請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85421完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳紀聖(Chi-Sheng Wu) | |
| dc.contributor.author | Jun-Yi Wu | en |
| dc.contributor.author | 吳俊毅 | zh_TW |
| dc.date.accessioned | 2023-03-19T23:16:24Z | - |
| dc.date.copyright | 2022-08-02 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-07-20 | |
| dc.identifier.citation | 1. Houghton, J., Global warming. Reports on progress in physics 2005, 68 (6), 1343. 2. Meunier, N.; Chauvy, R.; Mouhoubi, S.; Thomas, D.; De Weireld, G., Alternative production of methanol from industrial CO2. Renewable energy 2020, 146, 1192-1203. 3. Räuchle, K.; Plass, L.; Wernicke, H. J.; Bertau, M., Methanol for renewable energy storage and utilization. Energy Technology 2016, 4 (1), 193-200. 4. Olah, G. A., Towards oil independence through renewable methanol chemistry. Angewandte Chemie International Edition 2013, 52 (1), 104-107. 5. Simon Araya, S.; Liso, V.; Cui, X.; Li, N.; Zhu, J.; Sahlin, S. L.; Jensen, S. H.; Nielsen, M. P.; Kær, S. K., A review of the methanol economy: the fuel cell route. Energies 2020, 13 (3), 596. 6. Bozzano, G.; Manenti, F., Efficient methanol synthesis: Perspectives, technologies and optimization strategies. Progress in Energy and Combustion Science 2016, 56, 71- 105. 7. Jadhav, S. G.; Vaidya, P. D.; Bhanage, B. M.; Joshi, J. B., Catalytic carbon dioxide hydrogenation to methanol: A review of recent studies. Chemical Engineering Research and Design 2014, 92 (11), 2557-2567. 8. Pastor-Pérez, L.; Baibars, F.; Le Sache, E.; Arellano-Garcia, H.; Gu, S.; Reina, T. R., CO2 valorisation via reverse water-gas shift reaction using advanced Cs doped Fe-Cu/Al2O3 catalysts. Journal of CO2 utilization 2017, 21, 423-428. 9. Samimi, F.; Karimipourfard, D.; Rahimpour, M. R., Green methanol synthesis process from carbon dioxide via reverse water gas shift reaction in a membrane reactor. Chemical Engineering Research and Design 2018, 140, 44-67. 10. Joo, O.-S.; Jung, K.-D.; Moon, I.; Rozovskii, A. Y.; Lin, G. I.; Han, S.- H.; Uhm, S.-J., Carbon dioxide hydrogenation to form methanol via a reverse-water- gas-shift reaction (the CAMERE process). Industrial & engineering chemistry research 1999, 38 (5), 1808-1812. 11. Cui, X.; Kær, S. K., Thermodynamic analyses of a moderate-temperature process of carbon dioxide hydrogenation to methanol via reverse water–gas shift with in situ water removal. Industrial & Engineering Chemistry Research 2019, 58 (24), 10559- 10569. 12. Grabow, L.; Mavrikakis, M., Mechanism of methanol synthesis on Cu through CO2 and CO hydrogenation. Acs Catalysis 2011, 1 (4), 365-384. 13. Olah, G. A., Beyond oil and gas: the methanol economy. Angewandte Chemie International Edition 2005, 44 (18), 2636-2639. 14. Alvarado, M., The changing face of the global methanol industry. IHS Chemical Bulletin 2016, 3, 10-11. 15. Behrens, M.; Schlögl, R., How to prepare a good Cu/ZnO catalyst or the role of solid state chemistry for the synthesis of nanostructured catalysts. Zeitschrift für anorganische und allgemeine Chemie 2013, 639 (15), 2683-2695. 16. Yang, X.; Meng, Q.; Ding, G.; Wang, Y.; Chen, H.; lei Zhu, Y.; Li, Y. W., Construction of novel Cu/ZnO-Al2O3 composites for furfural hydrogenation: The role of Al components. Applied Catalysis A: General 2018, 561, 78-86. 17. Narkhede, N.; Zheng, H.; Zhang, H.; Zhang, G.; Li, Z., Group 13 metal doped Cu/ZnO catalysts from phase pure precursors via an isomorphous substitution route: mechanistic insights into promotional effects for syngas hydrogenation to methanol. Catalysis Science & Technology 2020, 10 (21), 7386-7398. 18. Arena, F.; Mezzatesta, G.; Zafarana, G.; Trunfio, G.; Frusteri, F.; Spadaro, L., Effects of oxide carriers on surface functionality and process performance of the Cu–ZnO system in the synthesis of methanol via CO2 hydrogenation. Journal of catalysis 2013, 300, 141-151. 19. Toyir, J.; Miloua, R.; Elkadri, N.; Nawdali, M.; Toufik, H.; Miloua, F.; Saito, M., Sustainable process for the production of methanol from CO2 and H2 using Cu/ZnO-based multicomponent catalyst. Physics Procedia 2009, 2 (3), 1075-1079. 20. Ma, J.; Sun, N.; Zhang, X.; Zhao, N.; Xiao, F.; Wei, W.; Sun, Y., A short review of catalysis for CO2 conversion. Catalysis Today 2009, 148 (3-4), 221-231. 21. Bonura, G.; Cordaro, M.; Cannilla, C.; Arena, F.; Frusteri, F., The changing nature of the active site of Cu-Zn-Zr catalysts for the CO2 hydrogenation reaction to methanol. Applied Catalysis B: Environmental 2014, 152, 152-161. 22. Kourtelesis, M.; Kousi, K.; Kondarides, D. I., CO2 hydrogenation to methanol over La2O3-promoted CuO/ZnO/Al2O3 catalysts: a kinetic and mechanistic study. Catalysts 2020, 10 (2), 183. 23. Galván, C. Á.; Schumann, J.; Behrens, M.; Fierro, J. L. G.; Schlögl, R.; Frei, E., Reverse water-gas shift reaction at the Cu/ZnO interface: influence of the Cu/Zn ratio on structure-activity correlations. Applied Catalysis B: Environmental 2016, 195, 104-111. 24. Sun, J.; Wan, S.; Wang, F.; Lin, J.; Wang, Y., Selective synthesis of methanol and higher alcohols over Cs/Cu/ZnO/Al2O3 catalysts. Industrial & Engineering Chemistry Research 2015, 54 (32), 7841-7851. 25. Tew, M. W.; Emerich, H.; van Bokhoven, J. A., Formation and characterization of PdZn alloy: a very selective catalyst for alkyne semihydrogenation. The Journal of Physical Chemistry C 2011, 115 (17), 8457-8465. 26. Bahruji, H.; Bowker, M.; Hutchings, G.; Dimitratos, N.; Wells, P.;Gibson, E.; Jones, W.; Brookes, C.; Morgan, D.; Lalev, G., Pd/ZnO catalysts for direct CO2 hydrogenation to methanol. Journal of catalysis 2016, 343, 133-146. 27. Díez-Ramírez, J.; Valverde, J.; Sánchez, P.; Dorado, F., CO2 hydrogenation to methanol at atmospheric pressure: influence of the preparation method of Pd/ZnO catalysts. Catalysis Letters 2016, 146 (2), 373-382. 