Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85820
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor陳永芳(Yang-Fang Chen)
dc.contributor.authorJyun-You Laien
dc.contributor.author賴俊佑zh_TW
dc.date.accessioned2023-03-19T23:25:23Z-
dc.date.copyright2022-07-06
dc.date.issued2022
dc.date.submitted2022-03-21
dc.identifier.citationS. Mokkapati and C. Jagadish, 'III-V compound SC for optoelectronic devices', Materials Today, vol. 12, no. 4, pp. 22-32, 2009. V. Reboud et al., 'Germanium based photonic components toward a full silicon/germanium photonic platform', Progress in Crystal Growth and Characterization of Materials, vol. 63, no. 2, pp. 1-24, 2017. D. Benedikovic et al., 'Silicon-germanium receivers for short-wave-infrared optoelectronics and communications', Nanophotonics, vol. 10, no. 3, pp. 1059-1079, 2020. S. Zaima et al., 'Growth and applications of GeSn-related group-IV semiconductor materials', Science and Technology of Advanced Materials, vol. 16, no. 4, p. 043502, 2015. Y. Buzynin et al., 'GaAs/Ge/Si epitaxial substrates: Development and characteristics', AIP Advances, vol. 7, no. 1, p. 015304, 2017. J. Zheng et al., 'Recent progress in GeSn growth and GeSn-based photonic devices', Journal of Semiconductors, vol. 39, no. 6, p. 061006, 2018. Y. Du et al., 'Growth of high-quality epitaxy of GaAs on Si with engineered Ge buffer using MOCVD', Journal of Materials Science: Materials in Electronics, vol. 32, no. 5, pp. 6425-6437, 2021. Y. Ishikawa and S. Saito, 'Ge-on-Si photonic devices for photonic-electronic integration on a Si platform', IEICE Electronics Express, vol. 11, no. 24, p. 20142008, 2014. D. Eaglesham and M. Cerullo, 'Dislocation-free Stranski-Krastanow growth of Ge on Si(100)', Physical Review Letters, vol. 64, no. 16, pp. 1943-1946, 1990. J. Michel et al., 'High-performance Ge-on-Si photodetectors', Nature Photonics, vol. 4, no. 8, pp. 527-534, 2010. P. Goley and M. Hudait, 'Germanium based field-effect transistors: Challenges and opportunities', Materials, vol. 7, no. 3, pp. 2301-2339, 2014. H. Ye and J. Yu, 'Germanium epitaxy on silicon', Science and Technology of Advanced Materials, vol. 15, no. 2, p. 024601, 2014. S. Samavedam et al., 'High-quality germanium photodiodes integrated on silicon substrates using optimized relaxed graded buffers', Applied Physics Letters, vol. 73, no. 15, pp. 2125-2127, 1998. R. Pillarisetty et al., 'High mobility strained germanium quantum well field effect transistor as the p-channel device option for low power (Vcc = 0.5 V) III-V CMOS architecture', 2010 International Electron Devices Meeting, pp. 6.7.1-6.7.4, 2010. H. Luan et al., 'High-quality Ge epilayers on Si with low threading-dislocation densities', Applied Physics Letters, vol. 75, no. 19, pp. 2909-2911, 1999. J. Hartmann et al., 'Reduced pressure-chemical vapor deposition of intrinsic and doped Ge layers on Si(001) for microelectronics and optoelectronics purposes', Journal of Crystal Growth, vol. 274, no. 1-2, pp. 90-99, 2005. V. Shah et al., 'Effect of layer thickness on structural quality of Ge epilayers grown directly on Si(001)', Thin