Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 資訊管理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84875
標題: 基於作動深度學習於物理氣相沉積設備故障預測與健康管理
Motion-based Deep Learning for Prognostic and Health Management of Physical Vapor Deposition Equipment
作者: 宋亭遠
Ting-Yuan Song
指導教授: 李家岩
Chia-Yen Lee
關鍵字: 故障預測與健康管理,作動,管制圖,異常偵測,遷移學習,對比學習,非監督式學習,
Prognostic and Health Management,motion-based,control chart,transform learning,contrastive learning,unsupervised learning,
出版年 : 2022
學位: 碩士
摘要: 隨者科技不斷演進與發展,有許多人工智慧與資料科學相關的新技術出現用來輔助解決現實生活中的問題。目前世界上產值相當高的製造業中因為需求不斷的提升,許多企業都將資料科學相關的技術用於提升產能以及降低成本。而為了要兼顧成本以及產能的考量,設備的故障預測以及健康管理是很重要的一個方法,透過監控機台狀況來使機台能在良好的情況下運作,在必要時才進行保養及更換。因此近幾年不僅學界以及業界都投入許多資源研究相關的議題。本研究針對物理氣相沉積設備,建立基於資料導向的健康評估方式及異常偵測模型。本研究與台灣頂尖面板製造公司合作,使用較有解釋性的特徵來建構機台健康指標,並透過實證資料驗證本研究所提出之方法。除此之外,也提出基於深度學習相關的技術萃取特徵並使用異常偵測的模型及驗證於公開資料集上。本研究貢獻在於根據不同使用情境建立不同監控機台狀況的方法,並透過健康指標來提早預警機台故障,同時權衡保養成本及突發錯誤導致的產能損失。
With the continuous evolution and development of technology, many technologies related to artificial intelligence and data science have emerged to assist in solving real-world problems. Due to the continuous increase in demand in the manufacturing industry which has a high value in the world now, many companies use data science to increase production capacity and reduce costs. Prognostic and Health Management is an important method that considers cost reduction and production capacity at the same time. The machine can operate in a good condition, and only carry out maintenance and replacement when necessary by monitoring the machine. Therefore, not only academia but also the industries have devoted a lot of resources to research related issues. In this study, a data-driven health assessment method and anomaly detection model was established for physical vapor deposition equipment. This study cooperated with a leading panel manufacturing company in Taiwan. Use explanatory features to construct health indicators, and validate the proposed method through empirical data. In addition, anomaly detection models based on the deep learning features are proposed and validated by public datasets. The contribution of this study is to establish different monitoring methods for the machine according to different scenarios and to use health indicators to waring machine failures in advance. Taking into consideration maintenance costs and capacity losses caused by sudden errors at the same time.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84875
DOI: 10.6342/NTU202202857
全文授權: 同意授權(限校園內公開)
電子全文公開日期: 2025-09-01
顯示於系所單位:資訊管理學系

文件中的檔案:
檔案 大小格式 
ntu-110-2.pdf
  目前未授權公開取用
5.03 MBAdobe PDF檢視/開啟
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved