請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85409完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 劉建豪(Chien-Hao Liu) | |
| dc.contributor.author | Sheng-Yu Ho | en |
| dc.contributor.author | 何昇祐 | zh_TW |
| dc.date.accessioned | 2023-03-19T23:16:15Z | - |
| dc.date.copyright | 2022-08-05 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-07-21 | |
| dc.identifier.citation | [1] Ardekani, “Stability Analysis of Adaptation Process in FxLMS-based Active Noise Control,” Phd thesis, The University of Auckland, New Zealand.,2012. [2] J.-F. Allard and N. Atalla. Propagation of sound in porous media: modelling sound absorbing materials, Hoboken, N.J :Wiley, 2009. [3] F. Fahy and P. Gardonio. Sound and structural vibration: radiation, transmission and response. Amsterdam , Boston: Elsevier/Academic, 2007. [4] J. Arenas and M. Crocker, “Recent Trends in Porous Sound-Absorbing Materials,” Sound Vib., vol. 44, pp. 12–17, Jul. 2010. [5] L. Cao, Q. Fu, Y. Si, B. Ding, and J. Yu, “Porous materials for sound absorption,” Composites Communications, vol. 10, pp. 25–35, Dec. 2018. [6] T. J. Cox and P. D’Antonio. Acoustic absorbers and diffusers: theory, design and application, 2nd ed. London ; New York: Taylor & Francis, 2009. [7] F. Fahy and P. Gardonio. Sound and structural vibration: radiation, transmission and response, 2nd ed. Amsterdam; Boston: Elsevier/Academic, 2007. [8] M. Prascevic, D. Cvetkovic, and D. Mihajlov, “Comparasion of prediction and measurement methods for sound insulation of lightweight partitions,” Architecture and Civil Engineering., vol 10, no 2, 2012, pp. 155 - 167 [9] B. B. Bauer, E. L. Torick, and R. G. Allen, “The measurement of loudness level,” J. Acoust. Soc. Am., vol. 50, no. 2A, pp. 405–414, 1971. [10] K. H. Sun, J. E. Kim, J. Kim, and K. Song, “Sound energy harvesting using a doubly coiled-up acoustic metamaterial cavity,” Smart Mater. Struct., vol. 26, no. 7, p. 075011, Jun. 2017. [11] K. Song et al., “Sound Pressure Level Gain in an Acoustic Metamaterial Cavity,” Sci. Rep., vol. 4, p. 7421, Dec. 2014. [12] K. Song, S.-H. Lee, K. Kim, S. Hur, and J. Kim, “Emission enhancement of sound emitters using an acoustic metamaterial cavity,” Sci Rep., vol. 4, no. 1, p. 4165, May 2015. [13] Y. Tang et al., “Hybrid acoustic metamaterial as super absorber for broadband low-frequency sound,” Sci Rep., vol. 7, no. 1, Art. no. 1, Feb. 2017. [14] D. C. Brooke, O. Umnova, P. Leclaire, and T. Dupont, “Acoustic metamaterial for low frequency sound absorption in linear and nonlinear regimes,” J. Sound Vib., vol. 485, p. 115585, Oct. 2020. [15] Y. Song, J. Wen, H. Tian, X. Lu, Z. Li, and L. Feng, “Vibration and sound properties of metamaterial sandwich panels with periodically attached resonators: Simulation and experiment study,” J. Sound Vib., vol. 489, p. 115644, Dec. 2020. [16] Q. Xu, J. Qiao, J. Sun, G. Zhang, and L. Li, “A tunable massless membrane metamaterial for perfect and low-frequency sound absorption,” J. Sound Vib., vol. 493, p. 115823, Feb. 2021. [17] X. Tian, W. Chen, R. Gao, and S. Liu, “Merging bragg and local resonance Bandgaps in perforated Elastic Metamaterials with Embedded Spiral Holes,” J. Sound Vib., vol. 500, p. 116036, May 2021. [18] J. Deng, O. Guasch, L. Maxit, and N. Gao, “A metamaterial consisting of an acoustic black hole plate with local resonators for broadband vibration reduction,” J. Sound Vib., vol. 526, p. 116803, May 2022. [19] F. Wu, Y. Xiao, D. Yu, H. Zhao, Y. Wang, and J. Wen, “Low-frequency sound absorption of hybrid absorber based on micro-perforated panel and coiled-up channels,” Appl. Phys. Lett., vol. 114, no. 15, p. 151901, Apr. 2019. [20] H. Danawe and S. Tol, “Experimental realization of negative refraction and subwavelength imaging for flexural waves in phononic crystal plates,” J. Sound Vib., vol. 518, p. 116552, Feb. 2022. [21] S. Tol, F. L. Degertekin, and A. Erturk, “3D-printed phononic crystal lens for elastic wave focusing and energy harvesting,” Addit Manuf, vol. 29, p. 100780, Oct. 2019. [22] R. L. Harne and D. T. Lynd, “Origami acoustics: using principles of folding structural acoustics for simple and large focusing of sound energy,” Smart Mater. Struct, vol. 25, no. 8, p. 085031, Jul. 2016. [23] P. Zhang et al., “Generation of acoustic self-bending and bottle beams by phase engineering,” Nat. Commun., vol. 5, no. 1, Art. no. 1, Jul. 2014. [24] A.-C. Hladky-Hennion, C. Croenne, J. O. Vasseur, L. Haumesser, and A. N. Norris, “Focusing capability of a phononic crystal based on a hollow metallic structure,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 61, no. 8, pp. 1314–1321, Aug. 2014. [25] J. H. Oh, H. M. Seung, and Y. Y. Kim, “Doubly negative isotropic elastic metamaterial for sub-wavelength focusing: Design and realization,” J. Sound Vib., vol. 410, pp. 169–186, Dec. 2017. [26] Y. Ge, X. Liu, and G. Hu, “Design of elliptical underwater acoustic cloak with truss-latticed pentamode materials,” Theoretical and Applied Mechanics Letters, p. 100346, May 2022. [27] B.-I. Popa, L. Zigoneanu, and S. A. Cummer, “Experimental acoustic ground cloak in air,” Phys. Rev. Lett, vol. 106, no. 25, p. 253901, Jun. 2011. [28] L. Ning, Y.-Z. Wang, and Y.-S. Wang, “Broadband square cloak in elastic wave metamaterial plate with active control,” J. Acoust. Soc. Am., vol. 150, no. 6, pp. 4343–4352, Dec. 2021. [29] Y. Ge, X. Liu, and G. Hu, “Design of elliptical underwater acoustic cloak with truss-latticed pentamode materials,” Theoretical and Applied Mechanics Letters, p. 100346, May 2022. [30] Z. Liu et al., “Locally Resonant Sonic Materials,” Science, vol. 289, no. 5485, pp. 1734–1736, Sep. 2003. [31] T. Y. Huang, C. Shen, and Y. Jun “Membrane- and plate-type acoustic metamaterials: J. Acoust. Soc. Am., vol 139 , pp. 3240–3250, 2016. [32] F. Langfeldt and W. Gleine, “Membrane- and plate-type acoustic metamaterials with elastic unit cell edges,” J. Sound Vib., vol. 453, pp. 65–86, Aug. 2019. [33] Z. Yang, J. Mei, M. Yang, N. H. Chan, and P. Sheng, “Membrane-Type Acoustic Metamaterial with Negative Dynamic Mass,” Phys. Rev. Lett., vol. 101, no. 20, p. 204301, Nov. 2008. [34] X. Wang, Y. Chen, G. Zhou, T. Chen, and F. Ma, “Synergetic coupling large-scale plate-type acoustic metamaterial panel for broadband sound insulation,” J. Sound Vib., vol. 459, p. 114867, Oct. 2019. [35] N. Fang et al., “Ultrasonic metamaterials with negative modulus,” Nat Mater, vol. 5, no. 6, pp. 452–456, Jun. 2006. [36] S. H. Lee, C. M. Park, Y. M. Seo, Z. G. Wang, and C. K. Kim, “Composite acoustic Medium with Simultaneously Negative Density and Modulus,” Phys. Rev. Lett., vol. 104, no. 5, p. 054301, Feb. 2010. [37] C. Shen, Y. Xie, S. Cummer, and Y. Jing, “Omnidirectional sound shielding with acoustic metacages,” J. Acoust. Soc. Am., vol. 141, no. 5, pp. 3574–3574, May 2017. [38] X. Xiang et al., “Ultra-open ventilated metamaterial absorbers for sound-silencing applications in environment with free air flows,” Extreme Mech. Lett., vol. 39, p. 100786, Sep. 2020. [39] H. Long, Y. Cheng, and X. Liu, “Asymmetric absorber with multiband and broadband for low-frequency sound,” Appl. Phys. Lett., vol. 111, no. 14, p. 143502, Oct. 2017. [40] Kumar, T. B. Xiang, and H. P. Lee, “Ventilated acoustic metamaterial window panels for simultaneous noise shielding and air circulation,” Appl Acoust, vol. 159, p. 107088, Feb. 2020. [41] H. Nguyen, Q. Wu, X. Xu, H. Chen, S. Tracy, and G. Huang, “Broadband acoustic silencer with ventilation based on slit-type Helmholtz resonators,” Appl. Phys. Lett., vol. 117, no. 13, p. 134103, Sep. 2020. [42] R. Ghaffarivardavagh, J. Nikolajczyk, S. Anderson, and X. Zhang, “Ultra-open acoustic metamaterial silencer based on Fano-like interference,” Phys. Rev. B, vol. 99, no. 2, p. 024302, Jan. 2019. [43] Y. Sun, J. Xia, H. Sun, S. Yuan, Y. Ge, and X. Liu, “Dual‐Band Fano Resonance of Low‐Frequency Sound Based on Artificial Mie Resonances,” Adv. Sci., vol. 6, no. 20, p. 1901307, Oct. 2019. [44] X. Zhu et al., “Implementation of dispersion-free slow acoustic wave propagation and phase engineering with helical-structured metamaterials,” Nat Commun, vol. 7, no. 1, p. 11731, Sep. 2016. [45] Y. Li et al., “Three-dimensional Ultrathin Planar Lenses by Acoustic Metamaterials,” Sci Rep, vol. 4, no. 1, p. 6830, May 2015. [46] Z. Xu, B. Zheng, J. Yang, B. Liang, and J. Cheng, “Machine-learning-assisted acoustic consecutive fano Resonances: application to a tunable broadband low-frequency metasilencer,” Phys. Rev. Appl., vol. 16, no. 4, p. 044020, Oct. 2021. [47] H. Q. Nguyen et al., “A Fano-based acoustic metamaterial for ultra-broadband sound barriers,” Proc. R. Soc. A., vol. 477, no. 2248, p. rspa.2021.0024, 20210024, Apr. 2021. [48] M. Sun, X. Fang, D. Mao, X. Wang, and Y. Li, “Broadband acoustic ventilation barriers,” Phys. Rev. Appl., vol. 13, no. 4, p. 044028, Apr. 2020. [49] V. Fokin, M. Ambati, C. Sun, and X. Zhang, “Method for retrieving effective properties of locally resonant acoustic metamaterials,” Phys. Rev. B, vol. 76, no. 14, p. 144302, Oct. 2007. [50] D. A. Kovacevich and B.-I. Popa, “Transformation acoustics with bulk media composed of polarized sources,” Phys Rev B, vol. 104, p. 134304, Oct. 2021. [51] C. Liu et al., “Three-Dimensional Soundproof Acoustic Metacage,” Phys. Rev. Lett, vol. 127, p. 084301, Aug. 2021. [52] M. Yang, G. Ma, Z. Yang, and P. Sheng, “Coupled membranes with doubly negative mass density and bulk modulus,” Phys. Rev. Lett., vol. 110, no. 13, p. 134301, Mar. 2013. [53] J. Li, Y. Shi, R. Jiang, Z. Zhang, and Q. Huang, “Acoustic insulation mechanism of Membrane-Type Acoustic Metamaterials Loaded with Arbitrarily Shaped Mass Blocks of Variable Surface Density,” Materials, vol. 15, no. 4, p.1556, Jan. 2022. [54] Z. Gu et al., “Tunable asymmetric acoustic transmission via binary metasurface and zero-index metamaterials,” Appl. Phys. Lett., vol. 118, no. 11, p. 113501, Mar. 2021. [55] S. Anzinger, J. Manz, C. Bretthauer, U. Krumbein, and A. Dehé, “Acoustic transmission line based modelling of microscaled channels and enclosures,” J. Acoust. Soc. Am., vol. 145, no. 2, pp. 968–976, Feb. 2019. [56] S. Zhang, “Acoustic metamaterial design and applications,” Phd thesis, University of Illinois at Urbana-Champaign, Urbana, Illinois, 2010 [57] 蕭翕文, “雙模態費諾可透氣式超穎材料應用於寬頻聽覺濾波,” 碩士論文,國立臺灣大學機械工程學研究所,2020. [58] 楊傑程,“以共振抑制實現超寬頻隔音之可透氣式聲波超材料,” 碩士論文,國立臺灣大學機械工程學研究所,2020. [59] D. W. M. Leach and D. A. D. Lanterman, “An Electoracoustic Analysis of Transmission line Loudspeakers,” 2007 [60] F. C. Karal, “The Analogous Acoustical Impedance for Discontinuities and Constrictions of Circular Cross Section,” J. Acoust. Soc. Am., vol. 25, no. 2, pp. 327–334, Mar. 1953. [61] M. Berggren, A. Bernland, and D. Noreland, “Acoustic boundary layers as boundary conditions,” J. Comput. Phys., vol. 371, pp. 633–650, Oct. 2018. [62] W. B. Richards, “Propagation of sound waves in tubes of noncircular cross section,”NASA TP, vol. 2601, 1986. [63] M. R. Stinson, “The propagation of plane sound waves in narrow and wide circular tubes, and generalization to uniform tubes of arbitrary cross‐sectional shape,” J. Acoust. Soc. Am., vol. 89, no. 2, pp. 550–558, Feb. 1991. [64] J. S. Bach and H. Bruus, “Theory of pressure acoustics with viscous boundary layers and streaming in curved elastic cavities,” J. Acoust. Soc. Am., vol. 144, no. 2, pp. 766–784, Aug. 2018. [65] M. El‐Raheb, “Acoustic propagation in rigid three‐dimensional waveguides,” J. Acoust. Soc. Am., vol. 67, no. 6, pp. 1924–1930, Jun. 1980. [66] W. Rostafinski, “Monograph on Propagation of Sound Waves in Curved Ducts,” NASA Ref. Publ.,p. 1248,1991. [67] S. Félix and V. Pagneux, “Sound propagation in rigid bends: A multimodal approach,” J. Acoust. Soc. Am., vol. 110, no. 3, pp. 1329–1337, Sep. 2001. [68] D. H. Keefe and A. H. Benade, “Wave propagation in strongly curved ducts,” J. Acoust. Soc. Am., vol. 74, no. 1, pp. 320–332, Jul. 1983. [69] J.