請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84905完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蔡彥卿(Yann-Ching Tsai) | |
| dc.contributor.author | Ting-An Liu | en |
| dc.contributor.author | 劉庭安 | zh_TW |
| dc.date.accessioned | 2023-03-19T22:31:56Z | - |
| dc.date.copyright | 2022-08-30 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-08-24 | |
| dc.identifier.citation | Ball, R. and P. Brown. 1968. An empirical evaluation of accounting income numbers. Journal of Accounting Research 6(2): 159–178. URL http://www.jstor.org/stable/ 2490232. Breiman, L. 2001. Random forests. Machine Learning 45: 5–32. doi:10.1023/A: 1010950718922. Breiman, Leo. 1996. Bagging predictors. Mach. Learn. 24(2): 123–140. doi:10. 1023/A:1018054314350. URL https://doi.org/10.1023/A:1018054314350. Chen, K. S. 2020. Correlation between trading volume and monthly revenue of Taiwanese listed and counter companies and their stock prices. Master’s thesis, National Cheng Kung University. Chen, T. and C. Guestrin. 2016. Xgboost: A scalable tree boosting system. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. KDD ’16, 785–794. doi:10.1145/2939672. 2939785. Chien, H. F. 1998. The information content of monthly sales announcements. Master’s thesis, National Taiwan University. Chua, S. Y. 1999. The relationship among revenue per month and trading volume. Master’s thesis, National Chengchi University. Friedman, J. , T. Hastie, and R. Tibshirani. 2000. Additive logistic regression: A statistical view of boosting. The Annals of Statistics 28: 337–407. doi:10.12 14/aos/1016218223. Friedman, Jerome H. 2001. Greedy function approximation: A gradient boosting machine. The Annals of Statistics 29(5): 1189–1232. URL http://www.jstor. org/stable/2699986. Fu, H. P. and S. H. Chen. 2014. Two-period revenue surprises and investor sentiment in Taiwan. Sun Yat-Sen Management Review 22(1): 115–156. Ke, G., Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and T. Y. Liu. 2017. Lightgbm: A highly efficient gradient boosting decision tree. Advances in neural information processing systems 30: 3146– 3154. Ku, K. P. 2017. Monthly sales announcements and behavioral bias. Sun Yat-Sen Management Review 25(1): 63–100. Liu, Y. H. and Y. C. Tsai. 2006. The private information trading during monthly sales announcements. Journal of Management and Systems 13(1): 47–76 Quinlan, J. R. 1986. Induction of decision trees. Mach. Learn. 1(1): 81–106. doi:10.1023/A: 1022643204877. URL https://doi.org/10.1023/A:1022643204877. Wang, L. F., C. C. Chang, and T. E. Liu. 2020. Information content comparison of monthly sales before and after change of preparation basis. Contemporary Accounting 21(1): 33–62. Wu, H. C. and H. Y. Lee. 2006. The relationship between monthly sales and stock returns. Management Sciences Research 2(2): 61–74. Xiao, Y. Z. 2016. 單月營收成長率和股價報酬的關聯. Master’s thesis, National Chung Cheng University. Yeh, H. L. 2017. The information content of monthly revenue, investor sentiment and stock returns. Master’s thesis, Natinoal Sun Yat-Sen University. 呂奐模. 2018. 採用 IFRS15 對電信業影響. 信用風險評估專刊 (29): 174–186. 李宜樺, 張惠閔, 楊蘭曲. 2015. IFRS15 對生技與製藥業的影響. Accounting Research Monthly (351): 112–117. doi:10.6650/ARM.2015. 351.112. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84905 | - |
| dc.description.abstract | 依據《證券交易法》,臺灣發行有價證券之公司應於每月十日以前 公布上月之營收,此規範使財務報表使用者得透過月營收資訊較頻繁 地了解公司的營運情形,亦即強化會計資訊品質特性中的時效性。本 論文以過去幾月營收資訊,進行預測當期月營收是否為好消息或壞消 息之二元分類,研究樣本為台灣上市櫃公司之合併月營收資訊,研究 期間為 2015 年 2 月至 2020 年 1 月。 本論文欲挑選具備最佳預測月營收好壞消息能力的機器學習模型, 在同時考慮資料範圍大小、採用之演算法,以及資料前處理方法的多 種情況下,探討此三種有關模型設定的因素如何影響模型的預測成 效。此外,本論文亦設計兩種增設虛擬變數的方法,以討論本論文所 提及之相關月份對預測月營收好壞消息之影響。兩類虛擬變數分別 為有關陽曆月份的標示和農曆新年期間的標示。本論文實證結果顯 示,將包含較多產業類別的大資料集,進行前處理後,以梯度提升樹 (Gradient Boosting Decision Tree)訓練,其模型預測準確率顯著較高。 此外,若在資料集中加入標示陽曆月份的虛擬變數或標示是否為農曆 新年期間的虛擬變數,皆能提高模型預測營收好壞消息的能力,驗證 在預測月營收資訊時月份標示之重要性。 | zh_TW |
| dc.description.abstract | Public announcement of monthly revenues is required for issuers in Tai- wan pursuant to the Securities and Exchange Act, which reports the operating status of companies for users of financial statements on a frequent basis. That is, announcements of monthly revenues enhance the timeliness of accounting information. In this study, I predict the signals of monthly revenues—to fore- see if it is good or bad news—based on the historical revenues. Samples of this study are consolidated monthly revenues from listed companies in Tai- wan; the study period is from February 2015 to January 2022. This study aims to find out the best model setting to predict signals of revenues, considering three key factors: the scope of data, the algorithms, and preprocessing techniques. Furthermore, I design two dummy variable generating methods to specialize the importance of calendar months and Chi- nese New Year when making predictions. The findings conclude that gradient boosting tree-based models fitted by a larger preprocessed dataset achieve a significantly higher accuracy. Besides, a dataset with dummy variables in- dicating the calendar months or Chinese New Year reaches the greater pre- dictability of signals of monthly revenues. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T22:31:56Z (GMT). No. of bitstreams: 1 U0001-2408202215461000.pdf: 7811410 bytes, checksum: ed7b422110d598d57a546e1809585848 (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 誌謝 iii 摘要 v Abstract vii 1 Introduction 1 1.1 Backgroundandmotivation..................... 1 1.2 Researchobjective ......................... 2 1.3 Researchplan............................ 3 2 Literature review 7 3 Research design 11 3.1 Sampling .............................. 11 3.2 Exploratorydataanalysis...................... 14 3.3 Methodology ............................ 18 3.3.1 Shiftingtestprocedure ................... 20 3.3.2 Rollingtestprocedure ................... 25 4 Empirical results 29 4.1 Resultsundershiftingtestprocedure................ 29 4.1.1 Descriptive statistics and visualization . . . . . . . . . . . 29 4.1.2 Comparison of the different levels of settings . . . . . . . 39 4.1.3 Comparison of the beginning of year and the others . . . . 47 4.2 Resultsunderrollingtestprocedure ................ 47 4.2.1 Featureimportance..................... 53 4.2.2 Confusionmatrix...................... 54 5 Conclusion 69 A Feature importances of eight model settings under rolling test proce- dure 71 Bibliography 81 | |
| dc.language.iso | en | |
| dc.subject | 二元分類 | zh_TW |
| dc.subject | 月營收預測 | zh_TW |
| dc.subject | 機器學習 | zh_TW |
| dc.subject | Binary Classification | en |
| dc.subject | Monthly Revenues | en |
| dc.subject | Machine Learning | en |
| dc.title | 以機器學習模型預測臺灣上市櫃公司月營收公告之訊息 | zh_TW |
| dc.title | Predicting the Signals of Monthly Revenue Announcements for Taiwan Listed Companies Using Machine Learning Models | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 李淑華(Shu-hua Lee),簡雪芳(Hsueh-Fang Chien) | |
| dc.subject.keyword | 月營收預測,機器學習,二元分類, | zh_TW |
| dc.subject.keyword | Monthly Revenues,Machine Learning,Binary Classification, | en |
| dc.relation.page | 83 | |
| dc.identifier.doi | 10.6342/NTU202202769 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2022-08-25 | |
| dc.contributor.author-college | 管理學院 | zh_TW |
| dc.contributor.author-dept | 會計學研究所 | zh_TW |
| dc.date.embargo-lift | 2022-08-30 | - |
| 顯示於系所單位: | 會計學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2408202215461000.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 7.63 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
