請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84408
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 郭錦樺(Ching-Hua Kuo) | |
dc.contributor.author | Tsung-Heng Lee | en |
dc.contributor.author | 李宗恒 | zh_TW |
dc.date.accessioned | 2023-03-19T22:10:40Z | - |
dc.date.copyright | 2022-10-17 | |
dc.date.issued | 2022 | |
dc.date.submitted | 2022-09-30 | |
dc.identifier.citation | 1. Gurr MI, Harwood JL, Frayn KN. Lipids: Definition, Isolation, Separation and Detection. Lipid Biochemistry. Oxford: Blackwell Science, 2002:1-12. 2. van Meer G, Voelker DR, Feigenson GW. Membrane lipids: where they are and how they behave. Nature Reviews Molecular Cell Biology. 2008;9: 112-24. 3. McMahon HT, Boucrot E. Membrane curvature at a glance. Journal of Cell Science. 2015;128: 1065-70. 4. Olzmann JA, Carvalho P. Dynamics and functions of lipid droplets. Nat Rev Mol Cell Biol. 2019;20: 137-55. 5. Prinz WA. Bridging the gap: membrane contact sites in signaling, metabolism, and organelle dynamics. J Cell Biol. 2014;205: 759-69. 6. Wymann MP, Schneiter R. Lipid signalling in disease. Nat Rev Mol Cell Biol. 2008;9: 162-76. 7. Fiehn O. Metabolomics--the link between genotypes and phenotypes. Plant Mol Biol. 2002;48: 155-71. 8. Fahy E, Sud M, Cotter D, Subramaniam S. LIPID MAPS online tools for lipid research. Nucleic Acids Res. 2007;35: W606-12. 9. Fahy E, Subramaniam S, Murphy RC, Nishijima M, Raetz CR, Shimizu T, Spener F, van Meer G, Wakelam MJ, Dennis EA. Update of the LIPID MAPS comprehensive classification system for lipids. J Lipid Res. 2009;50 Suppl: S9-14. 10. Folch J, Lees M, Sloane Stanley GH. A simple method for the isolation and purification of total lipides from animal tissues. Journal of Biological Chemistry. 1957;226: 497-509. 11. Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959;37: 911-7. 12. Matyash V, Liebisch G, Kurzchalia TV, Shevchenko A, Schwudke D. Lipid extraction by methyl-tert-butyl ether for high-throughput lipidomics. J Lipid Res. 2008;49: 1137-46. 13. Zhao Z, Xu Y. An extremely simple method for extraction of lysophospholipids and phospholipids from blood samples. J Lipid Res. 2010;51: 652-9. 14. Lydic TA, Busik JV, Reid GE. A monophasic extraction strategy for the simultaneous lipidome analysis of polar and nonpolar retina lipids. J Lipid Res. 2014;55: 1797-809. 15. Pellegrino RM, Di Veroli A, Valeri A, Goracci L, Cruciani G. LC/MS lipid profiling from human serum: a new method for global lipid extraction. Anal Bioanal Chem. 2014;406: 7937-48. 16. Alshehry ZH, Barlow CK, Weir JM, Zhou Y, McConville MJ, Meikle PJ. An Efficient Single Phase Method for the Extraction of Plasma Lipids. Metabolites. 2015;5: 389-403. 17. Calderon C, Sanwald C, Schlotterbeck J, Drotleff B, Lammerhofer M. Comparison of simple monophasic versus classical biphasic extraction protocols for comprehensive UHPLC-MS/MS lipidomic analysis of Hela cells. Anal Chim Acta. 2019;1048: 66-74. 18. Fu X, Calderon C, Harm T, Gawaz M, Lammerhofer M. Advanced unified monophasic lipid extraction protocol with wide coverage on the polarity scale optimized for large-scale untargeted clinical lipidomics analysis of platelets. Anal Chim Acta. 2022;1221: 340155. 19. Watanabe K, Yamagiwa N, Torisawa Y. Cyclopentyl methyl ether as a new and alternative process solvent. Organic Process Research & Development. 2007;11: 251-8. 20. Sotak T, Magyarova Z, Shamzhy M, Kubu M, Golabek K, Cejka J, Hronec M. Gas-phase etherification of cyclopentanol with methanol to cyclopentyl methyl ether catalyzed by zeolites. Applied Catalysis a-General. 2021;618. 21. Antonucci V, Coleman J, Ferry JB, Johnson N, Mathe M, Scott JP, Xu J. Toxicological Assessment of 2-Methyltetrahydrofuran and Cyclopentyl Methyl Ether in Support of Their Use in Pharmaceutical Chemical Process Development. Organic Process Research & Development. 