Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 會計學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84905
Title: 以機器學習模型預測臺灣上市櫃公司月營收公告之訊息
Predicting the Signals of Monthly Revenue Announcements for Taiwan Listed Companies Using Machine Learning Models
Authors: Ting-An Liu
劉庭安
Advisor: 蔡彥卿(Yann-Ching Tsai)
Keyword: 月營收預測,機器學習,二元分類,
Monthly Revenues,Machine Learning,Binary Classification,
Publication Year : 2022
Degree: 碩士
Abstract: 依據《證券交易法》,臺灣發行有價證券之公司應於每月十日以前 公布上月之營收,此規範使財務報表使用者得透過月營收資訊較頻繁 地了解公司的營運情形,亦即強化會計資訊品質特性中的時效性。本 論文以過去幾月營收資訊,進行預測當期月營收是否為好消息或壞消 息之二元分類,研究樣本為台灣上市櫃公司之合併月營收資訊,研究 期間為 2015 年 2 月至 2020 年 1 月。 本論文欲挑選具備最佳預測月營收好壞消息能力的機器學習模型, 在同時考慮資料範圍大小、採用之演算法,以及資料前處理方法的多 種情況下,探討此三種有關模型設定的因素如何影響模型的預測成 效。此外,本論文亦設計兩種增設虛擬變數的方法,以討論本論文所 提及之相關月份對預測月營收好壞消息之影響。兩類虛擬變數分別 為有關陽曆月份的標示和農曆新年期間的標示。本論文實證結果顯 示,將包含較多產業類別的大資料集,進行前處理後,以梯度提升樹 (Gradient Boosting Decision Tree)訓練,其模型預測準確率顯著較高。 此外,若在資料集中加入標示陽曆月份的虛擬變數或標示是否為農曆 新年期間的虛擬變數,皆能提高模型預測營收好壞消息的能力,驗證 在預測月營收資訊時月份標示之重要性。
Public announcement of monthly revenues is required for issuers in Tai- wan pursuant to the Securities and Exchange Act, which reports the operating status of companies for users of financial statements on a frequent basis. That is, announcements of monthly revenues enhance the timeliness of accounting information. In this study, I predict the signals of monthly revenues—to fore- see if it is good or bad news—based on the historical revenues. Samples of this study are consolidated monthly revenues from listed companies in Tai- wan; the study period is from February 2015 to January 2022. This study aims to find out the best model setting to predict signals of revenues, considering three key factors: the scope of data, the algorithms, and preprocessing techniques. Furthermore, I design two dummy variable generating methods to specialize the importance of calendar months and Chi- nese New Year when making predictions. The findings conclude that gradient boosting tree-based models fitted by a larger preprocessed dataset achieve a significantly higher accuracy. Besides, a dataset with dummy variables in- dicating the calendar months or Chinese New Year reaches the greater pre- dictability of signals of monthly revenues.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84905
DOI: 10.6342/NTU202202769
Fulltext Rights: 同意授權(限校園內公開)
metadata.dc.date.embargo-lift: 2022-08-30
Appears in Collections:會計學系

Files in This Item:
File SizeFormat 
U0001-2408202215461000.pdf
Access limited in NTU ip range
7.63 MBAdobe PDF
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved