activation,donors,phosphorus vacancy clusters,epitaxial Si:P,annealing,en
dc.relation.page118-
dc.identifier.doi10.6342/NTU202204032-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2022-09-29-
dc.contributor.author-college工學院-
dc.contributor.author-dept應用力學研究所-
dc.date.embargo-lift2025-09-01-
Appears in Collections:應用力學研究所

Files in This Item:
File SizeFormat 
ntu-110-2.pdf19.6 MBAdobe PDFView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved