請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86095完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃升龍(Sheng-Lung Huang) | |
| dc.contributor.author | An-Ho Huang | en |
| dc.contributor.author | 黃安荷 | zh_TW |
| dc.date.accessioned | 2023-03-19T23:36:36Z | - |
| dc.date.copyright | 2022-09-14 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-09-12 | |
| dc.identifier.citation | [1] U. Aygun, H. Urey, A.Y. Ozkumur, “Label-free detection of nanoparticles using depth scanning correlation interferometric microscopy,” Scientific reports, 9012, June 2019 [2] S. Stanley, “Biological nanoparticles and their influence on organisms,” Current Opinion in Biotechnology, Vol. 28, 69–74, August 2014 [3] M. Cretich, G. G. Daaboul, L. Sola, M. S. Unlu, M. Chiari “Digital detection of biomarkers assisted by nanoparticles: Application to diagnostics,” Trends Biotechnol. 33, 343–351, 2015 [4] W. H. De Jong, P. J. A. Borm, “Drug delivery and nanoparticles: applications and hazards,” Int. J. Nanomedicine 3, 133–49, 2008 [5] P. R. Srinivas, B. S. Kramer, S. Srivastava, “Trends in biomarker research for cancer detection,” Lancet Oncol. 2, 698–704, 2001 [6] D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science, 254, 1178, 1991 [7] G. S. Kino and S. S. C. Chim, “Mirau correlation microscope,” Applied Optics, Vol. 29, Issue 26, pp. 3775-3783, 1990 [8] A. Tarkiainen, M. Liljeström, M. Seppä, R. Salmelin, “The 3D topography of MEG source localization accuracy: effects of conductor model and noise,” Clinical Neurophysiology, Vol. 114, Issue 10, pp. 1977-1992, October 2003 [9] W. Drexler and J. G. Fujimoto, “Optical Coherence Tomography: Technology and Applications,” 2nd Edition, Springer Inc., 2015. [10] M. V. Klein and T. E. Furtak, Optics. Wiley New York, 1990. [11] Y. Dong, G. Zhou, X. Jun et al., “Luminescence studies of Ce:YAG using vacuum ultraviolet synchrotron radiation,” Materials Research Bulletin, vol. 41, no. 10, pp. 1959-1963, 2006. [12] C. You, “Analysis of Image and Spectrum Properties on Skin Cells by Mirau-based Full-field Optical Coherence Tomography Combined with Near-Infrared Raman Spectroscopy,” National Taiwan University, 2018. [13] “The Rayleigh Criterion.” [Online]. Available: http://hyperphysics.phy-astr.gsu.edu/hbase/phyopt/Raylei.html [14] A. Dubois, L. Vabre, A. C. Boccara et al., “High-resolution full-field optical coherence tomography with a Linnik microscope,” Applied Optics, vol. 41, no. 4, pp. 805-812, 2002. [15] E. Hecht, “Optics,” 5th Edition, Pearson Inc., 2016. [16] Hahn Stefan L., Hilbert transforms in signal processing, Artech House, Inc., Boston, 1996. [17] S. L. Hahn, “Hilbert transforms in signal processing,” Artech House, Inc., Boston, 1996. [18] Nanocomposix, “100 nm Non-Functionalized NanoXact™ Silica.” [Online]. Available: https://tools.nanocomposix.com:48/cdn/coa/Silica/Silica-100nm-JEA0234.pdf?1231653 [19] Nanocomposix, “NanoXact Silica Nanospheres.” [Online]. Available: https://nanocomposix.com/products/nanoxact-silica-nanospheres?_pos=3&_sid=f0067c6ff&_ss=r&variant=15906838544473 [20] M.F. Modest, “Radiative Heat Transfer,” 1993, New York: Mc Graw Hill. [21] Z. Ye, “Measurements of Particle Size Distribution Based on Mie Scattering Theory and Markov Chain Inversion Algorithm,” Journal of software, vol. 7, no. 10, October 2012 [22] 中央研究院, “米氏散射.” [Online]. Available: https://idv.sinica.edu.tw/cytseng/lecture/Miescattering/Mie.pdf [23] Wikipedia, “Mie scattering.” [Online]. Available: https://en.wikipedia.org/wiki/Mie_scattering [24] Wikipedia, “Rayleigth scattering.” [Online]. Available: https://en.wikipedia.org/wiki/Rayleigh_scattering [25] J.H. Seinfeld and S.N. Pandis “Atmospheric Chemistry and Physics,” 2nd Edition, John Wiley and Sons, New Jersey, Chapter 15.1.1, 2006 [26] Wikipedia, “Gaussian function.” [Online]. Available: https://en.wikipedia.org/wiki/Gaussian_function | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86095 | - |
| dc.description.abstract | 米繞式(Mirau-based)全域式光學同調斷層掃描術(Full-field optical coherence tomography; FF-OCT) 具有非侵入性(Non-invasive)、高空間解析度以及掃描快速的優勢,被廣泛應用在生醫領域的成像。有別於以往利用FF-OCT的高解析影像分析待測樣品之結構與形貌,本研究探討以本米繞式FF-OCT系統是否能以量測得背向散射紋理,分析出小於系統空間解析度,直徑約為100 nm的奈米顆粒尺寸資訊。 在進行奈米顆粒量測之前,先以量測金屬標準粗糙度測試片,測試系統之絕對定位精準度(Localization accuracy)。金屬標準粗糙度測試片表面刻有1.6、0.8、0.4、0.2、0.1、0.05 µm的粗糙度,本系統量測最小的兩個粗糙度,0.1 µm以及0.05 µm,得到的量測結果誤差分別為1.4%以及20%。驗證基於光源特性、物鏡放大倍率以及取樣速率,本系統具有50 nm的絕對定位精準度。 本研究進一步量測100奈米顆粒溶液,並分析其背向散射紋理以獲得與顆粒尺寸相關的資訊。透過背向散射光強度分析,整理出兩個與尺寸相關之參數:相鄰奈米顆粒之間距,以及奈米顆粒粒徑分布。本研究製備兩種濃度的奈米顆粒溶液,粒子濃度分別為\ 1.6\times{10}^{12}\ 以及\ 8.1\times{10}^{11}\ particles/mL,並探討二者量測得兩個參數的結果。兩種濃度的平均相鄰奈米顆粒間距量測結果分別為0.59 µm以及0.72 µm,與以均勻分布模型估算之兩種濃度顆粒間距,0.85 µm以及1.07 µm比較,誤差分別為30.1%以及32.7%。由於本實驗取樣深度較靠近樣品載台底部,此誤差說明了奈米顆粒在三維空間中分布不完全均勻,較集中在靠近底部的深度位置。而本研究探討粒徑分布之參數為變異係數(Coefficient of variation; CV)。本研究量測得兩種濃度之CV分別為15.24%與15.34%,此一致性歸因於樣品粒徑分布得均勻性。而樣品規格提供之CV為8.6%,量測值相較於樣品規格來說CV值較大,說明散射光強度對於散射顆粒尺寸十分敏感。 | zh_TW |
| dc.description.abstract | Mirau-based full-field optical coherence tomography (FF-OCT) is widely utilized in biomedical 3D imaging, which is benefit from the characteristics of non-invasive scanning, sub-micron resolution and fast scanning speed. Aside from morphological analysis via 3D images, this research attends to exploring FF-OCT’s ability of 100-nm nanoparticles detection, whose sizes are smaller than system’s resolution, which is 0.9 µm. Standard roughness test plate is measured first owing to system’s absolute localization accuracy examination. The roughness plate consists of 6 grinding samples, which are 1.6, 0.8, 0.4, 0.2, 0.1, and 0.05 µm. This research conducts 0.1- and 0.05-µm roughness measurements and yields results with 1.4% and 20% error respectively. In conclusion, this FF-OCT has 50-nm absolute localization accuracy in consideration of its light source bandwidth, objective magnification and sampling rate. 100-nm nanoparticle in solution is measured afterward. Processed backscattered light intensity is analyzed to determine size-related parameters, which are adjacent particles separation and size distribution. Nanoparticle in solution is diluted with 2 