28. Kattel, S.; Liu, P.; Chen, J. G., Tuning selectivity of CO2 hydrogenation reactions at the metal/oxide interface. Journal of the American Chemical Society 2017, 139 (29), 9739-9754. 29. Goodman, E. D.; Schwalbe, J. A.; Cargnello, M., Mechanistic understanding and the rational design of sinter-resistant heterogeneous catalysts. ACS Catalysis 2017, 7 (10), 7156-7173. 30. Mutschler, R.; Moioli, E.; Luo, W.; Gallandat, N.; Züttel, A., CO2 hydrogenation reaction over pristine Fe, Co, Ni, Cu and Al2O3 supported Ru: Comparison and determination of the activation energies. Journal of catalysis 2018, 366, 139-149. 31. Wang, L.; Liu, H.; Chen, Y.; Yang, S., Reverse wateregas shift reaction over co-precipitated CoeCeO2 catalysts: Effect of Co content on selectivity and carbon formation. international journal of hydrogen energy 2017, 42 (3682), e3689. 32. Deng, L.; Ai, X.; Xie, F.; Zhou, G., Efficient Ni‐based catalysts for low‐ temperature reverse water‐gas shift (RWGS) reaction. Chemistry–An Asian Journal 2021, 16 (8), 949-958. 33. Weng, Q.; Wang, X.; Wang, X.; Bando, Y.; Golberg, D., Functionalized hexagonal boron nitride nanomaterials: emerging properties and applications. Chemical Society Reviews 2016, 45 (14), 3989-4012. 34. Shi, L.; Wang, D.; Song, W.; Shao, D.; Zhang, W. P.; Lu, A. H., Edge‐ hydroxylated boron nitride for oxidative dehydrogenation of propane to propylene. ChemCatChem 2017, 9 (10), 1788-1793. 35. Dong, J.; Fu, Q.; Li, H.; Xiao, J.; Yang, B.; Zhang, B.; Bai, Y.; Song, T.; Zhang, R.; Gao, L., Reaction-induced strong metal–support interactions between metals and inert boron nitride nanosheets. Journal of the American Chemical Society 2020, 142 (40), 17167-17174. 36. Chagoya, K. L.; Nash, D. J.; Jiang, T.; Le, D.; Alayoglu, S.; Idrees, K. B.; Zhang, X.; Farha, O. K.; Harper, J. K.; Rahman, T. S., Mechanically Enhanced Catalytic Reduction of Carbon Dioxide over Defect Hexagonal Boron Nitride. ACS Sustainable Chemistry & Engineering 2021, 9 (6), 2447-2455. 37. Li, Z.; Wei, W.; Li, H.; Li, S.; Leng, L.; Zhang, M.; Horton, J. H.; Wang, D.; Sun, W.; Guo, C., Low-temperature synthesis of single palladium atoms supported on defective hexagonal boron nitride nanosheet for chemoselectivehydrogenation of cinnamaldehyde. ACS nano 2021, 15 (6), 10175-10184. 38. Previtali, D.; Longhi, M.; Galli, F.; Di Michele, A.; Manenti, F.; Signoretto, M.; Menegazzo, F.; Pirola, C., Low pressure conversion of CO2 to methanol over Cu/Zn/Al catalysts. The effect of Mg, Ca and Sr as basic promoters. Fuel 2020, 274, 117804. 39. Meshkini, F.; Taghizadeh, M.; Bahmani, M., Investigating the effect of metal oxide additives on the properties of Cu/ZnO/Al2O3 catalysts in methanol synthesis from syngas using factorial experimental design. Fuel 2010, 89 (1), 170-175. 40. Raymond, P. S., Introduction to analytical gas chromatography. CRC press: 2017. 41. Khan, H.; Yerramilli, A. S.; D'Oliveira, A.; Alford, T. L.; Boffito, D. C.; Patience, G. S., Experimental methods in chemical engineering: X‐ray diffraction spectroscopy—XRD. The Canadian Journal of Chemical Engineering 2020, 98 (6), 1255-1266. 42. Muniz, F. T. L.; Miranda, M. R.; Morilla dos Santos, C.; Sasaki, J. M., The Scherrer equation and the dynamical theory of X-ray diffraction. Acta Crystallographica Section A: Foundations and Advances 2016, 72 (3), 385-390. 43. Mohammed, A.; Abdullah, A. In Scanning electron microscopy (SEM): A review, Proceedings of the 2018 International Conference on Hydraulics and Pneumatics— HERVEX, Băile Govora, Romania, 2018; pp 7-9. 44. Russ, J. C., Fundamentals of energy dispersive X-ray analysis: Butterworths monographs in materials. Butterworth-Heinemann: 2013. 45. Naderi, M., Surface area: brunauer–emmett–teller (BET). In Progress in filtration and separation, Elsevier: 2015; pp 585-608. 46. Chastain, J.; King Jr, R. C., Handbook of X-ray photoelectron spectroscopy. Perkin-Elmer Corporation 1992, 40, 221. 47. Yuan, Y.; Lee, T. R., Contact angle and wetting properties. In Surface science techniques, Springer: 2013; pp 3-34. 48. Behrens, M.; Studt, F.; Kasatkin, I.; Kühl, S.; Hävecker, M.; Abild- Pedersen, F.; Zander, S.; Girgsdies, F.; Kurr, P.; Kniep, B.-L., The active site of methanol synthesis over Cu/ZnO/Al2O3 industrial catalysts. Science 2012, 336 (6083), 893-897. 49. Liu, J.; Zhao, Z.; Wang, J.; Xu, C.; Duan, A.; Jiang, G.; Yang, Q., The highly active catalysts of nanometric CeO2-supported cobalt oxides for soot combustion. Applied Catalysis B: Environmental 2008, 84 (1-2), 185-195. 50. Pinilla, J.; Suelves, I.; Lázaro, M.; Moliner, R.; Palacios, J., Parametric study of the decomposition of methane using a NiCu/Al2O3 catalyst in a fluidized bed reactor. International Journal of Hydrogen Energy 2010, 35 (18), 9801-9809. 51. Tripathi, K.; Singh, R.; Pant, K. K., Tailoring the Physicochemical Properties of Mg Promoted Catalysts via One Pot Non-ionic Surfactant Assisted Co-precipitation Route for CO2 Co-feeding Syngas to Methanol. Topics in Catalysis 2021, 64 (5), 395- 413. 52. Ladera, R.; Pérez-Alonso, F. J.; González-Carballo, J. M.; Ojeda, M.; Rojas, S.; Fierro, J. L. G., Catalytic valorization of CO2 via methanol synthesis with Ga-promoted Cu–ZnO–ZrO2 catalysts. Applied Catalysis B: Environmental 2013, 142, 241-248. 53. Gao, P.; Li, F.; Zhao, N.; Xiao, F.; Wei, W.; Zhong, L.; Sun, Y., Influence of modifier (Mn, La, Ce, Zr and Y) on the performance of Cu/Zn/Al catalysts via hydrotalcite-like precursors for CO2 hydrogenation to methanol. Applied Catalysis A: General 2013, 468, 442-452. 54. Liu, Y.; Pollaor, S.; Wu, Y., Electrohydrodynamic processing of p-type transparent conducting oxides. Journal of Nanomaterials 2015, 2015. 55. Zhang, B.; Chen, Y.; Li, J.; Pippel, E.; Yang, H.; Gao, Z.; Qin, Y., High efficiency Cu-ZnO hydrogenation catalyst: the tailoring of Cu-ZnO interface sites by molecular layer deposition. ACS Catalysis 2015, 5 (9), 5567-5573. 56. Zhang, C.; Jiao, Y.; Kou, L.; Liao, T.; Du, A., Predicting multiple Dirac- cones and ultrahigh Fermi velocity in perovskite R 3 [combining macron] c phase LaCuO 3. Journal of Materials Chemistry C 2018, 6 (23), 6132-6137. 57. dos Santos, R. G.; Alencar, A. C., Biomass-derived syngas production via gasification process and its catalytic conversion into fuels by Fischer Tropsch synthesis: A review. International Journal of Hydrogen Energy 2020, 45 (36), 18114-18132. 58. Li, H.; Tian, H.; Chen, S.; Sun, Z.; Liu, T.; Liu, R.; Assabumrungrat, S.; Saupsor, J.; Mu, R.; Pei, C., Sorption enhanced steam reforming of methanol for high-purity hydrogen production over Cu-MgO/Al2O3 bifunctional catalysts. Applied Catalysis B: Environmental 2020, 276, 119052. 59. Zhang, Y.; Zhong, L.; Wang, H.; Gao, P.; Li, X.; Xiao, S.; Ding, G.; Wei, W.; Sun, Y., Catalytic performance of spray-dried Cu/ZnO/Al2O3/ZrO2 catalysts for slurry methanol synthesis from CO2 hydrogenation. Journal of CO2 Utilization 2016, 15, 72-82. 60. Carapellucci, R.; Giordano, L., Steam, dry and autothermal methane reforming for hydrogen production: a thermodynamic equilibrium analysis. Journal of Power Sources 2020, 469, 228391. 61. Martin, O.; Martín, A. J.; Mondelli, C.; Mitchell, S.; Segawa, T. F.; Hauert, R.; Drouilly, C.; Curulla‐Ferré, D.; Pérez‐Ramírez, J., Indium oxide as a superior catalyst for methanol synthesis by CO2 hydrogenation. Angewandte Chemie International Edition 2016, 55 (21), 6261-6265. 62. Li, L.; Mao, D.; Yu, J.; Guo, X., Highly selective hydrogenation of CO2 to methanol over CuO–ZnO–ZrO2 catalysts prepared by a surfactant-assisted co- precipitation method. Journal of Power Sources 2015, 279, 394-404. 63. Larmier, K.; Liao, W. C.; Tada, S.; Lam, E.; Verel, R.; Bansode, A.; Urakawa, A.; Comas‐Vives, A.; Copéret, C., CO2‐to‐methanol hydrogenation on zirconia‐supported copper nanoparticles: reaction intermediates and the role of the metal–support interface. Angewandte Chemie International Edition 2017, 56 (9), 2318- 2323. 64. Sun, K.; Fan, Z.; Ye, J.; Yan, J.; Ge, Q.; Li, Y.; He, W.; Yang, W.; Liu, C.-j., Hydrogenation of CO2 to methanol over In2O3 catalyst. Journal of CO2 Utilization 2015, 12, 1-6. 65. Studt, F.; Sharafutdinov, I.; Abild-Pedersen, F.; Elkjær, C. F.; Hummelshøj, J. S.; Dahl, S.; Chorkendorff, I.; Nørskov, J. K., Discovery of a Ni-Ga catalyst for carbon dioxide reduction to methanol. Nature chemistry 2014, 6 (4), 320-324. 66. Zhan, H.; Li, F.; Xin, C.; Zhao, N.; Xiao, F.; Wei, W.; Sun, Y., Performance of the La–Mn–Zn–Cu–O based perovskite precursors for methanol synthesis from CO2 hydrogenation. Catalysis Letters 2015, 145 (5), 1177-1185. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85421 | - |
| dc.description.abstract | 本研究旨在探討以銅鋅觸媒進行二氧化碳氫化反應產甲醇,並比較一階段反應器與兩階段反應器之優劣。為了改善全球暖化與氣候變遷之問題,氫能被視為綠色能源以防止額外之二氧化碳排放,然而氫能之低體積能源密度使其不易輸送與儲存之問題,近年來許多專家建議將過多之氫能轉換為能源載體,以解決氫能輸送及儲存之不便性,其中甲醇被視為最佳之能源載體之一,原因為甲醇具備高能源密度且為眾多化學品之反應物。 本研究針對二氧化碳氫化產甲醇反應之現行工業兩大問題進行改善,一為低觸媒效率,二為工業過高之操作壓力。在觸媒方面,吾人以不同促進劑、銅鋅莫耳數比、混摻金屬合成銅鋅觸媒,並發現以3 mol %Mg 混摻於元素莫耳比率Cu : Zn : Ga = 6 : 3 : 1之Cu/ZnO/Ga2O3在230 ̊C及4 bar能達到2.10 %之甲醇產率及 164 mg MeOH/gcat h之時空產率,其觸媒效率為傳統商用觸媒之六倍之多。此外,吾人設計新型疏水性觸媒以銅鋅鋁鑭含浸於h-BN上以合成 20 wt%CZALa/hBN,其高度疏水性觸媒表面使甲醇選擇率相較於商用觸媒有大量之提升。最後使用 XRD、SEM、XPS、EDS、H2-TPR、CO2-TPD、接觸角分析以解釋觸媒活性。 最後本研究比較一階段反應器及兩階段反應器系統應用於二氧化碳氫化產甲醇反應,由實驗結果發現本研究中之所有觸媒皆在一階段反應器中有較高之甲醇產率,其原因透過二氧化碳氫化反應與一氧化碳氫化反應比較後,得出在低壓下甲醇之生成主要藉由二氧化碳氫化反應而非一氧化碳氫化反應,因此對於以一氧 化碳氫化反應為主之兩階段反應器來說,並不有利於甲醇之生成。此外,吾人以不同氣體流速、氫氣濃度、壓力比較二氧化碳氫化及一氧化碳氫化反應之效應, 最終判斷在0 - 4 bar之低壓環境下二氧化碳氫化活性約為一氧化碳氫化活性之10倍,證實在低壓下進行二氧化碳氫化產甲醇須以一階段反應器為最佳選擇。 | zh_TW |
| dc.description.abstract | This research focus on the carbon dioxide hydrogenation to methanol using Cu/ZnO based catalysts in one-stage and two-stage packed bed reactors systems. Respecting to deal with global warming and climate change, hydrogen is regarded as green energy to avoid carbon dioxide emission, however hydrogen is difficult to transport and store due to low density by volume. Nowadays some of researchers suggest transfer hydrogen energy to energy vectors to easily store excessive energy. Methanol is one of the best energy vectors based on high energy density and raw material. In this study, we investigated carbon dioxide hydrogenation to methanol reaction, and tried to solve two kinds of problems we faced in the industry, one is low catalytic efficiency of commercial catalysts, the other is high operated pressure. For the catalyst side, we compared with different promoters, Cu : Zn molar ratio, different dopants, and found that using 3 mol % Mg as dopant synthesized Cu/ZnO/Ga2O3 with molar ratio Cu : Zn : Ga = 6 : 3 : 1 could get 2.10 % methanol yield and reach 164 mg MeOH/gcat h of STY at 230 ˚C and 4 bar , which was six times higher than commercial Cu/ZnO catalysts. Furthermore, we designed the new hydrophobic catalysts using Cu, Zn, Al, La loading on h-BN, 20 wt%CZALa/hBN showed higher methanol selectivity due to hydrophobic surface. The instruments XRD, SEM, XPS, EDS, H2-TPR, CO2-TPD, contact angle were applied to measure the characteristics of catalysts, and to explain the results of activity tests. Last but not least, we compared with one-stage reactor and two-stage reactors system, the results showed that all of the catalysts in this study got higher methanol yield in one-stage reactor, indicating that methanol would be synthesized by CO2 hydrogenation not CO hydrogenation. In addition, we investigated CO hydrogenation and CO2 hydrogenation with different overall flow rate, H2 concentration and pressure. The result showed that the methanol yield for CO2 hydrogenation was ten times larger than CO hydrogenation under 0 – 4 bar, which proved that one-stage reactor is the better choice to operate CO2 hydrogenation to methanol reaction under low pressure condition. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T23:16:24Z (GMT). No. of bitstreams: 1 U0001-1907202223211900.pdf: 25458559 bytes, checksum: fd593a7bc3a33963a45d24bfd02b1b40 (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | CONTENTS 口試委員會審定書 ................................................................................. # 致謝 ............................................................................................................ i 中文摘要 ................................................................................................... ii ABSTRACT ............................................................................................ iii CONTENTS ..............................................................................................v LIST OF FIGURES................................................................................ ix LIST OF TABLES ................................................................................ xvi 第 1 章 緒論...........................................................................................1 第2章 文獻回顧...................................................................................3 2.1. 甲醇.............................................................................................3 2.1.1. 甲醇經濟....................................................................................................3 2.1.2. 工業甲醇製程............................................................................................4 2.2. 二氧化碳氫化反應........................................................................................7 2.2.1. 二氧化碳氫化產甲醇................................................................................7 2.2.2. 逆水合氣反應(RWGS) ........................................................................8 2.2.3. CAMERE 反應..........................................................................................9 2.2.4. CO 與 CO2 氫化反應之影響因子 ..........................................................11 2.2.5. 工業化發展.............................................................................................. 12 2.3. 二氧化碳氫化產甲醇觸媒..........................................................................14 2.3.1. Cu/ZnO/Al2O3..........................................................................................14 2.3.1.1. Cu/ZnO/Al2O3 介紹 .........................................................................14 2.3.1.2. Cu/ZnO/Al2O3 合成 .........................................................................15 2.3.1.3. Cu/ZnO/Al2O3 改質 .........................................................................16 2.3.2. Pd/ZnO.....................................................................................................20 2.3.2.1.Pd/ZnO 介紹....................................................................................20 2.3.2.2.Pd/ZnO 的合成................................................................................21 2.3.2.3.Pd/ZnO 的合成變因........................................................................22 2.4. 逆水合氣觸媒..............................................................................................24 2.4.1. 逆水合氣觸媒概述..................................................................................24 2.4.2. 逆水合氣觸媒合成..................................................................................26 2.5. 六方氮化硼(H-BN) ................................................................................29 2.5.1. 六方氮化硼之介紹..................................................................................29 2.5.2. 六方氮化硼觸媒應用..............................................................................30 第3章 實驗方法 .................................................................................32 3.1. 化學藥品與儀器設備介紹..........................................................................32 3.1.1. 藥品..........................................................................................................32 3.1.2. 氣體..........................................................................................................34 3.1.3. 儀器設備..................................................................................................34 3.2. 觸媒製備......................................................................................................36 3.2.1. 二氧化碳氫化產甲醇觸媒製備..............................................................36 3.2.1.1. 銅鋅觸媒之製備..............................................................................36 3.2.1.2. Pd/ZnO 觸媒之製備........................................................................38 3.2.2. 逆水合氣觸媒製備..................................................................................38 3.2.2.1. 2% Co/CeO2.....................................................................................39 3.2.2.2. NiCu/Al2O3 ......................................................................................40 3.2.2.3. FeCuCs/Al2O3 ..................................................................................41 3.2.3. 疏水性觸媒製備......................................................................................42 3.3. 氣相層析法(GAS CHROMATOGRAPHY) ..................................................44 3.4. 觸媒分析原理..............................................................................................47 3.4.1. X 光繞射儀(X-Ray Diffraction, XRD)..............................................47 3.4.2. 場發射掃描式電子顯微鏡(Field Emission Scanning Electron Microscope).......................................................................................................49 3.4.3. 能量散佈光譜儀(Energy Dispersive Spectrometer, EDS) ................50 3.4.4. 比表面積與孔洞分佈測量儀(BET Surface Area Analyzers) ...........52 3.4.5. 化學吸附儀(Chemisorption Analyzers).............................................53 3.4.6. X 光光電子能譜儀(X-ray Photoelectron Spectroscope, XPS) .........54 3.4.7. 接觸角儀(Contact Angle System)......................................................55 3.5. 氣體進樣流量校正......................................................................................56 3.6. 氣相檢量線製作..........................................................................................59 3.6.1. 甲醇檢量線..............................................................................................59 3.6.2. 一氧化碳檢量線......................................................................................60 3.6.3. 二氧化碳檢量線......................................................................................61 3.6.4. 甲烷檢量線..............................................................................................62 3.6.5. 氫氣檢量線..............................................................................................63 3.7. 反應裝置......................................................................................................64 3.7.1. 一階段反應器..........................................................................................64 3.7.2. 兩階段反應器..........................................................................................66 第4章 觸媒性質分析與討論 .............................................................70 4.1. XRD 結晶繞射分析 ....................................................................................70 4.2. 場發射掃描式電子顯微分析......................................................................80 4.3. 能量散佈光譜分析......................................................................................84 4.4. BET 比表面積分析 .....................................................................................90 4.5. H2 – TPR & CO2 – TPD 分析.......................................................................92 4.6. X 光光電子能譜分析..................................................................................100 4.7. 接觸角分析................................................................................................107 第 5 章 反應結果與討論...................................................................108 5.1. 逆水合氣反應........................................................................................108 5.1.1. Commercial Cu/ZnO/Al2O3 ...................................................................108 5.1.2. NiCu/Al2O3 ............................................................................................109 5.1.3. 2% Co/CeO2...........................................................................................110 5.1.4. FeCuCs/Al2O3 ........................................................................................ 111 5.2. 二氧化碳氫化產甲醇反應(一階段反應器)........................................ 113 5.2.1. 不同活性金屬之觸媒............................................................................ 113 5.2.2. Cu/ZnO 之觸媒修飾 ............................................................................. 116 5.2.3. 疏水性觸媒............................................................................................124 5.3. CAMERE PROCESS(兩階段反應器)....................................................130 5.4. 壓力、流速、氫氣濃度對氫化反應之影響............................................135 5.5. 文獻比較....................................................................................................147 第 6 章 結論.......................................................................................148 個人小傳 ................................................................................................149 References .............................................................................................150 LIST OF FIGURES Figure 2-1. The methanol economy5..............................................................................4 Figure 2-2. Methanol from fossil fuel resources6 ..........................................................5 Figure 2-3. ICI low pressure converter6.........................................................................5 Figure 2-4. Lurgi isothermal methanol converter6.........................................................6 Figure 2-5. Diagram of CAMERE process10 .................................................................10 Figure 2-6. Schemes of (a) CAMERE process and (b) modular approach for in situ water removal11 ..............................................................................................................10 Figure 2-7. The simulation results of CO and CO2 hydrogenation to methanol P = 75atm, T = 528K. (a) (CO + CO2)/H2 = 20/80, (b) (CO + CO2)/H2/H2O = 20/75/5, (c) (CO + CO2)/H2 = 50/50, and (d) (CO + CO2)/H2 = 5/9512 ..........................................12 Figure 2-8. World methanol demand by region14 ........................................................13 Figure 2-9. Dependence of catalyst activity in co-precipitation method15 ..................15 Figure 2-10. (a) methanol yield (b) conversion and (c) stability of using Al2O3, Ga2O3 and In2O3 as Cu/ZnO catalyst promoter17 ....................................................................16 Figure 2-11. Influence of surface area (SA) on dispersion (DCu) and metal surface area (MSA) of catalyst18 ......................................................................................................17 Figure 2-12. CO2 temperature – programmed - desorption (TPD) profiles obtained from CZA - Lax catalysts: (a) x = 0; (b) x = 50; (c) x = 10022 ....................................18 Figure 2-13. Crystallite sizes of CuO and ZnO as a function of Cu content and the BET-SA23 .....................................................................................................................19 Figure 2-14. In situ XRD patterns of the Pd/ZnO after reduction.(▼)PdZn, (∎)ZnO (a) calcined, (b) 100 ̊C, (c) 250 ̊C, (d) 300 ̊C, and (e) 350 ̊C..................................21 Figure 2-15. CO2 conversion and methanol yield relationship with Pd/ZnO diameter prepared by sol immobilization method26....................................................................22 Figure 2-16. Methanol yield, CO yield and methane yield of Pd/ZnO catalyst with different reduction temperature27 .................................................................................23 Figure 2-17. Possible reaction pathways of CO2 hydrogenation to CO, CH3OH, and CH4. *(X) indicates adsorbed species28.......................................................................25 Figure 2-18. CO2 conversion, selectivity and carbon deposition for CeO2 and Co/CeO2 catalysts31......................................................................................................26 Figure 2-19. CO2 conversion and CO selectivity of NiCu-400 compared to commercial Cu/Zn/Al2O3 and FeCrCuOx.(Reaction conditions: atmospheric pressure, WHSV=60,000 mL/g/h, CO2:H2 ratio=1:4)32..............................................................27 Figure 2-20. CO selectivity and complimentary CH4 selectivity for Fe/Al2O3, Fe- Cu/Al2O3, Fe-Cs/Al2O3 and Fe-Cu-Cs/Al2O38.............................................................28 Figure 2-21. The catalytic performances of Ni/Al2O3 for DRM35 ...............................30 Figure 2-22. Four model structures of defeated h-BN considered as binding sites for CO236 ............................................................................................................................31 Figure 3-1. Process of synthesis for Cu-ZnO based catalysts......................................36 Figure 3-2. Process of synthesis for Pd/ZnO catalysts ................................................38 Figure 3-3. Process of synthesis for 2% Co/CeO2 .......................................................39 Figure 3-4. Process of synthesis for NiCu/Al2O3.........................................................40 Figure 3-5. Process of synthesis for FeCuCs/Al2O3 ....................................................41 Figure 3-6. Process of synthesis for CZA/h-BN..........................................................43 Figure 3-7. Process of synthesis for PdZn/h-BN .........................................................43 Figure 3-8. Schematic view of the flame ionization detector40 ...................................45 Figure 3-9. High pressure six-ways valve....................................................................46 Figure 3-10. One-stage crystal XRD reflections41 .......................................................48 Figure 3-11. Schematic of scanning electron microscope(SEM)43..............................50 Figure 3-12. Principle of generation of characteristic X-rays in EDS44 ......................51 Figure 3-13. Illustration of contact angles formed by sessile liquid drops on a smooth homogeneous solid surface47 .......................................................................................55 Figure 3-14. Rotameter calibration line of He.............................................................57 Figure 3-15. Rotameter calibration line of H2 .............................................................57 Figure 3-16. Rotameter calibration line of CO2...........................................................58 Figure 3-17. Calibration line of methanol from GC-FID ............................................59 Figure 3-18. Calibration line of CO from GC-TCD ....................................................60 Figure 3-19. Calibration line of CO2 for GC-TCD......................................................61 Figure 3-20. Calibration line of CH4 from GC-FID ....................................................62 Figure 3-21. Calibration line of H2 from GC-TCD......................................................63 Figure 3-22. Experiment setup of one-stage reactor....................................................64 Figure 3-23. Experimental procedures of one-stage reactor........................................65 Figure 3-24. Experiment setup of twin reactors for CAMERE process ......................66 Figure 3-25. Experiment procedures of CAMERE process.........................................67 Figure 4-1. XRD patterns of commercial Cu/ZnO/Al2O3. (a) fresh; (b) used .............71 Figure 4-2. XRD patterns of 2 % Co/CeO2. (a) fresh; (b) used...................................72 Figure 4-3. XRD patterns of NiCu/Al2O3. (a) fresh; (b) used .....................................73 Figure 4-4. XRD patterns of FeCuCs/Al2O3. (a) fresh; (b) reduced; (c) used.............74 Figure 4-5. XRD patterns of Cu/ZnO/Al2O3. (a) fresh; (b) used.................................74 Figure 4-6. XRD patterns of Pd/ZnO. (a) fresh; (b) used ............................................75 Figure 4-7. XRD patterns of CZA with different molar ratio. (a) calcined; (b) used ..75 Figure 4-8. XRD of Cu/ZnO with different promoters. (a) calcined; (b) reduced; (c) used ..............................................................................................................................76 Figure 4-9. XRD of CZGa with different dopants. (a) calcined; (b) used ...................77 Figure 4-10. XRD patterns of (a) CZA/hBN with different metal loading; (b)20CZA/hBN with different promoters.........................................................................77 Figure 4-11. The SEM images of Cu/ZnO/Al2O3. (a) calcined; (b) reduced...............80 Figure 4-12. The SEM images of (a) CZCe; (b) CZGa; (c) CZLa; (d) CZZr..............81 Figure 4-13. The SEM images of 3Mg-CZGa catalyst. (a) 10000 x; (b) 50000 x.......82 Figure 4-14. The