-D. Tseng, “The Characteristics of Parallel-connected Transmission Lines,” PIERS Proceedings 2005., vol. 1, no. 6, pp. 699–702, 2005. [70] M. Kong, Y. Wu, Z. Zhuang, Y. Liu, and A. A. Kishk, “Compact Wideband reflective/absorptive bandstop filter with multitransmission Zeros,” IEEE Trans Microw Theory Tech., vol. 67, no. 2, pp. 482–493, Feb. 2019. [71] S. Jønsson, A. Schuhmacher, and H. I. Jørgensen, “Wideband impedance measurement techniques in small complex cavities such as ear simulators and the human ear canal.” arXiv, Nov. 08, 2018 [72] Y. Zhang, D. W. Herrin, T. Wu, and X. Hua, “Determination of Transmission and Insertion Loss for the General Multi-Inlet Multi-Outlet Case,” SAE Int. J. Passeng. Cars - Mech. Syst., vol. 9, no. 1, pp. 210–215, Apr. 2016. [73] Y. Luan, F. Sgard, S. Benacchio, H. Nélisse, and O. Doutres, “A Transfer Matrix Model of the IEC 60318-4 Ear Simulator: Application to the Simulation of Earplug Insertion Loss,” Acta Acust United Acust, vol. 105, no. 6, pp. 1258–1268, Nov. 2019. [74] W. Łapka and C. Cempel, “Noise Reduction of Spiral Ducts,” International Journal of Occupational Safety and Ergonomics, vol. 13, no. 4, pp. 419–426, Jan. 2007. [75] G. Viallet, F. Sgard, F. Laville, and J. Boutin, “A finite element model to predict the sound attenuation of earplugs in an acoustical test fixture,” J. Acoust. Soc. Am., vol. 136, no. 3, pp. 1269–1280, Sep. 2014. [76] G. Viallet, F. Sgard, F. Laville, and J. Boutin, “Axisymmetric versus three-dimensional finite element models for predicting the attenuation of earplugs in rigid walled ear canals,” J. Acoust. Soc. Am., vol. 134, no. 6, pp. 4470–4480, Dec. 2013. [77] ASTM International, “ASTM E2611-17: Standard test method for normal incidence determination of porous material acoustical properties based on the transfer matrix method,” ASTM Int., vol. i, pp. 1–14, 2017. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85409 | - |
| dc.description.abstract | 本文提出了雙空氣流道消聲結構,其尺寸與厚度可以達到次波長,具有寬頻消音的特性來減低噪音和擁有可透氣式的空氣流道來增加空氣流通性,並將其微型化製作出入耳式低頻降噪耳塞,能實現寬頻消音與減緩傳統耳塞所帶來的悶熱感。在本文中,透過分析聲波在管道中的傳遞,以此建立具有聲輻射阻抗、變管效應、熱黏損耗之聲學傳輸線模型,此方法與有限元素 (FEM) 相比,能夠更有效的設計結構幾何參數,而該模型也能夠計算具有穿透損失之吸音率舆無穿透失之共振式吸音板的吸音率,將聲學傳輸線模型與FEM 的結果相比,兩者具有高度一致性,且與實驗量測的結果相當吻合。入耳式低頻降噪耳塞的消聲性能,藉由封閉音場實驗與有限元素模擬相互驗證其插入損失,證明了入耳式耳塞的可行性,並能夠透過聲學傳輸線模型的穿透損失預估其消聲頻段。最終顯示了雙流道結構與微型化入耳式低頻降噪耳塞,具有低頻抗噪通風能力的表現,達到66 %與100 %的10 dB比例頻寬,與68 %的空氣流通率,其結構厚度達到0107 與0.11 。可流通式次波長結構在將來有潛能的應用在大型通風式隔音牆,或是入耳式消聲耳塞。 | zh_TW |
| dc.description.abstract | In this research, a dual-channel sound-insulation structure with subwavelength size and dimension is proposed. It can achieve a broadband sound insulation and matain air circulation due to ventilated an air channel. The structure is farther miniaturized for developing an in-ear low-frequency reducer. Noise-insulation earplugs can achieve broadband noise reduction and reduce the sultry feeling caused by traditional earplugs. In this research, an acoustic transmission line model with acoustic radiation impedance, radiation effect, and thermal viscosity loss is established by analyzing the transmission of sound waves in the duct. Compared with finite element method (FEM), this method can design multiple air-channel structures and optimize their geometry more effectively, and the model can also calculate the sound absorption rate with transmission loss and the sound absorption rate of resonant acoustic panels without transmission loss. The simulation results of both models match well and are in good agreement with the experimental results. The noise cancellation performance of the in-ear low-frequency noise-cancelling earplugs is verified by the closed sound field experiment and the finite element simulations. Finally, the dual-flow channel structure and miniaturized in-ear low-frequency noise-cancelling earplugs have the performance of low-frequency anti-noise ventilation, reaching 66% and 100% of the 10 dB proportional bandwidth, and 68% of the air flow rate, and its structural thickness reaches 0107 and 0.11 . The flow-through subwavelength structure has potential applications in large ventilated soundproof walls or in-ear noise-cancelling earplugs in the future. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T23:16:15Z (GMT). No. of bitstreams: 1 U0001-2007202216582200.pdf: 18598557 bytes, checksum: 0c0a9756ce0dd57789d06a9744632fc2 (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 誌謝 I 中文摘要 II ABSTRACT III 目錄 IV 圖目錄 VI 表目錄 XI Chapter 1 緒論 1 1.1 研究動機 1 1.2 文獻回顧 4 1.3 章節介紹 16 Chapter 2 理論 17 2.1 基本聲學理論 17 2.2 等截面積聲波導管 18 2.3 聲學傳輸線 20 2.4 聲學傳輸線損耗 25 Chapter 3 三維結構參數設計 34 3.1 比例頻寬 34 3.2 電路類比 35 3.3 結構設計 47 3.4 等效電路模擬 49 Chapter 4 有限元素模擬 53 4.1 穿透損失 53 4.2 插入損失 64 Chapter 5 實驗量測 70 5.1 穿透損失量測 70 5.1.1 試片規格 74 5.1.2 標準測試理論 77 5.1.3 麥克風效正 78 5.1.4 量測步驟 79 5.2 插入損失 82 5.2.1 試片規格 85 5.2.2 反射音場實驗方法 86 5.2.3 封閉音場實驗方式 89 Chapter 6 結果與討論 91 Chapter 7 結論與未來展望 97 7.1 結論 97 7.2 未來展望 98 參考文獻 99 | |
| dc.language.iso | zh-TW | |
| dc.subject | 入耳式耳塞 | zh_TW |
| dc.subject | 聲學傳輸線 | zh_TW |
| dc.subject | 低頻抗噪 | zh_TW |
| dc.subject | 通透式消音結構 | zh_TW |
| dc.subject | ventilated acoustic sound-insulation structure | en |
| dc.subject | Acoustic transmission line | en |
| dc.subject | Low-frequency Anti-noise | en |
| dc.subject | in-ear earplug | en |
| dc.title | 可流通式次波長聲學結構應用於低頻抗噪入耳式耳塞 | zh_TW |
| dc.title | Ventilated Subwavelength Acoustic Structure Applied to Low-frequency Anti-noise Earplug | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 王昭男(Chao-Nan Wang),周元昉(Yuan-Fang Chou),黃育熙(Yu-Hsi Huang),陳蓉珊(Jung-San Chen) | |
| dc.subject.keyword | 聲學傳輸線,低頻抗噪,通透式消音結構,入耳式耳塞, | zh_TW |
| dc.subject.keyword | Acoustic transmission line,Low-frequency Anti-noise,ventilated acoustic sound-insulation structure,in-ear earplug, | en |
| dc.relation.page | 106 | |
| dc.identifier.doi | 10.6342/NTU202201581 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2022-07-21 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
| dc.date.embargo-lift | 2024-07-06 | - |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2007202216582200.pdf | 18.16 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