2011;15: 939-41. 22. Probst KV, Wales MD, Rezac ME, Vadlani PV. Evaluation of green solvents: Oil extraction from oleaginous yeast Lipomyces starkeyi using cyclopentyl methyl ether (CPME). Biotechnol Prog. 2017;33: 1096-103. 23. de Jesus SS, Maciel R. Recent advances in lipid extraction using green solvents. Renewable & Sustainable Energy Reviews. 2020;133. 24. Santoro I, Nardi M, Benincasa C, Costanzo P, Giordano G, Procopio A, Sindona G. Sustainable and Selective Extraction of Lipids and Bioactive Compounds from Microalgae. Molecules. 2019;24. 25. Ministry of Health and Welfare. 2020 Cause of Death Statistics. Available from URL: https://www.mohw.gov.tw/cp-5256-63399-2.html. 26. Collaborators GBDS. Global, regional, and national burden of stroke and its risk factors, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet Neurology. 2021;20: 795-820. 27. O'Donnell MJ, Chin SL, Rangarajan S, Xavier D, Liu L, Zhang H, Rao-Melacini P, Zhang X, Pais P, Agapay S, Lopez-Jaramillo P, Damasceno A, Langhorne P, McQueen MJ, Rosengren A, Dehghan M, Hankey GJ, Dans AL, Elsayed A, Avezum A, Mondo C, Diener HC, Ryglewicz D, Czlonkowska A, Pogosova N, Weimar C, Iqbal R, Diaz R, Yusoff K, Yusufali A, Oguz A, Wang X, Penaherrera E, Lanas F, Ogah OS, Ogunniyi A, Iversen HK, Malaga G, Rumboldt Z, Oveisgharan S, Al Hussain F, Magazi D, Nilanont Y, Ferguson J, Pare G, Yusuf S, investigators I. Global and regional effects of potentially modifiable risk factors associated with acute stroke in 32 countries (INTERSTROKE): a case-control study. Lancet. 2016;388: 761-75. 28. Tsao CW, Aday AW, Almarzooq ZI, Alonso A, Beaton AZ, Bittencourt MS, Boehme AK, Buxton AE, Carson AP, Commodore-Mensah Y, Elkind MSV, Evenson KR, Eze-Nliam C, Ferguson JF, Generoso G, Ho JE, Kalani R, Khan SS, Kissela BM, Knutson KL, Levine DA, Lewis TT, Liu J, Loop MS, Ma J, Mussolino ME, Navaneethan SD, Perak AM, Poudel R, Rezk-Hanna M, Roth GA, Schroeder EB, Shah SH, Thacker EL, VanWagner LB, Virani SS, Voecks JH, Wang NY, Yaffe K, Martin SS. Heart Disease and Stroke Statistics-2022 Update: A Report From the American Heart Association. Circulation. 2022;145: e153-e639. 29. Sacco RL, Kasner SE, Broderick JP, Caplan LR, Connors JJ, Culebras A, Elkind MS, George MG, Hamdan AD, Higashida RT, Hoh BL, Janis LS, Kase CS, Kleindorfer DO, Lee JM, Moseley ME, Peterson ED, Turan TN, Valderrama AL, Vinters HV, American Heart Association Stroke Council CoCS, Anesthesia, Council on Cardiovascular R, Intervention, Council on C, Stroke N, Council on E, Prevention, Council on Peripheral Vascular D, Council on Nutrition PA, Metabolism. An updated definition of stroke for the 21st century: a statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2013;44: 2064-89. 30. Goldstein LB, Bushnell CD, Adams RJ, Appel LJ, Braun LT, Chaturvedi S, Creager MA, Culebras A, Eckel RH, Hart RG, Hinchey JA, Howard VJ, Jauch EC, Levine SR, Meschia JF, Moore WS, Nixon JV, Pearson TA, American Heart Association Stroke C, Council on Cardiovascular N, Council on E, Prevention, Council for High Blood Pressure R, Council on Peripheral Vascular D, Interdisciplinary Council on Quality of C, Outcomes R. Guidelines for the primary prevention of stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2011;42: 517-84. 31. Adams HP, Jr., Bendixen BH, Kappelle LJ, Biller J, Love BB, Gordon DL, Marsh EE, 3rd. Classification of subtype of acute ischemic stroke. Definitions for use in a multicenter clinical trial. TOAST. Trial of Org 10172 in Acute Stroke Treatment. Stroke. 1993;24: 35-41. 32. Baruah DB, Dash RN, Chaudhari MR, Kadam SS. Plasminogen activators: a comparison. Vascul Pharmacol. 2006;44: 1-9. 33. Vassalli JD, Sappino AP, Belin D. The plasminogen activator/plasmin system. Journal of Clinical Investigation. 1991;88: 1067-72. 34. Undas A, Ariens RA. Fibrin clot structure and function: a role in the pathophysiology of arterial and venous thromboembolic diseases. Arterioscler Thromb Vasc Biol. 2011;31: e88-99. 35. Hacke W, Kaste M, Bluhmki E, Brozman M, Davalos A, Guidetti D, Larrue V, Lees KR, Medeghri Z, Machnig T, Schneider D, von Kummer R, Wahlgren N, Toni D, Investigators E. Thrombolysis with alteplase 3 to 4.5 hours after acute ischemic stroke. N Engl J Med. 2008;359: 1317-29. 36. Emberson J, Lees KR, Lyden P, Blackwell L, Albers G, Bluhmki E, Brott T, Cohen G, Davis S, Donnan G, Grotta J, Howard G, Kaste M, Koga M, von Kummer R, Lansberg M, Lindley RI, Murray G, Olivot JM, Parsons M, Tilley B, Toni D, Toyoda K, Wahlgren N, Wardlaw J, Whiteley W, del Zoppo GJ, Baigent C, Sandercock P, Hacke W, Stroke Thrombolysis Trialists' Collaborative G. Effect of treatment delay, age, and stroke severity on the effects of intravenous thrombolysis with alteplase for acute ischaemic stroke: a meta-analysis of individual patient data from randomised trials. Lancet. 2014;384: 1929-35. 37. Wardlaw JM, Murray V, Berge E, del Zoppo G, Sandercock P, Lindley RL, Cohen G. Recombinant tissue plasminogen activator for acute ischaemic stroke: an updated systematic review and meta-analysis. Lancet. 2012;379: 2364-72. 38. Menon BK, Buck BH, Singh N, Deschaintre Y, Almekhlafi MA, Coutts SB, Thirunavukkarasu S, Khosravani H, Appireddy R, Moreau F, Gubitz G, Tkach A, Catanese L, Dowlatshahi D, Medvedev G, Mandzia J, Pikula A, Shankar J, Williams H, Field TS, Manosalva A, Siddiqui M, Zafar A, Imoukhuede O, Hunter G, Demchuk AM, Mishra S, Gioia LC, Jalini S, Cayer C, Phillips S, Elamin E, Shoamanesh A, Subramaniam S, Kate M, Jacquin G, Camden MC, Benali F, Alhabli I, Bala F, Horn M, Stotts G, Hill MD, Gladstone DJ, Poppe A, Sehgal A, Zhang Q, Lethebe BC, Doram C, Ademola A, Shamy M, Kenney C, Sajobi TT, Swartz RH, Ac TTI. Intravenous tenecteplase compared with alteplase for acute ischaemic stroke in Canada (AcT): a pragmatic, multicentre, open-label, registry-linked, randomised, controlled, non-inferiority trial. Lancet. 2022;400: 161-9. 39. Goyal M, Menon BK, van Zwam WH, Dippel DW, Mitchell PJ, Demchuk AM, Davalos A, Majoie CB, van der Lugt A, de Miquel MA, Donnan GA, Roos YB, Bonafe A, Jahan R, Diener HC, van den Berg LA, Levy EI, Berkhemer OA, Pereira VM, Rempel J, Millan M, Davis SM, Roy D, Thornton J, Roman LS, Ribo M, Beumer D, Stouch B, Brown S, Campbell BC, van Oostenbrugge RJ, Saver JL, Hill MD, Jovin TG, collaborators H. Endovascular thrombectomy after large-vessel ischaemic stroke: a meta-analysis of individual patient data from five randomised trials. Lancet. 2016;387: 1723-31. 40. Spiotta AM, Chaudry MI, Hui FK, Turner RD, Kellogg RT, Turk AS. Evolution of thrombectomy approaches and devices for acute stroke: a technical review. J Neurointerv Surg. 2015;7: 2-7. 41. Berkhemer OA, Fransen PS, Beumer D, van den Berg LA, Lingsma HF, Yoo AJ, Schonewille WJ, Vos JA, Nederkoorn PJ, Wermer MJ, van Walderveen MA, Staals J, Hofmeijer J, van Oostayen JA, Lycklama a Nijeholt GJ, Boiten J, Brouwer PA, Emmer BJ, de Bruijn SF, van Dijk LC, Kappelle LJ, Lo RH, van Dijk EJ, de Vries J, de Kort PL, van Rooij WJ, van den Berg JS, van Hasselt BA, Aerden LA, Dallinga RJ, Visser MC, Bot JC, Vroomen PC, Eshghi O, Schreuder TH, Heijboer RJ, Keizer K, Tielbeek AV, den Hertog HM, Gerrits DG, van den Berg-Vos RM, Karas GB, Steyerberg EW, Flach HZ, Marquering HA, Sprengers ME, Jenniskens SF, Beenen LF, van den Berg R, Koudstaal PJ, van Zwam WH, Roos YB, van der Lugt A, van Oostenbrugge RJ, Majoie CB, Dippel DW, Investigators MC. A randomized trial of intraarterial treatment for acute ischemic stroke. N Engl J Med. 2015;372: 11-20. 42. Campbell BC, Mitchell PJ, Kleinig TJ, Dewey HM, Churilov L, Yassi N, Yan B, Dowling RJ, Parsons MW, Oxley TJ, Wu TY, Brooks M, Simpson MA, Miteff F, Levi CR, Krause M, Harrington TJ, Faulder KC, Steinfort BS, Priglinger M, Ang T, Scroop R, Barber PA, McGuinness B, Wijeratne T, Phan TG, Chong W, Chandra RV, Bladin CF, Badve M, Rice H, de Villiers L, Ma H, Desmond PM, Donnan GA, Davis SM, Investigators E-I. Endovascular therapy for ischemic stroke with perfusion-imaging selection. N Engl J Med. 2015;372: 1009-18. 43. Goyal M, Demchuk AM, Menon BK, Eesa M, Rempel JL, Thornton J, Roy D, Jovin TG, Willinsky RA, Sapkota BL, Dowlatshahi D, Frei DF, Kamal NR, Montanera WJ, Poppe AY, Ryckborst KJ, Silver FL, Shuaib A, Tampieri D, Williams D, Bang OY, Baxter BW, Burns PA, Choe H, Heo JH, Holmstedt CA, Jankowitz B, Kelly M, Linares G, Mandzia JL, Shankar J, Sohn SI, Swartz RH, Barber PA, Coutts SB, Smith EE, Morrish WF, Weill A, Subramaniam S, Mitha AP, Wong JH, Lowerison MW, Sajobi TT, Hill MD, Investigators ET. Randomized assessment of rapid endovascular treatment of ischemic stroke. N Engl J Med. 2015;372: 1019-30. 44. Saver JL, Goyal M, Bonafe A, Diener HC, Levy EI, Pereira VM, Albers GW, Cognard C, Cohen DJ, Hacke W, Jansen O, Jovin TG, Mattle HP, Nogueira RG, Siddiqui AH, Yavagal DR, Baxter BW, Devlin TG, Lopes DK, Reddy VK, du Mesnil de Rochemont R, Singer OC, Jahan R, Investigators SP. Stent-retriever thrombectomy after intravenous t-PA vs. t-PA alone in stroke. N Engl J Med. 2015;372: 2285-95. 45. Jovin TG, Chamorro A, Cobo E, de Miquel MA, Molina CA, Rovira A, San Roman L, Serena J, Abilleira S, Ribo M, Millan M, Urra X, Cardona P, Lopez-Cancio E, Tomasello A, Castano C, Blasco J, Aja L, Dorado L, Quesada H, Rubiera M, Hernandez-Perez M, Goyal M, Demchuk AM, von Kummer R, Gallofre M, Davalos A, Investigators RT. Thrombectomy within 8 Hours after Symptom Onset in Ischemic Stroke. New England Journal of Medicine. 2015;372: 2296-306. 46. Nogueira RG, Jadhav AP, Haussen DC, Bonafe A, Budzik RF, Bhuva P, Yavagal DR, Ribo M, Cognard C, Hanel RA, Sila CA, Hassan AE, Millan M, Levy EI, Mitchell P, Chen M, English JD, Shah QA, Silver FL, Pereira VM, Mehta BP, Baxter BW, Abraham MG, Cardona P, Veznedaroglu E, Hellinger FR, Feng L, Kirmani JF, Lopes DK, Jankowitz BT, Frankel MR, Costalat V, Vora NA, Yoo AJ, Malik AM, Furlan AJ, Rubiera M, Aghaebrahim A, Olivot JM, Tekle WG, Shields R, Graves T, Lewis RJ, Smith WS, Liebeskind DS, Saver JL, Jovin TG, Investigators DT. Thrombectomy 6 to 24 Hours after Stroke with a Mismatch between Deficit and Infarct. New England Journal of Medicine. 2018;378: 11-21. 47. Albers GW, Marks MP, Kemp S, Christensen S, Tsai JP, Ortega-Gutierrez S, McTaggart RA, Torbey MT, Kim-Tenser M, Leslie-Mazwi T, Sarraj A, Kasner SE, Ansari SA, Yeatts SD, Hamilton S, Mlynash M, Heit JJ, Zaharchuk G, Kim S, Carrozzella J, Palesch YY, Demchuk AM, Bammer R, Lavori PW, Broderick JP, Lansberg MG, Investigators D. Thrombectomy for Stroke at 6 to 16 Hours with Selection by Perfusion Imaging. New England Journal of Medicine. 2018;378: 708-18. 48. Campbell BCV, Majoie C, Albers GW, Menon BK, Yassi N, Sharma G, van Zwam WH, van Oostenbrugge RJ, Demchuk AM, Guillemin F, White P, Davalos A, van der Lugt A, Butcher KS, Cherifi A, Marquering HA, Cloud G, Macho Fernandez JM, Madigan J, Oppenheim C, Donnan GA, Roos Y, Shankar J, Lingsma H, Bonafe A, Raoult H, Hernandez-Perez M, Bharatha A, Jahan R, Jansen O, Richard S, Levy EI, Berkhemer OA, Soudant M, Aja L, Davis SM, Krings T, Tisserand M, San Roman L, Tomasello A, Beumer D, Brown S, Liebeskind DS, Bracard S, Muir KW, Dippel DWJ, Goyal M, Saver JL, Jovin TG, Hill MD, Mitchell PJ, collaborators H. Penumbral imaging and functional outcome in patients with anterior circulation ischaemic stroke treated with endovascular thrombectomy versus medical therapy: a meta-analysis of individual patient-level data. Lancet Neurology. 2019;18: 46-55. 49. Nannoni S, Strambo D, Sirimarco G, Amiguet M, Vanacker P, Eskandari A, Saliou G, Wintermark M, Dunet V, Michel P. Eligibility for late endovascular treatment using DAWN, DEFUSE-3, and more liberal selection criteria in a stroke center. Journal of Neurointerventional Surgery. 2020;12: 842-+. 50. Hannun YA, Obeid LM. Ceramide: an intracellular signal for apoptosis. Trends Biochem Sci. 1995;20: 73-7. 51. Bose R, Verheij M, Haimovitz-Friedman A, Scotto K, Fuks Z, Kolesnick R. Ceramide synthase mediates daunorubicin-induced apoptosis: an alternative mechanism for generating death signals. Cell. 1995;82: 405-14. 52. Vidaurre OG, Haines JD, Katz Sand I, Adula KP, Huynh JL, McGraw CA, Zhang F, Varghese M, Sotirchos E, Bhargava P, Bandaru VV, Pasinetti G, Zhang W, Inglese M, Calabresi PA, Wu G, Miller AE, Haughey NJ, Lublin FD, Casaccia P. Cerebrospinal fluid ceramides from patients with multiple sclerosis impair neuronal bioenergetics. Brain. 2014;137: 2271-86. 53. Harden OC, Hammad SM. Sphingolipids and Diagnosis, Prognosis, and Organ Damage in Systemic Lupus Erythematosus. Front Immunol. 2020;11: 586737. 54. Haus JM, Kashyap SR, Kasumov T, Zhang R, Kelly KR, Defronzo RA, Kirwan JP. Plasma ceramides are elevated in obese subjects with type 2 diabetes and correlate with the severity of insulin resistance. Diabetes. 2009;58: 337-43. 55. Wang DD, Toledo E, Hruby A, Rosner BA, Willett WC, Sun Q, Razquin C, Zheng Y, Ruiz-Canela M, Guasch-Ferre M, Corella D, Gomez-Gracia E, Fiol M, Estruch R, Ros E, Lapetra J, Fito M, Aros F, Serra-Majem L, Lee CH, Clish CB, Liang L, Salas-Salvado J, Martinez-Gonzalez MA, Hu FB. Plasma Ceramides, Mediterranean Diet, and Incident Cardiovascular Disease in the PREDIMED Trial (Prevencion con Dieta Mediterranea). Circulation. 2017;135: 2028-40. 56. Peterson LR, Xanthakis V, Duncan MS, Gross S, Friedrich N, Volzke H, Felix SB, Jiang H, Sidhu R, Nauck M, Jiang X, Ory DS, Dorr M, Vasan RS, Schaffer JE. Ceramide Remodeling and Risk of Cardiovascular Events and Mortality. J Am Heart Assoc. 2018;7. 57. Cutler RG, Kelly J, Storie K, Pedersen WA, Tammara A, Hatanpaa K, Troncoso JC, Mattson MP. Involvement of oxidative stress-induced abnormalities in ceramide and cholesterol metabolism in brain aging and Alzheimer's disease. Proc Natl Acad Sci U S A. 2004;101: 2070-5. 58. Katsel P, Li C, Haroutunian V. Gene expression alterations in the sphingolipid metabolism pathways during progression of dementia and Alzheimer's disease: a shift toward ceramide accumulation at the earliest recognizable stages of Alzheimer's disease? Neurochem Res. 2007;32: 845-56. 59. Kitatani K, Idkowiak-Baldys J, Hannun YA. The sphingolipid salvage pathway in ceramide metabolism and signaling. Cell Signal. 2008;20: 1010-8. 60. Pruett ST, Bushnev A, Hagedorn K, Adiga M, Haynes CA, Sullards MC, Liotta DC, Merrill AH. Thematic review series: Sphingolipids - Biodiversity of sphingoid bases ('sphingosines') and related amino alcohols. Journal of Lipid Research. 2008;49: 1621-39. 61. Pewzner-Jung Y, Ben-Dor S, Futerman AH. When do Lasses (longevity assurance genes) become CerS (ceramide synthases)?: Insights into the regulation of ceramide synthesis. Journal of Biological Chemistry. 2006;281: 25001-5. 62. Michel C, van Echten-Deckert G, Rother J, Sandhoff K, Wang E, Merrill AH, Jr. Characterization of ceramide synthesis. A dihydroceramide desaturase introduces the 4,5-trans-double bond of sphingosine at the level of dihydroceramide. Journal of Biological Chemistry. 1997;272: 22432-7. 63. Mullen TD, Hannun YA, Obeid LM. Ceramide synthases at the centre of sphingolipid metabolism and biology. Biochemical Journal. 2012;441: 789-802. 64. Laviad EL, Albee L, Pankova-Kholmyansky I, Epstein S, Park H, Merrill AH, Jr., Futerman AH. Characterization of ceramide synthase 2: tissue distribution, substrate specificity, and inhibition by sphingosine 1-phosphate. Journal of Biological Chemistry. 2008;283: 5677-84. 65. Hannun YA, Obeid LM. Sphingolipids and their metabolism in physiology and disease. Nature Reviews Molecular Cell Biology. 2018;19: 175-91. 66. Merrill AH, Jr., Jones DD. An update of the enzymology and regulation of sphingomyelin metabolism. Biochim Biophys Acta. 1990;1044: 1-12. 67. Kitatani K, Idkowiak-Baldys J, Hannun YA. The sphingolipid salvage pathway in ceramide metabolism and signaling. Cellular Signalling. 2008;20: 1010-8. 68. Hannun YA, Obeid LM. Principles of bioactive lipid signalling: lessons from sphingolipids. Nature Reviews Molecular Cell Biology. 2008;9: 139-50. 69. Spiegel S, Milstien S. Sphingosine-1-phosphate: an enigmatic signalling lipid. Nat Rev Mol Cell Biol. 2003;4: 397-407. 70. Venkataraman K, Lee YM, Michaud J, Thangada S, Ai Y, Bonkovsky HL, Parikh NS, Habrukowich C, Hla T. Vascular endothelium as a contributor of plasma sphingosine 1-phosphate. Circulation Research. 2008;102: 669-76. 71. Ksiazek M, Chacinska M, Chabowski A, Baranowski M. Sources, metabolism, and regulation of circulating sphingosine-1-phosphate. J Lipid Res. 2015;56: 1271-81. 72. Obinata H, Kuo A, Wada Y, Swendeman S, Liu CH, Blaho VA, Nagumo R, Sato K, Izumi T, Hla T. Identification of ApoA4 as a sphingosine 1-phosphate chaperone in ApoM- and albumin-deficient mice[S]. Journal of Lipid Research. 2019;60: 1912-21. 73. Blaho VA, Hla T. An update on the biology of sphingosine 1-phosphate receptors. J Lipid Res. 2014;55: 1596-608. 74. Yanagida K, Hla T. Vascular and Immunobiology of the Circulatory Sphingosine 1-Phosphate Gradient. Annu Rev Physiol. 2017;79: 67-91. 75. Hla T, Venkataraman K, Michaud J. The vascular S1P gradient-cellular sources and biological significance. Biochim Biophys Acta. 2008;1781: 477-82. 76. Cartier A, Hla T. Sphingosine 1-phosphate: Lipid signaling in pathology and therapy. Science. 2019;366. 77. Kubota M, Narita K, Nakagomi T, Tamura A, Shimasaki H, Ueta N, Yoshida S. Sphingomyelin changes in rat cerebral cortex during focal ischemia. Neurological Research. 1996;18: 337-41. 78. Yoshimura S, Banno Y, Nakashima S, Takenaka K, Sakai H, Nishimura Y, Sakai N, Shimizu S, Eguchi Y, Tsujimoto Y, Nozawa Y. Ceramide formation leads to caspase-3 activation during hypoxic PC12 cell death. Inhibitory effects of Bcl-2 on ceramide formation and caspase-3 activation. Journal of Biological Chemistry. 1998;273: 6921-7. 79. Nakane M, Kubota M, Nakagomi T, Tamura A, Hisaki H, Shimasaki H, Ueta N. Lethal forebrain ischemia stimulates sphingomyelin hydrolysis and ceramide generation in the gerbil hippocampus. Neuroscience Letters. 2000;296: 89-92. 80. Yu ZF, Nikolova-Karakashian M, Zhou D, Cheng G, Schuchman EH, Mattson MP. Pivotal role for acidic sphingomyelinase in cerebral ischemia-induced ceramide and cytokine production, and neuronal apoptosis. Journal of Molecular Neuroscience. 2000;15: 85-97. 81. Yu J, Novgorodov SA, Chudakova D, Zhu H, Bielawska A, Bielawski J, Obeid LM, Kindy MS, Gudz TI. JNK3 signaling pathway activates ceramide synthase leading to mitochondrial dysfunction. Journal of Biological Chemistry. 2007;282: 25940-9. 82. el Bawab S, Mao C, Obeid LM, Hannun YA. Ceramidases in the regulation of ceramide levels and function. Subcell Biochem. 2002;36: 187-205. 83. Siskind LJ. Mitochondrial ceramide and the induction of apoptosis. J Bioenerg Biomembr. 2005;37: 143-53. 84. Novgorodov SA, Gudz TI. Ceramide and mitochondria in ischemic brain injury. Int J Biochem Mol Biol. 2011;2: 347-61. 85. Chao HC, Lee TH, Chiang CS, Yang SY, Kuo CH, Tang SC. Sphingolipidomics Investigation of the Temporal Dynamics after Ischemic Brain Injury. J Proteome Res. 2019;18: 3470-8. 86. Harayama T, Riezman H. Understanding the diversity of membrane lipid composition. Nat Rev Mol Cell Biol. 2018;19: 281-96. 87. van Meer G, Voelker DR, Feigenson GW. Membrane lipids: where they are and how they behave. Nat Rev Mol Cell Biol. 2008;9: 112-24. 88. Han X, Gross RW. Global analyses of cellular lipidomes directly from crude extracts of biological samples by ESI mass spectrometry: a bridge to lipidomics. J Lipid Res. 2003;44: 1071-9. 89. Rustam YH, Reid GE. Analytical Challenges and Recent Advances in Mass Spectrometry Based Lipidomics. Anal Chem. 2018;90: 374-97. 90. Gross RW. The evolution of lipidomics through space and time. Biochim Biophys Acta Mol Cell Biol Lipids. 2017;1862: 731-9. 91. Lee CH, Tang SC, Kuo CH. Differentiating ether phosphatidylcholines with a collision energy-optimized MRM method by RPLC-MS/MS and its application to studying ischemia-neuronal injury. Anal Chim Acta. 2021;1184: 339014. 92. Zullig T, Trotzmuller M, Kofeler HC. Lipidomics from sample preparation to data analysis: a primer. Anal Bioanal Chem. 2020;412: 2191-209. 93. Cajka T, Fiehn O. Toward Merging Untargeted and Targeted Methods in Mass Spectrometry-Based Metabolomics and Lipidomics. Anal Chem. 2016;88: 524-45. 94. Kanu AB. Recent developments in sample preparation techniques combined with high-performance liquid chromatography: A critical review. J Chromatogr A. 2021;1654: 462444. 95. Lofgren L, Stahlman M, Forsberg GB, Saarinen S, Nilsson R, Hansson GI. The BUME method: a novel automated chloroform-free 96-well total lipid extraction method for blood plasma. J Lipid Res. 2012;53: 1690-700. 96. Scherer M, Schmitz G, Liebisch G. High-throughput analysis of sphingosine 1-phosphate, sphinganine 1-phosphate, and lysophosphatidic acid in plasma samples by liquid chromatography-tandem mass spectrometry. Clin Chem. 2009;55: 1218-22. 97. Liebisch G, Scherer M. Quantification of bioactive sphingo- and glycerophospholipid species by electrospray ionization tandem mass spectrometry in blood. J Chromatogr B Analyt Technol Biomed Life Sci. 2012;883-884: 141-6. 98. Bollinger JG, Ii H, Sadilek M, Gelb MH. Improved method for the quantification of lysophospholipids including enol ether species by liquid chromatography-tandem mass spectrometry. J Lipid Res. 2010;51: 440-7. 99. Tsugawa H, Cajka T, Kind T, Ma Y, Higgins B, Ikeda K, Kanazawa M, VanderGheynst J, Fiehn O, Arita M. MS-DIAL: data-independent MS/MS deconvolution for comprehensive metabolome analysis. Nat Methods. 2015;12: 523-6. 100. Tsugawa H, Ikeda K, Takahashi M, Satoh A, Mori Y, Uchino H, Okahashi N, Yamada Y, Tada I, Bonini P, Higashi Y, Okazaki Y, Zhou Z, Zhu ZJ, Koelmel J, Cajka T, Fiehn O, Saito K, Arita M, Arita M. A lipidome atlas in MS-DIAL 4. Nat Biotechnol. 2020;38: 1159-63. 101. Pang ZQ, Chong J, Zhou GY, Morais DAD, Chang L, Barrette M, Gauthier C, Jacques PE, Li SZ, Xia JG. MetaboAnalyst 5.0: narrowing the gap between raw spectra and functional insights. Nucleic Acids Research. 2021;49: W388-W96. 102. Yang Y, Cruickshank C, Armstrong M, Mahaffey S, Reisdorph R, Reisdorph N. New sample preparation approach for mass spectrometry-based profiling of plasma results in improved coverage of metabolome. J Chromatogr A. 2013;1300: 217-26. 103. Baker DL, Desiderio DM, Miller DD, Tolley B, Tigyi GJ. Direct quantitative analysis of lysophosphatidic acid molecular species by stable isotope dilution electrospray ionization liquid chromatography-mass spectrometry. Anal Biochem. 