SEM images of Pd/ZnO. (a, b) calcined; (c, d) reduced ..................82 Figure 4-15. The SEM images of (a) h-BN; (b, c) calcined 20 wt%-CuZnAl/h-BN...82 Figure 4-16. The SEM images of (a, b) calcined 20 wt%-CuZnAlLa/h-BN; (c) reduced 20 wt%-CuZnAlLa/h-BN...............................................................................83 Figure 4-17. EDS of Cu/ZnO/Al2O3. (a) calcined; (b) reduced...................................85 Figure 4-18. EDS of (a) CZCe; (b) CZLa....................................................................86 Figure 4-19. EDS of (a) CZGa; (b) CZZr ....................................................................86 Figure 4-20. EDS of 3Mg-CZGa .................................................................................87 Figure 4-21. EDS of Pd/ZnO. (a) calcined; (b) reduced..............................................87 Figure 4-22. EDS of (a) h-BN; (b) 20CZA/h-BN........................................................88 Figure 4-23. EDS of 20CZALa/h-BN. (a) calcined; (b) reduced ................................89 Figure 4-24. H2-TPR of (a) commercial Cu/ZnO/Al2O3; (b) NiCu/Al2O3; (c) 2 % Co/CeO2; (d) FeCuCs/Al2O3. (Condition: 5 ̊C/min up to 700 ̊C.) ............................93 Figure 4-25. CO2-TPD of (a) commercial Cu/ZnO/Al2O3; (b) NiCu/Al2O3; (c) 2 % Co/CeO2; (d) FeCuCs/Al2O3. (Condition: 10 ̊C/min up to 700 ̊C.) ..........................94 Figure 4-26. H2-TPR of (a) CZA; (b) CZGa; (c) CZZr; (d) CZLa; (e)CZCe; (f) 3Mg-CZGa............................................................................................................................97 Figure 4-27. Summary of chemisorption results for CZM catalysts (a) H2-TPR; (b) CO2-TPD; (c) CO2-TPD of CZGa and 3Mg-CZGa.....................................................98 Figure 4-28. Chemisorption between 20 wt%CZA/h-BN and 20 wt%CZALa/h-BN. (a) H2-TPR; (b) CO2-TPD............................................................................................99 Figure 4-29. Chemisorption for Pd/ZnO. (a) H2-TPR; (b) CO2-TPD..........................99 Figure 4-30. Survey scan of XPS pattern for CZA, CZGa, CZZr ...............................100 Figure 4-31. XPS analysis. (a) Cu 2p, (b) Zn 2p for CZA; (c) Cu 2p, (d) Zn 2p for CZGa; (e) Cu 2p, (f) Zn 2p for CZZr.........................................................................102 Figure 4-32. XPS analysis. (a) O 1s, (b) Al 2p for CZA; (c) O 1s, (d) Ga 2p for CZGa; (e) O 1s, (f) Zr 3d for CZZr .......................................................................................103 Figure 4-33. XPS analysis. (a) Survey scan for 20CZA/hBN and 20CZALa/hBN; (b) La 3d for 20CZALa/hBN...........................................................................................104 Figure 4-34. XPS analysis for 20CZA/hBN of (a) B 1s, (c) N 1s, (e) O 1s; 20CZALa/hBN of (b) B 1s, (d) N 1s, (f) O 1s...........................................................105 Figure 4-35. XPS analysis for 20CZA/hBN of (a) Cu 2p, (c) Zn 2p, (e) Al 2p; 20CZALa/hBN of (b) Cu 2p, (d) Zn 2p, (f) Al 2p .....................................................106 Figure 4-36. Contact angles measurements of (a) Cu/ZnO/Al2O3; (b) 20CZALa/hBN; (c) h-BN .....................................................................................................................107 Figure 5-1. Summary of best catalytic performances for RWGS between different catalysts. (commercial, NiCu/Al2O3 at 400 ̊C; 2%Co/CeO2 at 450 ̊C; FeCuCs/Al2O3 at 500 ̊C) ...................................................................................................................113 Figure 5-2. Methanol selectivity and CO2 conversion between different types of catalysts ...................................................................................................................... 114 Figure 5-3. Methanol yield between different types of catalysts...............................115 Figure 5-4. Best catalytic performances between different types of catalysts...........115 Figure 5-5. Catalytic performances for different metal molar ratio of catalysts at 230 ̊C................................................................................................................................ 117 Figure 5-6. Catalytic performances for different promoters of CZM at 230 ̊C........119 Figure 5-7. The relationship between BET surface area and CO2 conversion ..........119 Figure 5-8. The relationship between Basicity and CO2 conversion ......................... 120 Figure 5-9. Catalytic performances for different promoters of CZAM catalysts at 230 ̊C. where M = A(Al2O3), Ga(Ga2O3), Zr( ZrO2), La(La2O3), Ce(CeO2)...................122 Figure 5-10. Catalytic performances of CZGa, 3Mg-CZGa, 3Mn-CZGa .................124 Figure 5-11. Catalytic performances of 10 wt%PdZn/h-BN and 10 wt%CuZnAl/h-BN (Reaction condition: 250 ̊C, atmospheric pressure)..................................................125 Figure 5-12. Catalytic performances between CZA/h-BN catalysts with different total metal loading. (Reaction conditions: 250 ̊C, atmospheric pressure) ........................128 Figure 5-13. Catalytic performances between 20CZA/h-BN catalysts with different promoters. (Reaction conditions: 240 ̊C, atmospheric pressure)..............................129 Figure 5-14. Catalytic performances for CAMERE process with different desiccants. (a) CO2 conversion; (b) methanol yield .....................................................................131 Figure 5-15. CO, CO/CO2, CO2 hydrogenation for (a) Pd/ZnO; (b) CZGa; (c) 20CZALa/hBN. (CO: 10 mL/min CO; CO/CO2: 5 mL/min CO and 5 mL/min CO2; CO2: 10 mL/min CO2) ...............................................................................................135 Figure 5-16. Catalytic performances with different overall flow rate for CO2 hydrogenation ............................................................................................................136 Figure 5-17. Catalytic performances with different overall flow rate for CO hydrogenation. ...........................................................................................................137 Figure 5-18. Catalytic performances with different H2 concentration. (a) CO2 hydrogenation; (b) CO hydrogenation .......................................................................138 Figure 5-19. Methanol selectivity between different catalysts for CO2 hydrogenation under 0 - 4 bar, 230 ̊C ...............................................................................................140 Figure 5-20. Methanol selectivity between different catalysts for CO hydrogenation under 0 - 4 bar, 230 ̊C ...............................................................................................141 Figure 5-21. CO2 conversion between different catalysts for CO2 hydrogenation under 0 – 4 bar, 230 ̊C.........................................................................................................142 Figure 5-22. CO conversion between different catalysts for CO hydrogenation under....................................................................................................................................143 Figure 5-23. Methanol yield between different catalysts for CO2 hydrogenation under 0 – 4 bar, 230 ̊C.........................................................................................................144 Figure 5-24. Methanol yield between different catalysts for CO hydrogenation under 0 – 4 bar, 230 ̊C.........................................................................................................145 Figure 5-25. The 3D pattern of methanol yield, CO2 conversion and methanol selectivity between different catalysts .......................................................................146 LIST OF TABLES Table 2-1. Maximal CO2 conversion, product yields and selectivity on Fe, Co, Ni, Cu catalyst. *CO2 conversion over Cu is similar to empty reactor30...........................25 Table 4-1. Crystallite size between different Cu/ZnO based catalysts after reduction at 350 ̊C for 1 hour......................................................................................................78 Table 4-2. Crystallite size between different Cu/ZnO based catalysts after reaction..79 Table 4-3. Crystallite size between different Cu/ZnO/Ga2O3 catalysts after reaction......................................................................................................................................79 Table 4-4. BET surface area of CZ-based catalysts with different promoters..........90 Table 4-5. BET surface area of Cu/ZnO/Al2O3 with different promoters.................91 Table 4-6. BET surface area of Cu/ZnO/Al2O3 and Pd/ZnO ....................................91 Table 4-7. BET surface area of hydrophobic catalysts .............................................92 Table 4-8. Center of reduction peaks and their contributions to the TPR pattern over Cu/ZnO based catalysts................................................................................................97 Table 4-9. Total number of basic sites on CZM catalysts.........................................98 Table 5-1. Catalytic performances of commercial Cu/ZnO/Al2O3 in average for RWGS. (Reaction condition: H2: 40 mL/min, CO2: 10 mL/min, atmospheric pressure) ....................................................................................................................................109 Table 5-2. Catalytic performances of NiCu/Al2O3 in average for RWGS.(Reaction condition: H2: 40 mL/min, CO2: 10 mL/min, atmospheric pressure) .......110 Table 5-3. Catalytic performances of 2% Co/CeO2 in average for RWGS. (Reaction condition: H2: 40 mL/min, CO2: 10 mL/min, atmospheric pressure) .......111 Table 5-4. Catalytic performances of FeCuCs/Al2O3 in average for RWGS. (Reaction condition: H2: 40 mL/min, CO2: 10 mL/min, atmospheric pressure) ....... 112 Table 5-5. Comparison between hydrophilic and hydrophobic catalysts for catalytic performances. (Reaction conditions: 250 ̊C, atmospheric pressure) ........................126 Table 5-6. Catalytic performances between one-stage reactor and two-stage reactors. ...................................................................................................................................132 Table 5-7. Summary of catalytic performances in this study and literatures..........147 | |
| dc.language.iso | zh-TW | |
| dc.subject | 氫 | zh_TW |
| dc.subject | 銅鋅觸媒 | zh_TW |
| dc.subject | 二氧化碳氫化 | zh_TW |
| dc.subject | 六方氮化硼 | zh_TW |
| dc.subject | 甲醇 | zh_TW |
| dc.subject | h-BN | en |
| dc.subject | methanol | en |
| dc.subject | H2 | en |
| dc.subject | Cu/ZnO catalyst | en |
| dc.subject | CO2 hydrogenation | en |
| dc.title | 探討以銅鋅觸媒進行二氧化碳氫化產甲醇於一階段反應器及兩階段反應器中之優劣 | zh_TW |
| dc.title | Hydrogenation of Carbon Dioxide to Methanol by Copper – Zinc Oxides Catalysts and Performance Comparison between One-Stage Reactor and Two-Stage Reactors | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 雷敏宏(Min-Hong Rei),林昇佃(Shawn-D Lin) | |
| dc.subject.keyword | 二氧化碳氫化,甲醇,氫,銅鋅觸媒,六方氮化硼, | zh_TW |
| dc.subject.keyword | CO2 hydrogenation,methanol,H2,Cu/ZnO catalyst,h-BN, | en |
| dc.relation.page | 155 | |
| dc.identifier.doi | 10.6342/NTU202201559 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2022-07-20 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
| dc.date.embargo-lift | 2022-08-02 | - |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1907202223211900.pdf | 24.86 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
