Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 資訊管理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84875
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李家岩zh_TW
dc.contributor.advisorChia-Yen Leeen
dc.contributor.author宋亭遠zh_TW
dc.contributor.authorTing-Yuan Songen
dc.date.accessioned2023-03-19T22:30:16Z-
dc.date.available2023-12-27-
dc.date.copyright2022-09-05-
dc.date.issued2022-
dc.date.submitted2002-01-01-
dc.identifier.citationAl-Tahan, H. (2021). Contrastive Learning of Auditory Representations.
Bank, T. W. (Accessed on 2022/07/02). Manufacturing, value added. https://data.worldbank.org/indicator/NV.IND.MANF.CD?end=2021&start=2011&view=chart
Chandrashekar, G., & Sahin, F. (2014). A survey on feature selection methods. Computers & Electrical Engineering, 40(1), 16-28.
Chen, T., Kornblith, S., Norouzi, M., & Hinton, G. (2020). A Simple Framework for Contrastive Learning of Visual Representations Proceedings of the 37th International Conference on Machine Learning, Proceedings of Machine Learning Research. https://proceedings.mlr.press/v119/chen20j.html
Chen, X., Fan, H., Girshick, R., & He, K. (2020). Improved Baselines with Momentum Contrastive Learning. arXiv:2003.04297. Retrieved March 01, 2020, from https://ui.adsabs.harvard.edu/abs/2020arXiv200304297C
Cheng, Z., Zou, C., & Dong, J. (2019). Outlier detection using isolation forest and local outlier factor. Proceedings of the conference on research in adaptive and convergent systems,
Deng, Y. R. X. Z. P. L. Y. W. R. (2019). A Survey of Predictive Maintenance Systems, Purposes and Approaches. IEEE COMMUNICATIONS SURVEYS & TUTORIALS.
Hocking, R. R. (1976). The analysis and selection of variables in linear regression.
Javed, K., Gouriveau, R., Zerhouni, N., & Nectoux, P. (2015). Enabling Health Monitoring Approach Based on Vibration Data for Accurate Prognostics. IEEE Transactions on Industrial Electronics, 62(1), 647-656. https://doi.org/10.1109/tie.2014.2327917
Johnson, R. A., & Wichern, D. W. (2014). Applied multivariate statistical analysis (Vol. 6). Pearson London, UK:.
Khosla, P., Teterwak, P., Wang, C., Sarna, A., Tian, Y., Isola, P., Maschinot, A., Liu, C., & Krishnan, D. (2020). Supervised Contrastive Learning. arXiv:2004.11362. Retrieved April 01, 2020, from https://ui.adsabs.harvard.edu/abs/2020arXiv200411362K
Kwak, M., & Kim, S. B. (2021). Unsupervised Abnormal Sensor Signal Detection With Channelwise Reconstruction Errors. IEEE Access, 9, 39995-40007. https://doi.org/10.1109/access.2021.3064563
Lee, C.-Y., & Chen, B.-S. (2018). Mutually-exclusive-and-collectively-exhaustive feature selection scheme. Applied Soft Computing, 68, 961-971. https://doi.org/10.1016/j.asoc.2017.04.055
Lee, C.-Y., Huang, T.-S., Liu, M.-K., & Lan, C.-Y. (2019). Data Science for Vibration Heteroscedasticity and Predictive Maintenance of Rotary Bearings. Energies, 12(5). https://doi.org/10.3390/en12050801
Lee, C.-Y., & Tsai, T.-L. (2019). Data science framework for variable selection, metrology prediction, and process control in TFT-LCD manufacturing. Robotics and Computer-Integrated Manufacturing, 55, 76-87. https://doi.org/10.1016/j.rcim.2018.07.013
Liao, L. (2014). Discovering Prognostic Features Using Genetic Programming in Remaining Useful Life Prediction. IEEE Transactions on Industrial Electronics, 61(5), 2464-2472. https://doi.org/10.1109/tie.2013.2270212
Liu, F. T., Ting, K. M., & Zhou, Z.-H. (2008). Isolation forest. 2008 eighth ieee international conference on data mining,
Mülle, M. (2007). Information Retrieval
for Music and Motion. Springer.
Müller, R., Ritz, F., Illium, S., & Linnhoff-Popien, C. (2020). Acoustic Anomaly Detection for Machine Sounds based on Image Transform Learning. arXiv:2006.03429. Retrieved June 01, 2020, from https://ui.adsabs.harvard.edu/abs/2020arXiv200603429M
Misra, I., & van der Maaten, L. (2019). Self-Supervised Learning of Pretext-Invariant Representations. arXiv:1912.01991. Retrieved December 01, 2019, from https://ui.adsabs.harvard.edu/abs/2019arXiv191201991M
Mobley, R. K. (2002). An introduction to predictive maintence. Elsevier.
Mostajeran, A., Iranpanah, N., & Noorossana, R. (2018). An explanatory study on the non-parametric multivariate T2 control chart. Journal of modern applied statistical methods, 17(1), 12.
Pauwels, E. J., & Ambekar, O. (2011). One class classification for anomaly detection: Support vector data description revisited. Industrial Conference on Data Mining,
Tsui, K. L., Chen, N., Zhou, Q., Hai, Y., & Wang, W. (2015). Prognostics and Health Management: A Review on Data Driven Approaches. Mathematical Problems in Engineering, 2015, 1-17. https://doi.org/10.1155/2015/793161
Yáñez, S., González, N., & Vargas, J. (2010). Hotelling's T2 control charts based on robust estimators. Dyna (Colombia ) Num.163 Vol.77, 77.
Zhang, L., Lin, J., Liu, B., Zhang, Z., Yan, X., & Wei, M. (2019). A review on deep learning applications in prognostics and health management. IEEE Access, 7, 162415-162438.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84875-
dc.description.abstract隨者科技不斷演進與發展,有許多人工智慧與資料科學相關的新技術出現用來輔助解決現實生活中的問題。目前世界上產值相當高的製造業中因為需求不斷的提升,許多企業都將資料科學相關的技術用於提升產能以及降低成本。而為了要兼顧成本以及產能的考量,設備的故障預測以及健康管理是很重要的一個方法,透過監控機台狀況來使機台能在良好的情況下運作,在必要時才進行保養及更換。因此近幾年不僅學界以及業界都投入許多資源研究相關的議題。本研究針對物理氣相沉積設備,建立基於資料導向的健康評估方式及異常偵測模型。本研究與台灣頂尖面板製造公司合作,使用較有解釋性的特徵來建構機台健康指標,並透過實證資料驗證本研究所提出之方法。除此之外,也提出基於深度學習相關的技術萃取特徵並使用異常偵測的模型及驗證於公開資料集上。本研究貢獻在於根據不同使用情境建立不同監控機台狀況的方法,並透過健康指標來提早預警機台故障,同時權衡保養成本及突發錯誤導致的產能損失。zh_TW
dc.description.abstractWith the continuous evolution and development of technology, many technologies related to artificial intelligence and data science have emerged to assist in solving real-world problems. Due to the continuous increase in demand in the manufacturing industry which has a high value in the world now, many companies use data science to increase production capacity and reduce costs. Prognostic and Health Management is an important method that considers cost reduction and production capacity at the same time. The machine can operate in a good condition, and only carry out maintenance and replacement when necessary by monitoring the machine. Therefore, not only academia but also the industries have devoted a lot of resources to research related issues. In this study, a data-driven health assessment method and anomaly detection model was established for physical vapor deposition equipment. This study cooperated with a leading panel manufacturing company in Taiwan. Use explanatory features to construct health indicators, and validate the proposed method through empirical data. In addition, anomaly detection models based on the deep learning features are proposed and validated by public datasets. The contribution of this study is to establish different monitoring methods for the machine according to different scenarios and to use health indicators to waring machine failures in advance. Taking into consideration maintenance costs and capacity losses caused by sudden errors at the same time.en
dc.description.provenanceMade available in DSpace on 2023-03-19T22:30:16Z (GMT). No. of bitstreams: 1
U0001-2608202214014000.pdf: 5155365 bytes, checksum: c76cbe8c06fa2908650711e51555e2c4 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontentsList of Contents
List of Contents V
List of Tables VII
List of Figures VIII
Chapter 1. Introduction 1
1.1 Background and Motivation 1
1.2 Research Objective 4
1.3 Research Architecture 5
Chapter 2. Literature Review 6
2.1 Feature Engineering 9
2.2 Feature Selection 10
2.3 Control Phase 11
2.4 Contrastive Learning 14
Chapter 3. Physical and Statistical-based Features and Case Study 17
3.1 Research Framework 18
3.2 Data Preprocessing 19
3.3 Feature Engineering 19
3.4 Feature Selection 22
3.5 Control Phase 23
3.6 Case study 25
3.7 Summary of Case Study 33
Chapter 4. Deep Learning Methodology and Case Study 34
4.1 Research Framework 34
4.2 Dataset 35
4.3 Time Domain 36
4.4 Time-Frequency Domain 40
4.5 Anomaly Detection Classifier 44
4.6 Experiment and Result 46
4.7 Summary 49
Chapter 5. Conclusion and Future Research 50
5.1 Summary and Contribution 50
5.2 Future Research 52
References 53

List of Tables
TABLE 1.1 Comparison between RM, PHM, and PM 3
TABLE 2.1 Anomaly detection scenario 7
TABLE 2.2 Summary of PHM literature 8
TABLE 2.3 Comparison of anomaly detection methodologies 14
TABLE 3.1 Table of all features 20
TABLE 3.2 Building bootstrap multivariate Hotelling T2 control chart. 25
TABLE 3.3 Data information for benchmarking 27
TABLE 3.4 Data information on self-control 27
TABLE 3.5 Ensemble result of benchmarking 30
TABLE 3.6 Numerical values of normal distribution 31
TABLE 4.1 MIMII dataset description 36
TABLE 4.2 Time domain model information 38
TABLE 4.3 Contrastive learning model information 43
TABLE 4.4 Pseudocode of iForest 44
TABLE 4.5 Pseudocode of iTree 44
TABLE 4.6 Pseudocode of PathLength 45
TABLE 4.7 Experiment result 47
TABLE 4.8 Result of expenditure research 49
TABLE 4.9 Summary of different methodologies of feature engineering 50

List of Figures
FIGURE 1.1 Global manufacturing value-added 1
FIGURE 1.2 Comparison between RM, PHM, and PM adapted 3
FIGURE 1.3 Research architecture 6
Figure 2.1 SimCLR framework 16
FIGURE 2.2 Moco 17
FIGURE 3.1 Research framework 18
FIGURE 3.2 Motion type 19
FIGURE 3.3 Stepwise regression model of benchmarking 29
FIGURE 3.4 Random forest model of benchmarking 29
FIGURE 3.5 Gradient boosting machine model of benchmarking 30
FIGURE 3.9 Visualization of feature selection result 30
FIGURE 3.11 Testing phase of control chart 32
FIGURE 3.12 Benchmarking result 33
FIGURE 4.1 Deep learning-based feature framework 35
FIGURE 4.2 Time domain model architecture 39
FIGURE 4.3 Framework of time-frequency domain 41
FIGURE 4.4 Normal signals and the anomaly signals in Mel-spectrogram 41
Figure 4.5 Framework of retraining ResNet-34 with contrastive learning 43
Figure4.6 Isolation forest 46
Figure 4.7 Add noise to the frequency domain 48
-
dc.language.isoen-
dc.subject故障預測與健康管理zh_TW
dc.subject管制圖zh_TW
dc.subject作動zh_TW
dc.subject作動zh_TW
dc.subject故障預測與健康管理zh_TW
dc.subject管制圖zh_TW
dc.subject異常偵測zh_TW
dc.subject遷移學習zh_TW
dc.subject對比學習zh_TW
dc.subject非監督式學習zh_TW
dc.subject非監督式學習zh_TW
dc.subject對比學習zh_TW
dc.subject遷移學習zh_TW
dc.subject異常偵測zh_TW
dc.subjectunsupervised learningen
dc.subjectPrognostic and Health Managementen
dc.subjectmotion-baseden
dc.subjectcontrol charten
dc.subjecttransform learningen
dc.subjectcontrastive learningen
dc.subjectunsupervised learningen
dc.subjectPrognostic and Health Managementen
dc.subjectmotion-baseden
dc.subjectcontrol charten
dc.subjecttransform learningen
dc.subjectcontrastive learningen
dc.title基於作動深度學習於物理氣相沉積設備故障預測與健康管理zh_TW
dc.titleMotion-based Deep Learning for Prognostic and Health Management of Physical Vapor Deposition Equipmenten
dc.typeThesis-
dc.date.schoolyear110-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee魏志平;許嘉裕;陳以錚zh_TW
dc.contributor.oralexamcommitteeChih-Ping Wei;Chia-Yu Hsu;Yi-Cheng Chenen
dc.subject.keyword故障預測與健康管理,作動,管制圖,異常偵測,遷移學習,對比學習,非監督式學習,zh_TW
dc.subject.keywordPrognostic and Health Management,motion-based,control chart,transform learning,contrastive learning,unsupervised learning,en
dc.relation.page56-
dc.identifier.doi10.6342/NTU202202857-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2022-08-29-
dc.contributor.author-college管理學院-
dc.contributor.author-dept資訊管理學系-
dc.date.embargo-lift2025-09-01-
顯示於系所單位:資訊管理學系

文件中的檔案:
檔案 大小格式 
ntu-110-2.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
5.03 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved