請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86040完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林時彥 | zh_TW |
| dc.contributor.advisor | Shih-Yen Lin | en |
| dc.contributor.author | 蔡柏政 | zh_TW |
| dc.contributor.author | Po-Cheng Tsai | en |
| dc.date.accessioned | 2023-03-19T23:34:04Z | - |
| dc.date.available | 2023-12-29 | - |
| dc.date.copyright | 2022-09-26 | - |
| dc.date.issued | 2022 | - |
| dc.date.submitted | 2002-01-01 | - |
| dc.identifier.citation | [1] ITRS: The international technology roadmap for semiconductors 2013. In Executive Summary, 2013, 17. [2] Moore, G. E., Cramming more components onto integrated circuits. Electronics 1965, 38 (8), 114-117. [3] Iwai, H., Roadmap for 22 nm and beyond. Microelectronic Engineering 2009, 86 (7-9), 1520-1528. [4] Bohr, M. T.; Young, I. A., CMOS scaling trends and beyond. IEEE Micro 2017, 37 (6), 20-29. [5] Huyghebaert, C. In 2D materials: roadmap to CMOS integration 2018 IEEE Int, Electron Devices Meeting (IEDM)(1–5 December 2018), 2018; 22. [6] Cao, W.; Kang, J.; Sarkar, D., Liu, W., Banerjee, K., 2D semiconductor FETs—Projections and design for sub-10 nm VLSI. IEEE transactions on electron devices 2015, 62 (11), 3459-3469. [7] Chang, J.; Register, L. F.; Banerjee, S. K., Atomistic full-band simulations of monolayer MoS2 transistors. Applied Physics Letters 2013, 103 (22), 223509. [8] Majumdar, K.; Hobbs, C.; Kirsch, P. D., Benchmarking transition metal dichalcogenide MOSFET in the ultimate physical scaling limit. IEEE Electron Device Letters 2014, 35 (3), 402-404. [9] Alam, K.; Lake, R. K., Monolayer MoS2 Transistors Beyond the Technology Road Map. IEEE transactions on electron devices 2012, 59 (12), 3250-3254. [10] Hoefflinger, B., Irds—international roadmap for devices and systems, rebooting computing,. Nano-Chips 2030 2020, 9-17. [11] Ma, N.; Jena, D., Charge scattering and mobility in atomically thin semiconductors. Physical Review X 2014, 4 (1), 011043. [12] Kamel, S.; El-Sakhawy, M.; Anis, B.; Tohamy, H.-A. S., Graphene’s Structure, Synthesis, and Characterization; a brief review. Egyptian Journal of Chemistry 2019, 62, 593-608. [13] Zhen, Z.; Zhu, H., Structure and properties of graphene. In Graphene, Elsevier: 2018, 1-12. [14] Liao, L.; Bai, J.; Qu, Y.; Lin, Y.-c.; Li, Y.; Huang, Y.; Duan, X., High-κ oxide nanoribbons as gate dielectrics for high mobility top-gated graphene transistors. Proceedings of the national academy of sciences 2010, 107 (15), 6711-6715. [15] Nair, R. R.; Blake, P.; Grigorenko, A. N.; Novoselov, K. S.; Booth, T. J.; Stauber, T.; Peres, N. M. R.; Geim, A. K., Fine Structure Constant Defines Visual Transparency of Graphene. Science 2008, 320 (5881), 1308-1308. [16] Wang, N. C.; Sinha, S.; Cline, B.; English, C. D.; Yeric, G.; Pop, E. In Replacing copper interconnects with graphene at a 7-nm node, 2017 IEEE International Interconnect Technology Conference (IITC), 16-18 May 2017; 2017; pp 1-3 [17] Long, M.-Q.; Tang, L.; Wang, D.; Wang, L.; Shuai, Z., Theoretical predictions of size-dependent carrier mobility and polarity in graphene. Journal of the American Chemical Society 2009, 131 (49), 17728-17729. [18] Liu, H.; Neal, A. T.; Ye, P. D., Channel length scaling of MoS2 MOSFETs. ACS nano 2012, 6 (10), 8563-8569. [19] Lee, Y. H.; Zhang, X. Q.; Zhang, W.; Chang, M. T.; Lin, C. T.; Chang, K. D.; Yu, Y. C.; Wang, J. T. W.; Chang, C. S.; Li, L. J., Synthesis of large‐area MoS2 atomic layers with chemical vapor deposition. Advanced materials 2012, 24 (17), 2320-2325. [20] Gusakova, J.; Wang, X.; Shiau, L. L.; Krivosheeva, A.; Shaposhnikov, V.; Borisenko, V.; Gusakov, V.; Tay, B. K., Electronic properties of bulk and monolayer TMDs: theoretical study within DFT framework (GVJ‐2e method). physica status solidi (a) 2017, 214 (12), 1700218. [21] Kuc, A., Low-dimensional transition-metal dichalcogenides. 2014. [22] Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A., Single-layer MoS2 transistors. Nature nanotechnology 2011, 6 (3), 147-150. [23] Desai, S. B.; Madhvapathy, S. R.; Sachid, A. B.; Llinas, J. P.; Wang, Q.; Ahn, G. H.; Pitner, G.; Kim, M. J.; Bokor, J.; Hu, C.; Wong, H.-S. P.; Javey, A., MoS2 transistors with 1-nanometer gate lengths. Science 2016, 354 (6308), 99-102. [24] Xia, F.; Mueller, T.; Golizadeh-Mojarad, R.; Freitag, M.; Lin, Y.-m.; Tsang, J.; Perebeinos, V.; Avouris, P., Photocurrent Imaging and Efficient Photon Detection in a Graphene Transistor. Nano Letters 2009, 9 (3), 1039-1044. [25] Zhang, W.; Chuu, C.-P.; Huang, J.-K.; Chen, C.-H.; Tsai, M.-L.; Chang, Y.-H.; Liang, C.-T.; Chen, Y.-Z.; Chueh, Y.-L.; He, J.-H.; Chou, M.-Y.; Li, L.-J., Ultrahigh-Gain Photodetectors Based on Atomically Thin Graphene-MoS2 Heterostructures. Scientific Reports 2014, 4 (1), 3826. [26] Wu, C.-R.; Chang, X.-R.; Chang, S.-W.; Chang, C.-E.; Wu, C.-H.; Lin, S.-Y., Multilayer MoS2 prepared by one-time and repeated chemical vapor depositions: anomalous Raman shifts and transistors with high ON/OFF ratio. Journal of Physics D: Applied Physics 2015, 48 (43), 435101. [27] Wu, C.-R.; Chang, X.-R.; Chu, T.-W.; Chen, H.-A.; Wu, C.-H.; Lin, S.-Y., Establishment of 2D crystal heterostructures by sulfurization of sequential transition metal depositions: preparation, characterization, and selective growth. Nano letters 2016, 16 (11), 7093-7097. [28] Wu, C.-R.; Chang, X.-R.; Wu, C.-H.; Lin, S.-Y., The Growth Mechanism of Transition Metal Dichalcogenides by using Sulfurization of Pre-deposited Transition Metals and the 2D Crystal Hetero-structure Establishment. Scientific Reports 2017, 7 (1), 42146. [29] Shi, Y.; Zhou, W.; Lu, A.-Y.; Fang, W.; Lee, Y.-H.; Hsu, A. L.; Kim, S. M.; Kim, K. K.; Yang, H. Y.; Li, L.-J.; Idrobo, J.-C.; Kong, J., van der Waals Epitaxy of MoS2 Layers Using Graphene As Growth Templates. Nano Letters 2012, 12 (6), 2784-2791. [30] Chen, H.-A.; Chen, W.-C.; Sun, H.; Lin, C.-C.; Lin, S.-Y., Scalable MoS2/graphene hetero-structures grown epitaxially on sapphire substrates for phototransistor applications. Semiconductor Science and Technology 2018, 33 (2), 025007. [31] Lin, M.-Y.; Su, C.-F.; Lee, S.-C.; Lin, S.-Y., The growth mechanisms of graphene directly on sapphire substrates by using the chemical vapor deposition. Journal of Applied Physics 2014, 115 (22), 223510. [32] Gurarslan, A.; Yu, Y.; Su, L.; Yu, Y.; Suarez, F.; Yao, S.; Zhu, Y.; Ozturk, M.; Zhang, Y.; Cao, L., Surface-energy-assisted perfect transfer of centimeter-scale monolayer and few-layer MoS2 films onto arbitrary substrates. ACS nano 2014, 8 (11), 11522-11528. [33] Chen, K.-C.; Liu, C.-W.; Chen, C.; Lin, S.-Y., The atomic layer etching of molybdenum disulfides using low-power oxygen plasma. Semiconductor Science and Technology 2019, 34 (4), 045007. [34] Lin, M.-Y.; Guo, W.-C.; Wu, M.-H.; Wang, P.-Y.; Liu, T.-H.; Pao, C.-W.; Chang, C.-C.; Lee, S.-C.; Lin, S.-Y., Low-temperature grown graphene films by using molecular beam epitaxy. Applied Physics Letters 2012, 101 (22), 221911. [35] Lee, C.; Yan, H.; Brus, L. E.; Heinz, T. F.; Hone, J.; Ryu, S., Anomalous lattice vibrations of single-and few-layer MoS2. ACS nano 2010, 4 (5), 2695-2700. [36] Zeng, H.; Liu, G. B.; Dai, J.; Yan, Y.; Zhu, B.; He, R.; Xie, L.; Xu, S.; Chen, X.; Yao, W.; Cui, X., Optical signature of symmetry variations and spin-valley coupling in atomically thin tungsten dichalcogenides. Sci Rep 2013, 3, 1608. [37] Eda, G.; Yamaguchi, H.; Voiry, D.; Fujita, T.; Chen, M.; Chhowalla, M., Photoluminescence from Chemically Exfoliated MoS2. Nano Letters 2011, 11 (12), 5111-5116. [38] Lan, F.; Yang, R.; Xu, Y.; Qian, S.; Zhang, S.; Cheng, H.; Zhang, Y., Synthesis of large-scale single-crystalline monolayer WS2 using a semi-sealed method. Nanomaterials 2018, 8 (2), 100. [39] George, S. M., Atomic Layer Deposition: An Overview. Chemical Reviews 2010, 110 (1), 111-131. [40] Foroughi-Abari, A.; Cadien, K., Atomic Layer Deposition for Nanotechnology. In Nanofabrication: Techniques and Principles, Stepanova, M.; Dew, S., Eds. Springer Vienna: Vienna, 2012; pp 143-161. [41] Lu, J.; Elam, J. W.; Stair, P. C., Atomic layer deposition—Sequential self-limiting surface reactions for advanced catalyst “bottom-up” synthesis. Surface Science Reports 2016, 71 (2), 410-472. [42] Wang, H., Atomic layer deposition of oxides for microelectronics. Harvard University: 2009. [43] Lu, Wei-Er; Dong, Ya-Bin, Li, Chao-Bo, Xia, Yang, Li, Nan., Research Progress on Growth Rate Controlling of Atomic Layer Deposition. Journal of Inorganic Materials 2014, 29 (4), 345-351. [44] Diskus, M.; Nilsen, O.; Fjellvåg, H., Growth of thin films of molybdenum oxide by atomic layer deposition. Journal of Materials Chemistry 2011, 21 (3), 705-710. [45] Wu, C.-R.; Chang, X.-R.; Chang, S.-W.; Chang, C.-E.; Wu, C.-H.; Lin, S.-Y., Multilayer MoS2 prepared by one-time and repeated chemical vapor depositions: anomalous Raman shifts and transistors with high ON/OFF ratio. Journal of Physics D: Applied Physics 2015, 48 (43), 435101. [46] Kiriya, D.; Tosun, M.; Zhao, P.; Kang, J. S.; Javey, A., Air-stable surface charge transfer doping of MoS2 by benzyl viologen. Journal of the American Chemical Society 2014, 136 (22), 7853-7856. [47] Conley, H. J.; Wang, B.; Ziegler, J. I.; Haglund Jr, R. F.; Pantelides, S. T.; Bolotin, K. I., Bandgap engineering of strained monolayer and bilayer MoS2. Nano letters 2013, 13 (8), 3626-3630. [48] Mishra, N.; Forti, S.; Fabbri, F.; Martini, L.; McAleese, C.; Conran, B. R.; Whelan, P. R.; Shivayogimath, A.; Jessen, B. S.; Buß, L.; Falta, J.; Aliaj, I.; Roddaro, S.; Flege, J. I.; Bøggild, P.; Teo, K. B. K.; Coletti, C., Wafer-Scale Synthesis of Graphene on Sapphire: Toward Fab-Compatible Graphene. Small 2019, 15 (50), 1904906. [49] Eckmann, A.; Felten, A.; Mishchenko, A.; Britnell, L.; Krupke, R.; Novoselov, K. S.; Casiraghi, C., Probing the nature of defects in graphene by Raman spectroscopy. Nano letters 2012, 12 (8), 3925-3930. [50] Zhang, Y.-W.; Li, J.-Y.; Wu, C.-H.; Chang, C.-Y.; Chang, S.-W.; Shih, M.-H.; Lin, S.-Y., Tungsten diselenide top-gate transistors with multilayer antimonene electrodes: Gate stacks and epitaxially grown 2D material heterostructures. Scientific Reports 2020, 10 (1), 1-7. [51] Lin, M.-Y.; Wang, C.-H.; Chang, S.-W.; Lee, S.-C.; Lin, S.-Y., Passivated graphene transistors fabricated on a millimeter-sized single-crystal graphene film prepared with chemical vapor deposition. Journal of Physics D: Applied Physics 2015, 48 (29), 295106. [52] Chen, K.-C.; Chu, T.-W.; Wu, C.-R.; Lee, S.-C.; Lin, S.-Y., Layer number controllability of transition-metal dichalcogenides and the establishment of hetero-structures by using sulfurization of thin transition metal films. Journal of Physics D: Applied Physics 2017, 50 (6), 064001. [53] Chen, H.-A.; Sun, H.; Wu, C.-R.; Wang, Y.-X.; Lee, P.-H.; Pao, C.-W.; Lin, S.-Y., Single-crystal antimonene films prepared by molecular beam epitaxy: selective growth and contact resistance reduction of the 2D material heterostructure. ACS applied materials & interfaces 2018, 10 (17), 15058-15064. [54] Yun, W. S.; Han, S. W.; Hong, S. C.; Kim, I. G.; Lee, J. D. Thickness and strain effects on electronic structures of transition metal dichalcogenides: 2H-MX2 semiconductors (M= Mo, W; X= S, Se, Te). Physical Review B 2012, 85 (3), 033305. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86040 | - |
| dc.description.abstract | 本論文研究目標著重在二維材料的成長及元件製作分析、異質結構 (Hetero-structure) 與平面式閘極電晶體 (In-plane Gate Transistor, IPGT) 應用,主要研究材料為石墨烯 (Graphene) 、過渡金屬二硫化物的二硫化鉬(MoS2) 以及二硫化鎢 (WS2)。傳統化學氣相沉積法成長二維材料,需將過渡金屬和硫族元素的兩種前驅物同時放置於高溫爐管中反應,化學反應極其複雜,此外由於二維材料成長溫度相當高,異質結構薄膜製備不易,我們利用原子層沉積、熱蒸鍍、射頻濺鍍等方式提供過渡金屬氧化物薄膜,結合高溫爐管的硫化過程,我們成功製備出大面積石墨烯和二硫化鉬、二硫化鎢薄膜。我們在研究過程中發現由於缺乏斷鍵,二維材料表面不利於原子層沉積之前驅物分布,藉由調整前驅物靜置時間在二維材料表面形成成核點有利於原子層沉積,利用此方式在二硫化鉬表面成長5 nm氧化鋁做為間隔層並轉印同質材料MoS2 以增強螢光光譜發光強度或是異質材料WS2形成雙波段螢光發光結構。我們並將石墨烯直接成長於藍寶石基板上,再使用熱蒸鍍取代射頻濺鍍提供過渡金屬氧化物薄膜來成長過渡金屬二硫化物,避免濺鍍時氬離子轟擊底層材料造成破壞,使用此成長方式製備成二硫化鉬/石墨烯電晶體元件。以二硫化鉬做為表面鈍化層則可提升石墨烯電晶體之電流和載子遷移率。若使用原子層蝕刻技術將上層二硫化鉬孤立做為電荷儲存層,此異質結構之元件便會出現遲滯現象可做為記憶體元件應用。為了探討電荷儲存於二硫化鉬之現象,我們以三層二硫化鉬並使用原子層蝕刻技術將電極下方二硫化鉬蝕刻使通道中的二硫化鉬孤立做為電荷儲存層,我們發現隨著孤立層數增加其遲滯曲線亦會增加。此外為了避免氧化物與通道接觸會使得石墨稀上閘極電晶體的特性下降,我們藉由電子束微影製作出石墨烯平面式閘極電晶體,此元件無須使用氧化物介電層便可對石墨烯通道的電流進行調制並大幅提升石墨烯電晶體的元件特性。 | zh_TW |
| dc.description.abstract | The thesis is focused on the fabrication of 2-D materials, and their hetero-structures for device applications. The main research materials are graphene and transition metal disulfides, such as MoS2 and WS2. By using the conventional chemical vapor deposition, the growth of 2-D materials requires two precursors of transition metals and chalcogenides. Considering the thin-body nature of 2-D materials, it is difficult to achieve precise control over the growth parameters. On the other hand, high growth temperatures are usually required for 2-D material growth, which will make it difficult to establish epitaxially grown 2-D material hetero-structures. Therefore, we have adopted atomic layer deposition (ALD), thermal evaporation, and radio frequency sputtering (RF sputtering) to provide transition metal oxide films. Combined with the sulfurization procedure in a hot furnace, we have successfully demonstrated large-area graphene, molybdenum disulfide and tungsten disulfide growth. Since there are no dangling bonds, direct oxide growth by using ALD is difficult on 2-D material surfaces. We have demonstrated that a thin 5 nm Al2O3 dielectric layer can be grown on the MoS2 surface by using ALD with an additional precursor soaking time. With the thin oxide separation layer between two mono-layer 2-D materials, luminescence enhancement is observed by transferring a mono-layer MoS2 film onto the sample, while dual color emission can be observed by transferring mono-layer WS2. We have also demonstrated that layer-number-controllable MoS2 films can be grown on graphene surfaces by sulfurizing pre-deposited MoO3 films by using the thermal evaporator. With no damages introduced during the growth procedure, significant device performance enhancement is observed for the top-gate graphene transistors with the MoS2 passivation layer. By using the atomic layer etching (ALE) procedure to isolate the topmost MoS2 layer from the graphene channel, a memory architecture based on the MoS2/graphene hetero-structure is proposed. With the semiconducting 2-D material (MoS2) as the charge separation layer and the conductive counterpart (graphene) as the channel layer, a top-gate transistor can be operated as a memory device. The long retention times and increasing current ratios between “1” and “0” states with increasing isolated MoS2 layer numbers have revealed the potential of 2-D materials for memory device applications. The same concept is also applied to multi-layer MoS2 with the isolated MoS2 layers as the charge storage layer and the underneath MoS2 layers as the channel. On the other hand, by using the electron beam lithography, the in-plane gate transistor architecture provides an alternate approach for the fabrication of 2-D transistors with reduced interfaces with other materials and the channel is modulated by electric field laterally. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T23:34:04Z (GMT). No. of bitstreams: 1 U0001-0809202210030300.pdf: 5606722 bytes, checksum: 36facd0a4e7a29f01ebc0ab4b3c89144 (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 口試委員審定書 i 致謝 ii 摘要 iii Abstract iv Table of Contents vi List of Figures x List of Tables xvi Chapter 1 Introduction 1 1.1 The Challenge of CMOS Scaling 1 1.2 The evolution of 2-D material researches 6 1.3 Outline of the thesis 19 Chapter 2 Growth Approaches and Characterizations of 2-D Materials 23 2.1 The Preparations of 2-D Materials 23 2.2 The Transferring Procedures of Grown 2-D Materials 28 2.2.1 PDMS Stamp Transferring 28 2.2.2 PMMA Assisted Transferring 31 2.2 The Raman and Photoluminescence Measurement System 33 2.2.1 The Raman spectrum of 2-D materials 33 2.2.2 The Photoluminescence spectrum of 2-D materials 41 2.3 Device Fabrications Systems 43 2.3.1 The atomic layer deposition system (ALD) 43 2.3.2 The electron-beam lithography system (EBL) 48 2.3.3 The atom layer etching (ALE) of 2-D materials 50 Chapter 3 Stacked Structures of 2-D Materials for Transistor Applications 52 3.1 Luminescence Enhancement and Dual-Color Emission of Stacked Mono-layer 2-D Materials 52 3.1.1 The deposition of thin dielectric layers on MoS2 surfaces 53 3.1.2 Luminescence enhancement of stacked mono-layer MoS2 56 3.1.3 Dual-color emission of stacked mono-layer MoS2 and WS2 59 3.1.4 Conclusion 61 3.2 Top-gate Graphene Transistors with MoS2 Passivation Layers 62 3.2.1 MoS2 growth on graphene surfaces using the RF sputtering 62 3.2.2 Non-destructive MoS2 growth on graphene surfaces and the passivated top-gate graphene transistor 65 3.2.3 Conclusion 72 3.3 In-plane Gate Graphene Transistors (IPGTs) with MoS2 Passivation Layers 73 3.3.1 Device fabrications of IPGTs 73 3.3.2 The influence of gate-channel separations of IPGTs 74 3.3.3 IPGTs with MoS2 passivation layers 78 3.3.4 Conclusion 81 Chapter 4 2-D Memories 82 4.1 Charge Storage of Isolated Mono-layer MoS2 in Top-gate MoS2/graphene Transistors 82 4.1.1 Device fabrications of top-gate graphene transistors with isolated MoS2 layers 83 4.1.2 The transfer curves of top-gate graphene transistors with isolated MoS2 layers 85 4.1.3 Read-write operations of MoS2/graphene memories 91 4.1.4 Conclusion 94 4.2 Multi-layer MoS2 for Memory Applications 95 4.2.1 Device fabrications of top-gate MoS2 transistors with isolated MoS2 layers 96 4.2.2 The transfer curves of top-gate MoS2 transistors with isolated MoS2 layers 98 4.2.3 Read-write operations, operation speed and charge storage of MoS2 memories 100 4.3 Conclusion 106 Chapter 5 Conclusion 107 Future work 110 Reference 112 Publication List 121 | - |
| dc.language.iso | en | - |
| dc.subject | 原子層蝕刻 | zh_TW |
| dc.subject | 平面式閘極電晶體 | zh_TW |
| dc.subject | 場效電晶體 | zh_TW |
| dc.subject | 記憶體 | zh_TW |
| dc.subject | 二維材料 | zh_TW |
| dc.subject | Atomic layer etching | en |
| dc.subject | 2-D material | en |
| dc.subject | In-plane gate transistor | en |
| dc.subject | Field effect transistor | en |
| dc.subject | Memory | en |
| dc.title | 二維材料堆疊結構在電晶體及記憶體之應用研究 | zh_TW |
| dc.title | Stacked Structures of 2D Materials for Transistor and Memory Applications | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 110-2 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.oralexamcommittee | 李柏璁;張守進;張子璿;張書維;吳肇欣 | zh_TW |
| dc.contributor.oralexamcommittee | Po-Tsung Lee;Shoou-Jinn Chang;Tzu-Hsuan Chang;Shu-Wei Chang;Chao-Hsin Wu | en |
| dc.subject.keyword | 二維材料,平面式閘極電晶體,場效電晶體,記憶體,原子層蝕刻, | zh_TW |
| dc.subject.keyword | 2-D material,In-plane gate transistor,Field effect transistor,Memory,Atomic layer etching, | en |
| dc.relation.page | 123 | - |
| dc.identifier.doi | 10.6342/NTU202203243 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2022-09-19 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 電子工程學研究所 | - |
| dc.date.embargo-lift | 2024-09-28 | - |
| 顯示於系所單位: | 電子工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-110-2.pdf | 5.48 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