Solid Films, vol. 519, no. 22, pp. 7911-7917, 2011. Y. Yamamoto et al, 'Low threading dislocation density Ge deposited on Si (100) using RPCVD', Solid-State Electronics, vol. 60, no. 1, pp. 2-6, 2011. Z. Liu et al., 'Diode laser annealing on Ge/Si (100) epitaxial films grown by magnetron sputtering', Thin Solid Films, vol. 609, pp. 49-52, 2016. J. Zhang et al., 'Modeling of continuous wave laser melting of germanium epitaxial films on silicon substrates', Materials Express, vol. 7, no. 5, pp. 341-350, 2017. Z. Liu et al., 'Reduction of threading dislocation density in sputtered Ge/Si(100) epitaxial films by continuous-wave diode laser-induced recrystallization', ACS Applied Energy Materials, vol. 1, no. 5, pp. 1893-1897, 2018. J. Park et al., 'Defect reduction of selective Ge epitaxy in trenches on Si(001) substrates using aspect ratio trapping', Applied Physics Letters, vol. 90, no. 5, p. 052113, 2007. J. Park et al., 'Low-defect-density Ge epitaxy on Si(001) using aspect ratio trapping and epitaxial lateral overgrowth', Electrochemical and Solid-State Letters, vol. 12, no. 4, pp. 142-144, 2009. Y. Huangfu et al., 'Heteroepitaxy of Ge on Si(001) with pits and windows transferred from free-standing porous alumina mask', Nanotechnology, vol. 24, no. 18, p. 185302, 2013. J. Cui et al., 'High-performance microring resonator Ge-on-Si photodetectors by optimizing absorption layer length', IEEE Photonics Journal, vol. 12, no. 4, pp. 1-8, 2020. H. Luan et al., 'High efficiency photodetectors based on high quality epitaxial germanium grown on silicon substrates', Optical Materials, vol. 17, no. 1-2, pp. 71-73, 2001. P. Bandaru et al., 'Fabrication and characterization of low temperature (<450°C) grown p-Ge/n-Si photodetectors for silicon based photonics', Materials Science and Engineering: B, vol. 113, no. 1, pp. 79-84, 2004. L. Colace et al., 'Low dark-current germanium-on-silicon near-infrared detectors', IEEE Photonics Technology Letters, vol. 19, no. 22, pp. 1813-1815, 2007. J. Osmond et al., 'Ultralow dark current Ge/Si(100) photodiodes with low thermal budget', Applied Physics Letters, vol. 94, no. 20, p. 201106, 2009. H. Ishii and Y. Takahashi, 'Growth and etching of germanium films by chemical vapor deposition in a GeCl_4 ‐ H_2 gas system', Journal of The Electrochemical Society, vol. 135, no. 6, pp. 1539-1543, 1988. J. Park et al, 'Reduced-pressure chemical vapor deposition of epitaxial Ge films on Si(001) substrates using GeCl_4', Electrochemical and Solid-State Letters, vol. 10, no. 11, pp. H313-H316, 2007. J. Park et al., 'Mechanism investigation of temperature dependent growth and etching process of GeCl_4 on SiGe surface: ab-initio study', 2021 International Conference on Simulation of Semiconductor Processes and Devices, pp. 233-237, 2021. R. Kornev et al, 'Application of RF (13.56 MHz) arc discharge for plasma chemical conversion of volatile chlorides of silicon and germanium.', Plasma Physics and Technology, vol. 6, no. 2, pp. 127-130, 2019. R. Gresback et al, 'Nonthermal plasma synthesis of size-controlled, monodisperse, freestanding germanium nanocrystals', Applied Physics Letters, vol. 91, no. 9, p. 093119, 2007. Z. Holman and U. Kortshagen, 'Solution-processed germanium nanocrystal thin films as materials for low-cost optical and electronic devices', Langmuir, vol. 25, no. 19, pp. 11883-11889, 2009. Z. Holman et al, 'Germanium and silicon nanocrystal thin-film field-effect transistors from solution', Nano Letters, vol. 10, no. 7, pp. 2661-2666, 2010. A. Ahadi et al., 'Controlled synthesis of germanium nanoparticles by nonthermal plasmas', Applied Physics Letters, vol. 108, no. 9, p. 093105, 2016. D. A. Neamen, 'Semiconductor Physics and Devices : Basic Principles (4th ed)', McGraw-Hill, 2012. R. S. Bonilla et al, 'Dielectric surface passivation for silicon solar cells: A review', Physica Status Solidi , vol. 214, no. 7, p. 1700293, 2017. B. Son et al, 'Dark current analysis of germanium-on-insulator vertical p-i-n photodetectors with varying threading dislocation density', Journal of Applied Physics, vol. 127, no. 20, p. 203105, 2020. T. Chang et al, 'Application of the low dielectric methyl-silsesquiazane (MSZ) as a passivation layer on TFT-LCD', Thin Solid Films, vol. 515, no. 3, pp. 1117-1120, 2006. L. Colace and G. Assanto, 'Germanium on silicon for near-infrared light sensing', IEEE Photonics Journal, vol. 1, no. 2, pp. 69-79, 2009. Y. Ishikawa et al, 'Strain-induced band gap shrinkage in Ge grown on Si substrate', Applied Physics Letters, vol. 82, no. 13, pp. 2044-2046, 2003. V. Obreja et al, 'Reverse leakage current instability of power fast switching diodes operating at high junction temperature', 2005 IEEE 36th Power Electronics Specialists Conference, pp. 537-540, 2005. G. R. Savich, 'Analysis and suppression of dark currents in mid-wave infrared photodetectors', Unpublished doctoral dissertation, University of Rochester, 2015. M. Itano et al, 'Particle removal from silicon wafer surface in wet cleaning process', IEEE Transactions on Semiconductor Manufacturing, vol. 6, no. 3, pp. 258-267, 1993. W. Kern, 'The evolution of silicon wafer cleaning technology', Journal of The Electrochemical Society, vol. 137, no. 6, pp. 1887-1892, 1990. S. Ciampi et al, 'Wet chemical routes to the assembly of organic monolayers on silicon surfaces via the formation of Si-C bonds: Surface preparation, passivation and functionalization', Chemical Society Reviews, vol. 39, no. 6, p. 2158, 2010. M. Morita et al, 'Growth of native oxide on a silicon surface', Journal of Applied Physics, vol. 68, no. 3, pp. 1272-1281, 1990. T. Hattori, 'Ultraclean Surface Processing of Silicon Wafers', Springer, 1998. K. Jones and E. Haller, 'Ion implantation of boron in germanium', Journal of Applied Physics, vol. 61, no. 7, pp. 2469-2477, 1987. I. Huygens et al., 'Etching of germanium in hydrogenperoxide solutions', ECS Transactions, vol. 6, no. 2, pp. 375-386, 2007. L. St-Onge and M. Moisan, 'Hydrogen atom yield in RF and microwave hydrogen discharges', Plasma Chemistry and Plasma Processing, vol. 14, no. 2, pp. 87-116, 1994. H. Yoshiki, 'Equivalent circuit model of an inductive RF discharge with a helical external coil', Japanese Journal of Applied Physics, vol. 39, pp. 598-601, 2000. C. Samuell and C. Corr, 'Low-pressure hydrogen plasmas explored using a global model', Plasma Sources Science and Technology, vol. 25, no. 1, p. 015014, 2015. D. Rauner et al., 'Investigation of the RF efficiency of inductively coupled hydrogen plasmas at 1 MHz', AIP Conference Proceedings, vol. 1869, no. 1, p. 030035, 2017. A. Mohammed, and A. Abdullah, 'Scanning electron microscopy (SEM): A review', Proceedings of the 2018 International Conference on Hydraulics and Pneumatics, Baile Govora, Romania, pp. 77–85, (2018). H. Luan et al., 'High-quality Ge epilayers on Si with low threading-dislocation densities', Applied Physics Letters, vol. 75, no. 19, pp. 2909-2911, 1999. B. Alharthi et al., 'Low temperature epitaxy of high-quality Ge buffer using plasma enhancement via UHV-CVD system for photonic device applications', Applied Surface Science, vol. 481, pp. 246-254, 2019. E. Ameh, 'A review of basic crystallography and x-ray diffraction applications', The International Journal of Advanced Manufacturing Technology, vol. 105, no. 7-8, pp. 3289-3302, 2019. D. Cannon et al., 'Tensile strained epitaxial Ge films on Si(100) substrates with potential application in L-band telecommunications', Applied Physics Letters, vol. 84, no. 6, pp. 906-908, 2004. J. Ayers, 'The measurement of threading dislocation densities in semiconductor crystals by X-ray diffraction', Journal of Crystal Growth, vol. 135, no. 1-2, pp. 71-77, 1994. Y. Miao et al, 'Evaluation of threading dislocation density of strained Ge epitaxial layer by high resolution x-ray diffraction', Chinese Physics B, vol. 26, no. 12, p. 127309, 2017. M. Hiller et al, 'Hydrogen-induced platelets in Ge determined by Raman scattering', Physical Review B, vol. 71, no. 4, p. 045208 , 2005. J. Weber et al, 'Hydrogen in germanium', Materials Science in Semiconductor Processing, vol. 9, no. 4-5, pp. 564-570, 2006. S. Choi et al., 'Formation and suppression of hydrogen blisters in tunnelling oxide passivating contact for crystalline silicon solar cells', Scientific Reports, vol. 10, no. 1, p. 6972, 2020. J. Greene, 'Epitaxial crystal growth by sputter deposition: Applications to semiconductors. Part 2', Critical Reviews in Solid State and Materials Sciences, vol. 11, no. 3, pp. 189-227, 1983. Z. Liu et al, 'Epitaxial growth of Ge on Si by magnetron sputtering', in Epitaxy, Intech, 2018. A. Keita et al, 'Highly retarded crystallization in hydrogenated amorphous germanium; emergence of a porous nanocrystalline structure', Thin Solid Films, vol. 615, pp. 145-151, 2016. S. Sugahara et al., 'A proposed atomic-layer-deposition of germanium on Si surface', Japanese Journal of Applied Physics, vol. 36, pp. 1609-1613, 1997. V. Le Thanh, 'Fabrication of SiGe quantum dots: a new approach based on selective growth on chemically prepared H-passivated Si(100) surfaces', Thin Solid Films, vol. 321, no. 1-2, pp. 98-105, 1998. V. Yang et al, 'Crack formation in GaAs heteroepitaxial films on Si and SiGe virtual substrates', Journal of Applied Physics, vol. 93, no. 7, pp. 3859-3865, 2003. Z. Liu, 'Virtual Ge substrates for high efficiency III-V solar cells', Unpublished doctoral dissertation, The University of New South Wales, 2014. X. Zhang et al., 'Thermal desorption of ultraviolet-ozone oxidized Ge(001) for substrate cleaning', Journal of Vacuum Science & Technology A: Vacuum Surfaces and Films, vol. 11, no. 5, pp. 2553-2561, 1993. K. Prabhakaran and T. Ogino, 'Oxidation of Ge(100) and Ge(111) surfaces: an UPS and XPS study', Surface Science, vol. 325, no. 3, pp. 263-271, 1995. R. Kaiser et al., 'Germanium substrate loss during thermal processing', Microelectronic Engineering, vol. 88, no. 4, pp. 499-502, 2011. L. de los Santos Valladares et al., 'Thermal oxidation of amorphous germanium thin films on SiO_2 substrates', Semiconductor Science and Technology, vol. 31, no. 12, p. 125017, 2016. H. Shih et al., 'Ultralow threading dislocation density in GaN epilayer on near-strain-free GaN compliant buffer layer and its applications in hetero-epitaxial LEDs', Scientific Reports, vol. 5, no. 1, p. 13671 , 2015.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85820-
dc.description.abstract  這項實驗中使用自製的電漿輔助化學氣相沉積系統,透過四氯化鍺蒸氣與氫原子之間的反應,讓單晶鍺薄膜生長在矽基板表面;為了達到高結晶品質、低雜質含量、高薄膜鍍率以及低表面粗糙度等目標,我們對生長溫度、氣體流量、射頻功率和處理步驟進行了優化。   對結晶品質而言,生長溫度是非常重要的因素,室溫生長的鍺薄膜呈現非晶態,而生長溫度在 100~600℃ 之間呈現單晶態;450℃ 時結晶品質顯著提升,600℃ 時結晶品質顯著降低,這種結晶行為推測受到四氯化鍺蒸氣與氫原子之間的反應機制所影響,和氫的脫附現象也有關聯。   而生長溫度也會影響雜質脫附,室溫生長的鍺薄膜有氯殘留,但生長溫度高於 100℃ 的情況下幾乎完全脫附,其含量低於 EDX 的檢測極限;而生長溫度低於 300℃ 的鍺薄膜有氫殘留,並在薄膜生長後或是後續退火中造成薄膜剝落,但生長溫度高於 450℃ 的情況下幾乎完全脫附,在薄膜生長後或是後續退火中皆不會發生剝落。   氣體流量、射頻功率和處理步驟皆會改變四氯化鍺蒸氣和氫原子在反應腔體中的濃度,對薄膜鍍率和表面粗糙度而言是非常重要的因素;低氣體流量或低射頻功率的情況下,鍺薄膜容易受到來自起泡器和氣體管線中水氣或氧氣的影響,導致鍺薄膜被蝕刻並造成表面粗糙化;適當生長參數下可以降低其影響,並有效降低表面粗糙度。   電漿輔助化學氣相沉積所生長的單晶鍺薄膜在維持低雜質含量(低於 EDX 的檢測極限)、高薄膜鍍率(78 nm/min)和低均方根粗糙度(0.786 nm)的情況下,線性缺陷密度約為 10^4 1/cm^2;所製造的 700 nm 鍺薄膜光偵測器之暗電流密度以及響應率為 4.2∙10^(-4) A/cm^2 和 0.08 A/W (@ 1550 nm)。zh_TW
dc.description.abstract  In this study, germanium thin films epitaxially deposited on silicon substrates by using a home-made plasma-enhanced chemical vapor deposition system (PECVD) with GeCl_4/H_2 as precursors. We optimized the growth temperature, gas flow rate, RF power, and operating procedures to achieve a impurity-free and high-quality monocrystalline germanium thin film with a low surface roughness and high deposition rate.   The growth temperature is important for the crystalline quality. For the growth temperature in range of 100~600 ℃, the germanium thin film was monocrystalline. The crystalline quality significantly improved at 450 ℃, but was reduced at 600 ℃. This behavior may be attributable to the desorption of hydrogen and the reaction mechanism between germanium tetrachloride and hydrogen atoms.   The growth temperature is also important for the the desorption of impurity. Under a growth temperature of approximately 25 ℃, chlorine was present in the germanium thin film, but no chlorine was detected for a growth temperature above 100 ℃. With a growth temperature below 300 ℃, a high hydrogen content remained in the germanium thin film, which can lead to blistering, but no blistering was detected after growth or during post growth annealing for a growth temperature above 450 ℃.   The Gas flow rate, RF power, and operating procedures can change the concentration of germanium tetrachloride vapor and hydrogen atoms in the reaction chamber, which are important for the deposition rate and surface roughness. For a low gas flow rate or low RF power, the germanium thin film can be easily etched by oxygen and water vapor which come from the bubbler and gas pipelines. This etching can cause a rough surface, but for appropriate growth parameters, a low root mean square (RMS) of surface roughness can be achieved.   For the monocrystalline germanium thin film grown by PECVD with a low impurity content (below the detection limit of energy-dispersive X-ray spectroscopy), low RMS surface roughness (0.786 nm) and high deposition rate (78 nm/min), the threading dislocation density (TDD) was approximately 10^4 1/cm^2. The Dark current density and responsivity of a 700 nm germanium thin film PIN photodetector were 4.2∙10^(-4) A/cm^2 and 0.08 A/W (@ 1550 nm).en
dc.description.provenanceMade available in DSpace on 2023-03-19T23:25:23Z (GMT). No. of bitstreams: 1
U0001-1503202217005300.pdf: 4962314 bytes, checksum: 7f69e9a5b854099e0ef695fd8f819c8d (MD5)
Previous issue date: 2022
en
dc.description.provenanceItem reinstated by admin ntu (admin@lib.ntu.edu.tw) on 2023-04-20T03:44:00Z
Item was in collections:
物理學系 (ID: a9523b2c-804d-4cb2-880b-e9e5eaf8212e)
No. of bitstreams: 1
U0001-1503202217005300.pdf: 4962314 bytes, checksum: 7f69e9a5b854099e0ef695fd8f819c8d (MD5)
en
dc.description.tableofcontents口試委員會審定書 i 中文摘要 ii ABSTRACT iii CONTENTS v LIST OF FIGURES vii LIST OF TABLES x Chapter 1 緒論 1 1.1 研究動機 1 1.2 鍺薄膜進展 2 1.3 鍺薄膜光偵測器進展 4 1.4 四氯化鍺進展 5 1.5 研究目標 5 Chapter 2 實驗細節 6 2.1 元件設計 6 2.1.1 光偵測器結構 6 2.1.2 光電二極體結構 7 2.1.3 歐姆接觸 8 2.1.4 表面鈍化 9 2.1.5 元件結構 9 2.1.6 響應率 10 2.1.7 暗電流密度 11 2.2 元件製造 12 2.2.1 矽基板清洗 12 2.2.2 離子佈植 13 2.2.3 鍺薄膜蝕刻 14 2.2.4 二氧化矽薄膜塗佈 15 2.2.5 二氧化矽薄膜蝕刻 16 2.2.6 蒸鍍電極 17 2.2.7 表面圖案化 18 2.2.8 溶液與儀器 19 2.3 主要實驗儀器 23 2.3.1 電漿輔助化學氣相沉積 (PECVD) 23 2.3.2 掃描式電子顯微鏡 (SEM) 26 2.3.3 X 光繞射儀 (XRD) 28 2.3.4 元件測量平台 30 Chapter 3 結果與討論 34 3.1 雜質含量 34 3.2 結晶品質 37 3.3 反應機制 39 3.4 薄膜鍍率 41 3.4.1 氣體流量 42 3.4.2 射頻功率 45 3.4.3 時間演化 48 3.4.4 穩態處理 51 3.4.5 簡化模型 55 3.5 表面形貌 57 3.6 線性缺陷密度 61 3.7 光偵測器 63 Chapter 4 結論 65 REFERENCE 66
dc.language.isozh-TW
dc.title以電漿輔助化學氣相沉積外延高品質鍺薄膜zh_TW
dc.titleHigh Quality Germanium Thin Film by PECVDen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.coadvisor陳賜原(Szu-Yuan Chen)
dc.contributor.oralexamcommittee林明緯(Ming-Wei Lin)
dc.subject.keyword單晶鍺薄膜,電漿輔助化學氣相沉積,四氯化鍺,低線性缺陷密度,zh_TW
dc.subject.keywordmonocrystalline germanium thin film,plasma-enhanced chemical vapor deposition,germanium tetrachloride,low threading dislocation density,en
dc.relation.page74
dc.identifier.doi10.6342/NTU202200633
dc.rights.note同意授權(全球公開)
dc.date.accepted2022-03-21
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept物理學研究所zh_TW
dc.date.embargo-lift2023-01-16-
Appears in Collections:物理學系

Files in This Item:
File SizeFormat 
U0001-1503202217005300.pdf4.85 MBAdobe PDFView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved