請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84646完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 羅翊禎(Yi-Chen Lo) | |
| dc.contributor.author | Ting-Yun Deng | en |
| dc.contributor.author | 鄧婷云 | zh_TW |
| dc.date.accessioned | 2023-03-19T22:18:54Z | - |
| dc.date.copyright | 2022-09-16 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-09-14 | |
| dc.identifier.citation | 吳奕蓉, 探討Pantoea spp.對截切香瓜品質影響. 國立臺灣大學生物資源暨農學院食品科技研究所碩士論文. 台北, 台灣, 2021. 農試所, 106年度年報. 政府專頁. 行政院農業委員會農業試驗所. 台北, 台灣, 2018. 農糧署, 政府專頁. 行政院農業委員會農糧署. 台北, 台灣, 2021. 衛福部, 食品微生物檢驗之方法—生菌數之檢驗. 台北, 台灣, 2013. 蔡文城, 何梅純, GNB-14電腦密碼鑑定系統. 九州圖書文物有限公司. 台北, 台灣, 2006. 賴宜姍, 探討酵母菌中β-葡萄糖苷酶之特性及受質水解特異性. 國立臺灣大學生物資源暨農學院食品科技研究所碩士論文. 台北, 台灣, 2020. 簡子芸, 豆漿及豆腐之微生物分離及其特性分析. 國立臺灣大學生物資源暨農學院食品科技研究所碩士論文. 台北, 台灣, 2019. 洪臣宏 (2022,5月10日), 保鮮期2年冷凍截切鳳梨首批銷日. 自由時報新聞網. 資料引自https://news.ltn.com.tw/news/life/paper/1516367 CAS, 財團法人台灣優良產品發展協會CAS產品查詢. 台北, 台灣, 2022. Abdel-Rahman, M. A.; Tashiro, Y.; Sonomoto, K. Recent advances in lactic acid production by microbial fermentation processes. Biotechnol. Adv. 2013, 31(6), 877-902. Aguayo, E.; Escalona, V.; Rtés, F. Metabolic behavior and quality changes of whole and fresh processed melon. J. Food Sci. 2004, 69(4), SNQ148-SNQ155. Ahmed, J.; Ramaswamy, H. S. Changes in colour during high pressure processing of fruits and vegetables. Stewart Postharvest Rev. 2006, 2(5), 1-8. Alberti, L.; Harshey, R. M. Differentiation of Serratia marcescens 274 into swimmer and swarmer cells. J. Bacteriol. 1990, 172(8), 4322-4328. Allison, C.; Lai, H. C.; Gygi, D.; Hughes, C. Cell differentiation of Proteus mirabilis is initiated by glutamine, a specific chemoattractant for swarming cells. Mol. Microbiol. 1993, 8(1), 53-60. Anderson, A. C.; Burnett, A. J.; Constable, S.; Hiscock, L.; Maly, K. E.; Weadge, J. T. A mechanistic basis for phosphoethanolamine modification of the cellulose biofilm matrix in Escherichia coli. Biochemistry 2021, 60(47), 3659-3669. Ariison, C.; Lai, H. C.; Hughes, C. Co‐ordinate expression of virulence genes during swarm‐cell differentiation and population migration of Proteus mirabilis. Mol. Microbiol. 1992, 6(12), 1583-1591. Augusto, P. E.; Tribst, A. A.; Cristianini, M. High hydrostatic pressure and high-pressure homogenization processing of fruit juices. Fruit juices 2018, 393-421. Badal, D.; Jayarani, A. V.; Kollaran, M. A.; Prakash, D.; Singh, V. Foraging signals promote swarming in starving Pseudomonas aeruginosa. Mbio. 2021, 12(5), e02033-02021. Bansal, M.; Dhowlaghar, N.; Nannapaneni, R.; Kode, D.; Chang, S.; Sharma, C. S.; McDaniel, C.; Kiess, A. Decreased biofilm formation by planktonic cells of Listeria monocytogenes in the presence of sodium hypochlorite. Food Microbiol. 2021, 96, 103714. Beitel, S. M.; Coelho, L. F.; Contiero, J. Efficient conversion of agroindustrial waste into D (-) lactic acid by Lactobacillus delbrueckii using fed-batch fermentation. Biomed Res. Int. 2020, Article ID 4194052. Boyle, K. E.; Monaco, H.; van Ditmarsch, D.; Deforet, M.; Xavier, J. B. Integration of metabolic and quorum sensing signals governing the decision to cooperate in a bacterial social trait. PLoS Comput. Biol. 2015, 11(6), e1004279. Brady, C.; Cleenwerck, I.; Venter, S.; Vancanneyt, M.; Swings, J.; Coutinho, T. Phylogeny and identification of Pantoea species associated with plants, humans and the natural environment based on multilocus sequence analysis (MLSA). Syst. Appl. Microbiol. 2008, 31(6-8), 447-460. Burger, Y.; Sa'ar, U.; Distelfeld, A.; Katzir, N.; Yeselson, Y.; Shen, S.; Schaffer, A. A. Development of sweet melon (Cucumis melo) genotypes combining high sucrose and organic acid content. J. Am. Soc. Hortic. Sci. 2003, 128(4), 537-540. Cai, H.; Archambault, M.; Prescott, J. F. 16S ribosomal RNA sequence—based identification of veterinary clinical bacteria. J. Vet. Diagn. Investig. 2003, 15(5), 465-469. Castelli, M. a. E.; Fedrigo, G. V.; Clementín, A. L.; Ielmini, M. V.; Feldman, M. F.; Véscovi, E. G. a. Enterobacterial common antigen integrity is a checkpoint for flagellar biogenesis in Serratia marcescens. J. Bacteriol. 2008, 190(1), 213-220. Champion, J. T.; Gilkey, J. C.; Lamparski, H.; Retterer, J.; Miller, R. M. Electron microscopy of rhamnolipid (biosurfactant) morphology: effects of pH, cadmium, and octadecane. J. Colloid Interface Sci. 1995, 170(2), 569-574. Chang, C.-P.; Sung, I.; Huang, C.-J. Pantoea dispersa causing bulb decay of onion in Taiwan. Australas. Plant Pathol. 2018, 47(6), 609-613. Chen, J.; Zheng, X.; Dong, J.; Chen, Y.; Tian, J. Optimization of effective high hydrostatic pressure treatment of Bacillus subtilis in Hami melon juice. LWT- Food Sci. Technol. 2015, 60(2), 1168-1173. Coleman, S. R.; Blimkie, T.; Falsafi, R.; Hancock, R. E. Multidrug adaptive resistance of Pseudomonas aeruginosa swarming cells. Antimicrob. Agents Chemother. 2020, 64(3), e01999-01919. Copeland, M. F.; Weibel, D. B. Bacterial swarming: a model system for studying dynamic self-assembly. Soft matter 2009, 5(6), 1174-1187. Cremer, J.; Honda, T.; Tang, Y.; Wong-Ng, J.; Vergassola, M.; Hwa, T. Chemotaxis as a navigation strategy to boost range expansion. Nature 2019, 575(7784), 658-663. Dai, N.; Cohen, S.; Portnoy, V.; Tzuri, G.; Harel-Beja, R.; Pompan-Lotan, M.; Carmi, N.; Zhang, G.; Diber, A.; Pollock, S. Metabolism of soluble sugars in developing melon fruit: a global transcriptional view of the metabolic transition to sucrose accumulation. Plant Mol. Biol. 2011, 76(1), 1-18. Darling, A. C.; Mau, B.; Blattner, F. R.; Perna, N. T. Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res. 2004, 14(7), 1394-1403. Declerck, P. Biofilms: the environmental playground of Legionella pneumophila. Environ. Microbiol. 2010, 12(3), 557-566. Deziel, E.; Lepine, F.; Milot, S.; Villemur, R. rhlA is required for the production of a novel biosurfactant promoting swarming motility in Pseudomonas aeruginosa: 3-(3-hydroxyalkanoyloxy) alkanoic acids (HAAs), the precursors of rhamnolipids. Microbiology 2003, 149(8), 2005-2013. Dobrogosz, W. J.; Hamilton, P. B. The role of cyclic AMP in chemotaxis in Escherichia coli. Biochem. Biophys. Res. Commun. 1971, 42(2), 202-207. Donlan, R. M. Biofilms: microbial life on surfaces. Emerg. Infect. Dis. 2002, 8(9), 881. Drancourt, M.; Bollet, C.; Carlioz, A.; Martelin, R.; Gayral, J.-P.; Raoult, D. 16S ribosomal DNA sequence analysis of a large collection of environmental and clinical unidentifiable bacterial isolates. J. Clin. Microbiol. 2000, 38(10), 3623-3630. Fan, X.; Annous, B. A.; Keskinen, L. A.; Mattheis, J. P. Use of chemical sanitizers to reduce microbial populations and maintain quality of whole and fresh-cut cantaloupe. J. Food Prot. 2009, 72(12), 2453-2460. Flatauer, F. E.; Khan, M. A. Septic arthritis caused by Enterobacter agglomerans. Arch. Intern. Med. 1978, 138(5), 788-788. Flemming, H.-C.; Wingender, J. The biofilm matrix. Nat. Rev. Microbiol. 2010, 8(9), 623-633. Gao, S.; Wu, H.; Yu, X.; Qian, L.; Gao, X. Swarming motility plays the major role in migration during tomato root colonization by Bacillus subtilis SWR01. Biol. Control 2016, 98, 11-17. Gatta, R.; Wiese, A.; Iwanicki, A.; Obuchowski, M. Influence of glucose on swarming and quorum sensing of Dickeya solani. PloS one 2022, 17(2), e0263124. Gavini, F.; Mergaert, J.; Beji, A.; Mielcarek, C.; Izard, D.; Kersters, K.; De Ley, J. Transfer of Enterobacter agglomerans (Beijerinck 1888) Ewing and Fife 1972 to Pantoea gen. nov. as Pantoea agglomerans comb. nov. and Description of Pantoea dispersa sp. nov. Int. J. Syst. Evol. Microbiol. 1989, 39(3), 337-345. Gazel, D.; Zer, Y.; Manay, A. B.; Akdoğan, H. Inhibition of swarming motility using in vitro hyperthermia. J. Therm. Biol. 2021, 100, 102955. Gomes, L.; Deschamps, J.; Briandet, R.; Mergulhão, F. J. Impact of modified diamond-like carbon coatings on the spatial organization and disinfection of mixed-biofilms composed of Escherichia coli and Pantoea agglomerans industrial isolates. Int. J. Food Microbiol. 2018, 277, 74-82. Gross, K. C.; Sams, C. E. Changes in cell wall neutral sugar composition during fruit ripening: a species survey. Phytochemistry 1984, 23(11), 2457-2461. Guerreiro, A. C.; Gago, C. M.; Faleiro, M. L.; Miguel, M. G.; Antunes, M. D. The effect of edible coatings on the nutritional quality of ‘Bravo de Esmolfe’fresh-cut apple through shelf-life. LWT 2017, 75, 210-219. Gutiérrez-Barranquero, J. A.; Cazorla, F. M.; De Vicente, A. Pseudomonas syringae pv. syringae associated with mango trees, a particular pathogen within the “hodgepodge” of the Pseudomonas syringae complex. Front. Plant Sci. 2019, 10, 570. Hadfield, K. A.; Rose, J. K.; Yaver, D. S.; Berka, R. M.; Bennett, A. B. Polygalacturonase gene expression in ripe melon fruit supports a role for polygalacturonase in ripening-associated pectin disassembly. Plant Physiol. 1998, 117(2), 363-373. Harrison, J. J.; Ceri, H.; Turner, R. J. Multimetal resistance and tolerance in microbial biofilms. Nat. Rev. Microbiol. 2007, 5(12), 928-938. Harshey, R. M. Bees aren't the only ones: swarming in Gram‐negative bacteria. Mol. Microbiol. 1994, 13(3), 389-394. Hayata, Y.; Li, X.-X.; Osajima, Y. Sucrose accumulation and related metabolizing enzyme activities in seeded and induced parthenocarpic muskmelons. J. Am. Soc. Hortic. Sci. 2001, 126(6), 676-680. Heering, J.; Ringgaard, S. Differential localization of chemotactic signaling arrays during the lifecycle of Vibrio parahaemolyticus. Front. Microbiol. 2016, 7, 1767. Heredia-Ponce, Z.; Gutiérrez-Barranquero, J. A.; Purtschert-Montenegro, G.; Eberl, L.; Cazorla, F. M.; de Vicente, A. Biological role of EPS from Pseudomonas syringae pv. syringae UMAF0158 extracellular matrix, focusing on a Psl-like polysaccharide. NPJ Biofilms Microbiomes 2020, 6(1), 1-13. Herrera, C. M.; Koutsoudis, M. D.; Wang, X.; Von Bodman, S. B. Pantoea stewartii subsp. stewartii exhibits surface motility, which is a critical aspect of Stewart's wilt disease development on maize. Mol. Plant Microbe Interact. 2008, 21(10), 1359-1370. Hoffmann, J.; Altenbuchner, J. Functional characterization of the mannitol promoter of Pseudomonas fluorescens DSM 50106 and its application for a mannitol-inducible expression system for Pseudomonas putida KT2440. PloS one 2015, 10(7), e0133248. Holmlund, E.; Simell, B.; Jaakkola, T.; Lahdenkari, M.; Hamel, J.; Brodeur, B.; Kilpi, T.; Käyhty, H. Serum antibodies to the pneumococcal surface proteins PhtB and PhtE in Finnish infants and adults. Pediatr. Infect. Dis. J. 2007, 26(5), 447-449. Jacques, P. Surfactin and other lipopeptides from Bacillus spp. Biosurfactants 2011, 57-91. Jiang, L.; Jeong, J. C.; Lee, J.-S.; Park, J. M.; Yang, J.-W.; Lee, M. H.; Choi, S. H.; Kim, C. Y.; Kim, D.-H.; Kim, S. W. Potential of Pantoea dispersa as an effective biocontrol agent for black rot in sweet potato. Sci. Rep. 2019, 9(1), 1-13. Jiang, Q.; Chen, J.; Yang, C.; Yin, Y.; Yao, K. Quorum sensing: a prospective therapeutic target for bacterial diseases. BioMed Research International 2019. Jose, R.; Singh, V. Swarming in Bacteria: A tale of plasticity in motility behavior. J. Indian Inst. Sci. 2020, 100(3), 515-524. Kahveci, A.; Asicioglu, E.; Tigen, E.; Ari, E.; Arikan, H.; Odabasi, Z.; Ozener, C. Unusual causes of peritonitis in a peritoneal dialysis patient: Alcaligenes faecalis and Pantoea agglomerans. Ann. Clin. Microbiol. Antimicrob. 2011, 10(1), 1-3. Kawagishi, I.; Imagawa, M.; Imae, Y.; McCarter, L.; Homma, M. The sodium‐driven polar flagellar motor of marine Vibrio as the mechanosensor that regulates lateral flagellar expression. Mol. Microbiol. 1996, 20(4), 693-699. Kearns, D. B. A field guide to bacterial swarming motility. Nat. Rev. Microbiol. 2010, 8(9), 634-644. Kearns, D. B.; Losick, R. Swarming motility in undomesticated Bacillus subtilis. Mol. Microbiol. 2003, 49(3), 581-590. Kelly, S. A.; Panhuis, T. M.; Stoehr, A. M. Phenotypic plasticity: molecular mechanisms and adaptive significance. Compr. Physiol. 2012, 2(2), 1417-1439. Kido, K.; Adachi, R.; Hasegawa, M.; Yano, K.; Hikichi, Y.; Takeuchi, S.; Atsuchi, T.; Takikawa, Y. Internal fruit rot of netted melon caused by Pantoea ananatis (= Erwinia ananas) in Japan. J. Gen. Plant Pathol. 2008, 74(4), 302-312. Kim, H.-S.; Cha, E.; Kim, Y.; Jeon, Y. H.; Olson, B. H.; Byun, Y.; Park, H.-D. Raffinose, a plant galactoside, inhibits Pseudomonas aeruginosa biofilm formation via binding to LecA and decreasing cellular cyclic diguanylate levels. Sci. Rep. 2016, 6(1), 1-10. Kim, S.-H.; Jyung, S.; Kang, D.-H. Comparative study of Salmonella typhimurium biofilms and their resistance depending on cellulose secretion and maturation temperatures. LWT 2022, 154, 112700. Kim, W.; Killam, T.; Sood, V.; Surette, M. G. Swarm-cell differentiation in Salmonella enterica serovar Typhimurium results in elevated resistance to multiple antibiotics. J. Bacteriol. 2003, 185(10), 3111-3117. Kohler, T.; Curty, L. K.; Barja, F.; Van Delden, C.; Pechère, J.-C. Swarming of Pseudomonas aeruginosa is dependent on cell-to-cell signaling and requires flagella and pili. J. Bacteriol. 2000, 182(21), 5990-5996. Kolayli, S.; Kara, M.; Tezcan, F.; Erim, F. B.; Sahin, H.; Ulusoy, E.; Aliyazicioglu, R. Comparative study of chemical and biochemical properties of different melon cultivars: Standard, hybrid, and grafted melons. J. Agric. Food Chem. 2010, 58(17), 9764-9769. Kollaran, A. M.; Joge, S.; Kotian, H. S.; Badal, D.; Prakash, D.; Mishra, A.; Varma, M.; Singh, V. Context-specific requirement of forty-four two-component loci in Pseudomonas aeruginosa swarming. IScience 2019, 13, 305-317. Labianca, L.; Montanaro, A.; Turturro, F.; Calderaro, C.; Ferretti, A. Osteomyelitis caused by Pantoea agglomerans in a closed fracture in a child. Orthopedics 2013, 36(2), e252-e256. Lee, H. S.; Coates, G. A. Effect of thermal pasteurization on Valencia orange juice color and pigments. LWT-Food Sci. Technol. 2003, 36(1), 153-156. Lee, N. E.; Chung, I. Y.; Park, J. M. A case of Pantoea endophthalmitis. Korean J. Ophthalmol. 2010, 24(5), 318-321. Leida, C.; Moser, C.; Esteras, C.; Sulpice, R.; Lunn, J. E.; de Langen, F.; Monforte, A. J.; Picó, B. Variability of candidate genes, genetic structure and association with sugar accumulation and climacteric behavior in a broad germplasm collection of melon (Cucumis melo L.). BMC Genet. 2015, 16(1), 1-17. Lester, G. E. Antioxidant, sugar, mineral, and phytonutrient concentrations across edible fruit tissues of orange-fleshed honeydew melon (Cucumis melo L.). J. Agric. Food Chem. 2008, 56(10), 3694-3698. Lianou, A.; Koutsoumanis, K. P. Strain variability of the biofilm-forming ability of Salmonella enterica under various environmental conditions. Int. J. Food Microbiol. 2012, 160(2), 171-178. Lingle, S. E.; Dunlap, J. R. Sucrose metabolism in netted muskmelon fruit during development. Plant Physiol. 1987, 84(2), 386-389. Little, K.; Austerman, J.; Zheng, J.; Gibbs, K. A. Cell shape and population migration are distinct steps of Proteus mirabilis swarming that are decoupled on high-percentage agar. J. Bacteriol. 2019, 201(11), e00726-00718. Liu, B.; Gao, Q.; Zhang, X.; Chen, H.; Zhang, Y.; Sun, Y.; Yang, S.; Chen, C. CsrA regulates swarming motility and carbohydrate and amino acid metabolism in Vibrio alginolyticus. Microorganisms 2021, 9(11), 2383. Lu, J.; Cokcetin, N. N.; Burke, C. M.; Turnbull, L.; Liu, M.; Carter, D. A.; Whitchurch, C. B.; Harry, E. J. Honey can inhibit and eliminate biofilms produced by Pseudomonas aeruginosa. Sci. Rep. 2019, 9(1), 1-13. Luu, R. A.; Schneider, B. J.; Ho, C. C.; Nesteryuk, V.; Ngwesse, S. E.; Liu, X.; Parales, J. V.; Ditty, J. L.; Parales, R. E. Taxis of Pseudomonas putida F1 toward phenylacetic acid is mediated by the energy taxis receptor Aer2. Appl. Environ. Microbiol. 2013, 79(7), 2416-2423. Lynch, S.; Srinivasan, R.; Karaoz, U.; Volegova, M.; MacKichan, J.; Kato-Maeda, M.; Miller, S.; Nadarajan, R.; Brodie, E.; Lynch, S. Use of 16S rRNA gene for identification of a broad range of clinically relevant bacterial pathogens. PloS one 2015, 10(2), e0117617. Manetti, A. G.; Zingaretti, C.; Falugi, F.; Capo, S.; Bombaci, M.; Bagnoli, F.; Gambellini, G.; Bensi, G.; Mora, M.; Edwards, A. M. Streptococcus pyogenes pili promote pharyngeal cell adhesion and biofilm formation. Mol. Microbiol. 2007, 64(4), 968-983. Matysik, A.; Kline, K. A. Streptococcus pyogenes capsule promotes microcolony-independent biofilm formation. J. Bacteriol. 2019, 201(18), e00052-00019. Maunders, E.; Welch, M. Matrix exopolysaccharides; the sticky side of biofilm formation. FEMS Microbiol. Lett. 2017, 364(13). McGlasson, W.; Pratt, H. K. Effects of wounding on respiration and ethylene production by cantaloupe fruit tissue. Plant Physiol. 1964, 39(1), 128. McLennan, M. K.; Ringoir, D. D.; Frirdich, E.; Svensson, S. L.; Wells, D. H.; Jarrell, H.; Szymanski, C. M.; Gaynor, E. C. Campylobacter jejuni biofilms up-regulated in the absence of the stringent response utilize a calcofluor white-reactive polysaccharide. J. Bacteriol. 2008, 190(3), 1097-1107. Ming, T.; Geng, L.; Feng, Y.; Lu, C.; Zhou, J.; Li, Y.; Zhang, D.; He, S.; Li, Y.; Cheong, L. iTRAQ-based quantitative proteomic profiling of Staphylococcus aureus under different osmotic stress conditions. Front. Microbiol. 2019, 10, 1082. Mohammadi, M.; Burbank, L.; Roper, M. C. Biological role of pigment production for the bacterial phytopathogen Pantoea stewartii subsp. stewartii. Appl. Environ. Microbiol. 2012, 78(19), 6859-6865. Mohammed, A. N.; Radi, A. M.; Khaled, R.; Abo El-Ela, F. I.; Kotp, A. A. Exploitation of new approach to control of environmental pathogenic bacteria causing bovine clinical mastitis using novel anti-biofilm nanocomposite. Environ. Sci. Pollut. Res. 2020, 27(34), 42791-42805. Mohite, B. V.; Koli, S. H.; Patil, S. V. Heavy metal stress and its consequences on exopolysaccharide (EPS)-producing Pantoea agglomerans. Appl. Biochem. Biotechnol. 2018, 186(1), 199-216. Moraes, J. O.; Cruz, E. A.; Souza, E. G.; Oliveira, T. C.; Alvarenga, V. O.; Peña, W. E.; Sant'Ana, A. S.; Magnani, M. Predicting adhesion and biofilm formation boundaries on stainless steel surfaces by five Salmonella enterica strains belonging to different serovars as a function of pH, temperature and NaCl concentration. Int. J. Food Microbiol. 2018, 281, 90-100. Munif, A.; Hallmann, J.; Sikora, R. Induced systemic resistance of selected endophytic bacteria against Meloidogyne incognita on tomato. Mededelingen (Rijksuniversiteit te Gent. Fakulteit van de Landbouwkundige en Toegepaste Biologische Wetenschappen) 2001, 66(2b), 663-669. Nadarasah, G.; Stavrinides, J. Quantitative evaluation of the host-colonizing capabilities of the enteric bacterium Pantoea using plant and insect hosts. Microbiology 2014, 160(3), 602-615. Nayak, P. K.; Basumatary, B.; Chandrasekar, C. M.; Seth, D.; Kesavan, R. K. Impact of thermosonication and pasteurization on total phenolic contents, total flavonoid contents, antioxidant activity, and vitamin C levels of elephant apple (Dillenia indica) juice. J. Food Process Eng. 2020, 43(8), e13447. Niknezhad, S. V.; Morowvat, M. H.; Najafpour Darzi, G.; Iraji, A.; Ghasemi, Y. Exopolysaccharide from Pantoea sp. BCCS 001 GH isolated from nectarine fruit: production in submerged culture and preliminary physicochemical characterizations. Food Sci. Biotechnol. 2018, 27(6), 1735-1746. Overhage, J.; Bains, M.; Brazas, M. D.; Hancock, R. E. Swarming of Pseudomonas aeruginosa is a complex adaptation leading to increased production of virulence factors and antibiotic resistance. J. Bacteriol. 2008, 190(8), 2671-2679. Pataky, J. K. Stewart’s wilt of corn. APSnet Features 2003, 703(10.1094). Pech, J.-C.; Bouzayen, M.; Latché, A. Climacteric fruit ripening: ethylene-dependent and independent regulation of ripening pathways in melon fruit. Plant Sci. 2008, 175(1-2), 114-120. Pei, L.; Hou, S.; Wang, L.; Chen, J. Effects of high hydrostatic pressure, dense phase carbon dioxide, and thermal processing on the quality of Hami melon juice. J. Food Process Eng. 2018, 41(6), e12828. Pirrone, M.; Pinciroli, R.; Berra, L. Microbiome, biofilms, and pneumonia in the ICU. Curr. Opin. Infect. Dis. 2016, 29(2), 160-166. Poudel, S.; Giannone, R. J.; Farmer, A. T.; Campagna, S. R.; Bible, A. N.; Morrell-Falvey, J. L.; Elkins, J. G.; Hettich, R. L. Integrated proteomics and lipidomics reveal that the swarming motility of Paenibacillus polymyxa is characterized by phospholipid modification, surfactant deployment, and flagellar specialization relative to swimming motility. Front. Microbiol. 2019, 10, 2594. Rashid, M. H.; Kornberg, A. Inorganic polyphosphate is needed for swimming, swarming, and twitching motilities of Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. 2000, 97(9), 4885-4890. Rawoof, S. A. A.; Kumar, P. S.; Vo, D.-V. N.; Devaraj, K.; Mani, Y.; Devaraj, T.; Subramanian, S. Production of optically pure lactic acid by microbial fermentation: a review. Environ. Chem. Lett. 2021, 19(1), 539-556. Reichhardt, C.; Jacobson, A. N.; Maher, M. C.; Uang, J.; McCrate, O. A.; Eckart, M.; Cegelski, L. Congo red interactions with curli-producing E. coli and native curli amyloid fibers. PloS one 2015, 10(10), e0140388. Reiner, K. Catalase test protocol. ASM 2010, 1-6. ROSA, E.; BATUBARA, U. M.; SUPARJO, S. Chemotactic motility and growth of Pseudomonas fluorescens towards glucose concentration. Microbiol. Indones. 2019, 13(2), 1-1. Roy, P. K.; Ha, A. J.-W.; Mizan, M. F. R.; Hossain, M. I.; Ashrafudoulla, M.; Toushik, S. H.; Nahar, S.; Kim, Y. K.; Ha, S.-D. Effects of environmental conditions (temperature, pH, and glucose) on biofilm formation of Salmonella enterica serotype Kentucky and virulence gene expression. Poult. Sci. 2021, 100(7), 101209. Savage, V. J.; Chopra, I.; O'Neill, A. J. Staphylococcus aureus biofilms promote horizontal transfer of antibiotic resistance. Antimicrob. Agents Chemother. 2013, 57(4), 1968-1970. Schemberger, M. O.; Stroka, M. A.; Reis, L.; de Souza Los, K. K.; de Araujo, G. A. T.; Sfeir, M. Z. T.; Galvão, C. W.; Etto, R. M.; Baptistão, A. R. G.; Ayub, R. A. Transcriptome profiling of non-climacteric ‘yellow’melon during ripening: insights on sugar metabolism. BMC Genet. 2020, 21(1), 1-20. Shellie, K. C.; Lester, G. Netted melons. The commercial storage of fruits, vegetables and florist and nursery stocks. USDA-ARS, Agricultural Handbook 2004, (66), 423. Shrout, J. D.; Chopp, D. L.; Just, C. L.; Hentzer, M.; Givskov, M.; Parsek, M. R. The impact of quorum sensing and swarming motility on Pseudomonas aeruginosa biofilm formation is nutritionally conditional. Mol. Microbiol. 2006, 62(5), 1264-1277. Shukla, S. K.; Rao, T. S. An improved crystal violet assay for biofilm quantification in 96-well microtitre plate. Biorxiv 2017, 100214. Simpson-Lavy, K.; Kupiec, M. Carbon catabolite repression: not only for glucose. Curr. Genet. 2019, 65(6), 1321-1323. Siqueira Jr, J. F.; Rôças, I. N. Bacterial pathogenesis and mediators in apical periodontitis. Braz. Dent. J. 2007, 18, 267-280. Smith, D. D.; Nickzad, A.; Déziel, E.; Stavrinides, J. A novel glycolipid biosurfactant confers grazing resistance upon Pantoea ananatis BRT175 against the social amoeba Dictyostelium discoideum. Msphere 2016, 1(1), e00075-00015. Smits, T. H.; Rezzonico, F.; Kamber, T.; Goesmann, A.; Ishimaru, C. A.; Stockwell, V. O.; Frey, J. r. E.; Duffy, B. Genome sequence of the biocontrol agent Pantoea vagans strain C9-1. J. Bacteriol. 2010, 192(24), 6486-6487. Solano, C.; García, B.; Valle, J.; Berasain, C.; Ghigo, J. M.; Gamazo, C.; Lasa, I. Genetic analysis of Salmonella enteritidis biofilm formation: critical role of cellulose. Mol. Microbiol. 2002, 43(3), 793-808. Tang, M.; Bie, Z.-l.; Wu, M.-z.; Yi, H.-p.; Feng, J.-x. Changes in organic acids and acid metabolism enzymes in melon fruit during development. Sci. Hortic. 2010, 123(3), 360-365. Tian, T.; Sun, B.; Shi, H.; Gao, T.; He, Y.; Li, Y.; Liu, Y.; Li, X.; Zhang, L.; Li, S. Sucrose triggers a novel signaling cascade promoting Bacillus subtilis rhizosphere colonization. ISME J. 2021, 15(9), 2723-2737. Tremblay, J.; Déziel, E. Improving the reproducibility of Pseudomonas aeruginosa swarming motility assays. J. Basic Microbiol. 2008, 48(6), 509-515. Uppuluri, P.; Chaturvedi, A. K.; Srinivasan, A.; Banerjee, M.; Ramasubramaniam, A. K.; Köhler, J. R.; Kadosh, D.; Lopez-Ribot, J. L. Dispersion as an important step in the Candida albicans biofilm developmental cycle. PLoS Pathog. 2010, 6(3), e1000828. USDA. (2019). FoodData Central: Melon, cantaloupe, raw. Retrieved from https://fdc.nal.usda.gov/fdc-app.html#/food-details/169092/nutrients Völksch, B.; Thon, S.; Jacobsen, I. D.; Gube, M. Polyphasic study of plant-and clinic-associated Pantoea agglomerans strains reveals indistinguishable virulence potential. Infect. Genet. Evol. 2009, 9(6), 1381-1391. Vanneste, J.; Yu, J.; Cornish, D. Presence of genes homologous to those necessary for synthesis of microcin MccEh252 in strains of Pantoea agglomerans. Acta Hortic. 2008, (793), 391-396. Vasileva-Tonkova, E.; Gesheva, V. Biosurfactant production by antarctic facultative anaerobe Pantoea sp. during growth on hydrocarbons. Curr. Microbiol. 2007, 54(2), 136-141. Verstraeten, N.; Braeken, K.; Debkumari, B.; Fauvart, M.; Fransaer, J.; Vermant, J.; Michiels, J. Living on a surface: swarming and biofilm formation. Trends Microbiol. 2008, 16(10), 496-506. Villanueva, M.; Tenorio, M.; Esteban, M.; Mendoza, M. Compositional changes during ripening of two cultivars of muskmelon fruits. Food Chem. 2004, 87(2), 179-185. Walker, K. E.; Moghaddame‐Jafari, S.; Lockatell, C. V.; Johnson, D.; Belas, R. ZapA, the IgA‐degrading metalloprotease of Proteus mirabilis, is a virulence factor expressed specifically in swarmer cells. Mol. Microbiol. 1999, 32(4), 825-836. Walterson, A. M.; Stavrinides, J. Pantoea: insights into a highly versatile and diverse genus within the Enterobacteriaceae. FEMS Microbiol. Rev. 2015, 39(6), 968-984. Wang, C.-Y.; Huang, H.-W.; Hsu, C.-P.; Yang, B. B. Recent advances in food processing using high hydrostatic pressure technology. Crit. Rev. Food Sci. Nutr. 2016, 56(4), 527-540. Weisburg, W. G.; Barns, S. M.; Pelletier, D. A.; Lane, D. J. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 1991, 173(2), 697-703. Wolbang, C. M.; Fitos, J. L.; Treeby, M. T. The effect of high pressure processing on nutritional value and quality attributes of Cucumis melo L. Innov. Food Sci. Emerg. Technol. 2008, 9(2), 196-200. Wood, J. M. Bacterial osmoregulation: a paradigm for the study of cellular homeostasis. Annu. Rev. Microbiol. 2011, 65, 215-238. Wood, P. J. Specificity in the interaction of direct dyes with polysaccharides. Carbohydr. Res. 1980, 85(2), 271-287. Wright, S. A.; Jin, M.; Clardy, J.; Beer, S. The biosynthetic genes of pantocin A and pantocin B of Pantoea agglomerans Eh318. Acta Hortic. 2006, (704), 313-320. Wu, Z.; Tu, M.; Yang, X.; Xu, J.; Yu, Z. Effect of cutting and storage temperature on sucrose and organic acids metabolism in postharvest melon fruit. Postharvest Biol. Technol. 2020, 161, 111081. Yamaki, S. Isolation of vacuoles from immature apple fruit flesh and compartmentation of sugars, organic acids, phenolic compounds and amino acids. Plant Cell Physiol. 1984, 25(1), 151-166. YAMAKI, Y. T. Organic acids in the juice of citrus fruits. J. Jpn. Soc. Hortic. Sci. 1989, 58(3), 587-594. Yao, Y.-X.; Li, M.; Liu, Z.; You, C.-X.; Wang, D.-M.; Zhai, H.; Hao, Y.-J. Molecular cloning of three malic acid related genes MdPEPC, MdVHA-A, MdcyME and their expression analysis in apple fruits. Sci. Hortic. 2009, 122(3), 404-408. Ye, L.; Hudari, M. S. B.; Zhou, X.; Zhang, D.; Li, Z.; Wu, J. C. Conversion of acid hydrolysate of oil palm empty fruit bunch to L-lactic acid by newly isolated Bacillus coagulans JI12. Appl. Microbiol. Biotechnol. 2013, 97(11), 4831-4838. Yin, W.; Wang, Y.; Liu, L.; He, J. Biofilms: the microbial “protective clothing” in extreme environments. Int. J. Mol. Sci. 2019, 20(14), 3423. Zhang, M. F.; Li, Z. L. A comparison of sugar-accumulating patterns and relative compositions in developing fruits of two oriental melon varieties as determined by HPLC. Food Chem. 2005, 90(4), 785-790. Zogaj, X.; Bokranz, W.; Nimtz, M.; Römling, U. Production of cellulose and curli fimbriae by members of the family Enterobacteriaceae isolated from the human gastrointestinal tract. Infect. Immun. 2003, 71(7), 4151-4158. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84646 | - |
| dc.description.abstract | Pantoea spp.在環境中普遍存在,過去的研究已經證實Pantoea spp.的存在會導致香瓜腐敗。而表面移行為許多細菌在環境中快速定殖的運動模式,且與生物膜的形成有關,這兩種表型能夠提升細菌在環境中的存活率。然而文獻多著重於表面移行及生物膜形成與植株的關係,尚未探討對截切後水果的影響,因此本研究試圖透過具有表面移行及生物膜形成能力的Pantoea vagans M17來瞭解這兩種表型對截切香瓜品質的影響。穿透式電子顯微鏡及膠體電泳的結果證實本研究中的半固態培養條件能夠促使Pantoea spp.分化成具表面移行能力的菌株。當培養基pH值接近中性時 (pH 6.5) 菌株運動性提升,而較高pH值 (pH 8.0) 觀察到較厚的生物膜生成。此外,Pantoea spp.在最適生長溫度 (30℃) 會表現較強的表面移行及生物膜形成。以超高壓滅菌香瓜汁作為培養基質時,P. vagans M17不但生長良好,可以形成生物膜,表面移行能力也顯著提升。為進一步了解香瓜成分對菌株的影響,以佔比較高的糖類對P. vagans M17的表面移行作用進行測試,發現棉子糖對菌株之表面移行現象具有濃度效應,而添加蔗糖的效果優於其他糖類。另外發現蔗糖及L-蘋果酸共同存在下能夠顯著增加P. vagans M17的表面移行能力。最後,接菌試驗顯示P. vagans M17會對截切香瓜品質造成不良影響,包含外觀出現黏液以及顯著改變有機酸含量。未來的研究可以配合P. vagans M17全基因定序的資料,逐步了解這兩種表型與截切香瓜品質的關聯性,期望將來能透過更精準的方式延長產品貨架期。 | zh_TW |
| dc.description.abstract | The genus Pantoea is a group of ubiquitous bacteria which has been proven to lead to rot of melon. Swarming of the bacteria is a powerful way to rapidly colonize cells which may be related to biofilm development and increase bacterial survival in the environment. However, previous research mainly focused on the bacterial swarming motility and biofilm formation in plants rather than their impact on fresh-cut fruits. As a result, this study employed Pantoea vagans M17 exhibiting swarming motility and biofilm formation to investigate the impact of these two phenotypes on the quality of fresh-cut melons. The results of transmission electron microscopy and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) revealed that Pantoea spp. was able to differentiate into swarmer cells on the semisolid medium used in this study. Bacterial motility was promoted at neutral pH (pH 6.5) while biofilm formation was enhanced at higher pH (pH 8.0). Furthermore, Pantoea spp. exhibited stronger swarming effect and biofilm formation at its optimal growth temperature (30℃). When we cultured P. vagans M17 with HPP melon juice as the substrate, not only enabled bacterial cell growth and biofilm formation but also significantly promoted swarming effect. In order to learn more about the impact of melon composition on Pantoea spp., sugars accounting for the most proportion of melon nutrient content were taken to test the swarming motility of P. vagans M17. We discovered that raffinose impacted swarming with concentration-effect relation and sucrose supported swarming effect better than the other sugars. In addition, compared with supplemented sucrose and L-malic acid individually, swarming motility of P. vagans M17 was significantly increased on the medium supplemented both. Lastly, inoculation of P. vagans M17 on fresh-cut melons showed slimy surface and significant changes on the content of organic acids. Future research could better understand the correlation between the phenotypes and quality of fresh-cut melons with the whole genome sequence information of P. vagans M17. Hoping we could take more precise ways to extend the shelf life in the near future. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T22:18:54Z (GMT). No. of bitstreams: 1 U0001-1409202213425800.pdf: 7334378 bytes, checksum: 41bd6c233ae7b85a41f489f17b9f7e9c (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 謝誌 i 摘要 ii Abstract iii Graphical Abstract v 目錄 vi 圖目錄 ix 表目錄 xi 附錄目錄 xii 第一章、 前言 1 第二章、 文獻回顧 2 第一節、 網紋洋香瓜 2 一、 基本介紹 2 二、 品質指標 2 三、 截切產品之重要性 3 第二節、 Pantoea spp. 4 第三節、 表面移行及生物膜 6 一、 表面移行基本介紹 6 二、 表面移行之影響因子 8 三、 生物膜基本介紹 9 四、 表面移行與生物膜之間的關聯性 11 第三章、 研究目的與架構 13 第四章、 材料與方法 15 第一節、 材料 15 一、 樣品 15 二、 實驗菌株 15 三、 藥品 18 四、 微生物培養基、稀釋液及其他溶液 19 五、 儀器與設備 21 六、 套裝軟體 23 第二節、 實驗方法 24 一、 菌株鑑定及特性分析 24 二、 截切香瓜之接菌試驗 32 三、 香瓜品質指標測定 33 第五章、 結果與討論 40 第一節、 菌株特性分析及鑑定 40 一、 篩選菌株 40 二、 溫度對Pantoea spp.表面移行之影響 45 三、 pH值對表面移行之影響 52 四、 溫度對生物膜形成之影響 55 五、 pH值對生物膜形成之影響 66 六、 Pantoea spp.生化特性分析 68 七、 菌株全基因定序 70 第二節、 超高壓滅菌香瓜汁作為培養基質 75 一、 超高壓滅菌香瓜汁培養菌株之生物膜形成 75 二、 超高壓滅菌香瓜汁培養菌株之表面移行 79 第三節、 碳源對表面移行之影響 83 一、 糖類對菌株表面移行之影響 83 二、 糖類對菌株生長之影響 88 第四節、 蔗糖及蘋果酸對菌株之影響 91 一、 培養基成分對表面移行之影響 91 二、 菌株利用L-蘋果酸之生長情形 93 第五節、 菌株對香瓜品質之影響 95 一、 截切香瓜之菌數及外觀變化 95 二、 截切香瓜之pH值變化 98 三、 截切香瓜之糖類變化 100 四、 截切香瓜之有機酸變化 104 第六章、 結論與展望 110 第七章、 參考文獻 111 第八章、 附錄 123 | |
| dc.language.iso | zh-TW | |
| dc.subject | 表面移行 | zh_TW |
| dc.subject | Pantoea spp. | zh_TW |
| dc.subject | 截切香瓜品質 | zh_TW |
| dc.subject | 生物膜 | zh_TW |
| dc.subject | Pantoea spp. | en |
| dc.subject | quality of fresh-cut melons | en |
| dc.subject | biofilm | en |
| dc.subject | swarming | en |
| dc.title | Pantoea vagans之表面移行及生物膜生成能力對截切香瓜品質之影響 | zh_TW |
| dc.title | Swarming and biofilm of Pantoea vagans impact on quality of fresh-cut melons | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳勁初(Chin-Chu Chen),林旭陽(Hsu-Yang Lin),李月嘉(Yue-Jia Lee),林乃君(Nai-Chun Lin),呂廷璋(Ting-Jang Lu) | |
| dc.subject.keyword | Pantoea spp.,表面移行,生物膜,截切香瓜品質, | zh_TW |
| dc.subject.keyword | Pantoea spp.,swarming,biofilm,quality of fresh-cut melons, | en |
| dc.relation.page | 138 | |
| dc.identifier.doi | 10.6342/NTU202203391 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2022-09-15 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 食品科技研究所 | zh_TW |
| dc.date.embargo-lift | 2022-09-16 | - |
| 顯示於系所單位: | 食品科技研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1409202213425800.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 7.16 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