concentrations, which are 1.6\times{10}^{12}\ and 8.1\times{10}^{11}\ particles/mL respectively. One parameter, which is adjacent particles separation, of these 2 concentrations are 0.59 µm and 0.72 µm. They have error of 30.1% and 32.7% respectively compared to values estimated with homogeneous distribution model. It can be explained due to the inhomogeneous distribution of nanoparticles in solution. The closer the sampling region is to the bottom, the more likely the nanoparticles are distributed. The other parameter is size distribution, which can be discussed quantitatively in terms of coefficient of variation. CV values of 2 concentrations are 15.24% and 15.34% respectively. This consistency is attributed to the uniformity of sample’s size. Measured CV values are larger than CV from specification, which is 8.6%. This phenomenon describes that scattered light intensity is highly sensitive to scatters’ sizes. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T23:36:36Z (GMT). No. of bitstreams: 1 U0001-0709202222494000.pdf: 5230441 bytes, checksum: 20a2eb2a416cb88d0b35f6961409e49e (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 致謝 I 中文摘要 II Abstract III 目錄 IV 圖目錄 VI 表目錄 IX 第一章、緒論 1 第二章、Mirau-based全域式光學同調斷層掃描系統及其特性 3 2.1 光學同調斷層掃描理論推導 3 2.2 摻鈰釔鋁石榴石晶體光纖寬頻光源 10 2.3 Mirau-based Full-Field OCT系統架構 11 2.4 系統解析度理論推導與量測結果 15 第三章、金屬粗糙度測試板之背向散射紋理分析 19 3.1 實驗目的 19 3.2 實驗流程 19 3.2.1 實驗流程概述 19 3.2.2 樣品與玻片間隙介質填充 21 3.3 背向散射訊號處理步驟 24 3.3.1 移動平均 25 3.3.2 去除背景散射光趨勢—多項式擬合法 26 3.3.3 希爾伯轉換 26 3.3.4 低通濾波器 29 3.3.5 金屬粗糙測試版之同調閘深度—A-scan最大值的深度 30 3.4 粗糙度量測結果—系統定位精準度 31 第四章、奈米顆粒樣本 34 4.1 奈米顆粒樣本 34 4.2 奈米顆粒之光散射特性 37 第五章、奈米顆粒之背向散射紋理分析 43 5.1 奈米顆粒之背向散射訊號處理及初步分析 43 5.1.1 背向散射訊號處理 43 5.1.2 散射光強度局部極小值—閾值界定 45 5.2 顆粒尺寸分布參數計算及其結果分析 47 5.3 顆粒間距計算及其結果分析 52 第六章、 研究結論與未來展望 55 6.1 研究結論 55 6.2 未來展望 56 參考文獻 57 附錄一 近紅外光拉曼系統 59 | |
| dc.language.iso | zh-TW | |
| dc.subject | 光學同調斷層掃描 | zh_TW |
| dc.subject | 奈米顆粒粒徑分析 | zh_TW |
| dc.subject | 背向散射紋理 | zh_TW |
| dc.subject | 粗糙度量測 | zh_TW |
| dc.subject | 定位精準度 | zh_TW |
| dc.subject | roughness measurement | en |
| dc.subject | localization accuracy | en |
| dc.subject | backscattered pattern | en |
| dc.subject | optical coherence tomography | en |
| dc.subject | nanoparticles size analysis | en |
| dc.title | OCT背向散射紋理應用於奈米顆粒尺寸分析 | zh_TW |
| dc.title | Estimation of Nanoparticle Size by OCT Backscattered Pattern Analysis | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 徐世祥(Shih-Hsiang Hsu),孫家偉(Chia-Wei Sun) | |
| dc.subject.keyword | 光學同調斷層掃描,背向散射紋理,粗糙度量測,定位精準度,奈米顆粒粒徑分析, | zh_TW |
| dc.subject.keyword | optical coherence tomography,backscattered pattern,roughness measurement,localization accuracy,nanoparticles size analysis, | en |
| dc.relation.page | 61 | |
| dc.identifier.doi | 10.6342/NTU202203239 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2022-09-12 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| dc.date.embargo-lift | 2022-09-14 | - |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0709202222494000.pdf | 5.11 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