2001;292: 287-95. 104. Quehenberger O, Armando AM, Brown AH, Milne SB, Myers DS, Merrill AH, Bandyopadhyay S, Jones KN, Kelly S, Shaner RL, Sullards CM, Wang E, Murphy RC, Barkley RM, Leiker TJ, Raetz CR, Guan Z, Laird GM, Six DA, Russell DW, McDonald JG, Subramaniam S, Fahy E, Dennis EA. Lipidomics reveals a remarkable diversity of lipids in human plasma. J Lipid Res. 2010;51: 3299-305. 105. Bowden JA, Heckert A, Ulmer CZ, Jones CM, Koelmel JP, Abdullah L, Ahonen L, Alnouti Y, Armando AM, Asara JM, Bamba T, Barr JR, Bergquist J, Borchers CH, Brandsma J, Breitkopf SB, Cajka T, Cazenave-Gassiot A, Checa A, Cinel MA, Colas RA, Cremers S, Dennis EA, Evans JE, Fauland A, Fiehn O, Gardner MS, Garrett TJ, Gotlinger KH, Han J, Huang Y, Neo AH, Hyotylainen T, Izumi Y, Jiang H, Jiang H, Jiang J, Kachman M, Kiyonami R, Klavins K, Klose C, Kofeler HC, Kolmert J, Koal T, Koster G, Kuklenyik Z, Kurland IJ, Leadley M, Lin K, Maddipati KR, McDougall D, Meikle PJ, Mellett NA, Monnin C, Moseley MA, Nandakumar R, Oresic M, Patterson R, Peake D, Pierce JS, Post M, Postle AD, Pugh R, Qiu Y, Quehenberger O, Ramrup P, Rees J, Rembiesa B, Reynaud D, Roth MR, Sales S, Schuhmann K, Schwartzman ML, Serhan CN, Shevchenko A, Somerville SE, St John-Williams L, Surma MA, Takeda H, Thakare R, Thompson JW, Torta F, Triebl A, Trotzmuller M, Ubhayasekera SJK, Vuckovic D, Weir JM, Welti R, Wenk MR, Wheelock CE, Yao L, Yuan M, Zhao XH, Zhou S. Harmonizing lipidomics: NIST interlaboratory comparison exercise for lipidomics using SRM 1950-Metabolites in Frozen Human Plasma. J Lipid Res. 2017;58: 2275-88. 106. Brugger B, Erben G, Sandhoff R, Wieland FT, Lehmann WD. Quantitative analysis of biological membrane lipids at the low picomole level by nano-electrospray ionization tandem mass spectrometry. Proc Natl Acad Sci U S A. 1997;94: 2339-44. 107. Liebisch G, Drobnik W, Reil M, Trumbach B, Arnecke R, Olgemoller B, Roscher A, Schmitz G. Quantitative measurement of different ceramide species from crude cellular extracts by electrospray ionization tandem mass spectrometry (ESI-MS/MS). J Lipid Res. 1999;40: 1539-46. 108. Huang Q, Zhou X, Liu D, Xin B, Cechner K, Wang H, Zhou A. A new liquid chromatography/tandem mass spectrometry method for quantification of gangliosides in human plasma. Anal Biochem. 2014;455: 26-34. 109. Busch CM, Desai AV, Moorthy GS, Fox E, Balis FM. A validated HPLC-MS/MS method for estimating the concentration of the ganglioside, GD2, in human plasma or serum. J Chromatogr B Analyt Technol Biomed Life Sci. 2018;1102-1103: 60-5. 110. Ikeda K, Shimizu T, Taguchi R. Targeted analysis of ganglioside and sulfatide molecular species by LC/ESI-MS/MS with theoretically expanded multiple reaction monitoring. J Lipid Res. 2008;49: 2678-89. 111. McAnoy AM, Wu CC, Murphy RC. Direct qualitative analysis of triacylglycerols by electrospray mass spectrometry using a linear ion trap. J Am Soc Mass Spectrom. 2005;16: 1498-509. 112. Johnson CO, Nguyen M, Roth GA, Nichols E, Alam T, Abate D, Abd-Allah F, Abdelalim A, Abraha HN, Abu-Rmeileh NM, Adebayo OM, Adeoye AM, Agarwal G, Agrawal S, Aichour AN, Aichour I, Aichour MTE, Alahdab F, Ali R, Alvis-Guzman N, Anber NH, Anjomshoa M, Arabloo J, Arauz A, Arnlov J, Arora A, Awasthi A, Banach M, Barboza MA, Barker-Collo SL, Barnighausen TW, Basu S, Belachew AB, Belayneh YM, Bennett DA, Bensenor IM, Bhattacharyya K, Biadgo B, Bijani A, Bikbov B, Bin Sayeed MS, Butt ZA, Cahuana-Hurtado L, Carrero JJ, Carvalho F, Castaneda-Orjuela CA, Castro F, Catala-Lopez F, Chaiah Y, Chiang PPC, Choi JYJ, Christensen H, Chu DT, Cortinovis M, Damasceno AAM, Dandona L, Dandona R, Daryani A, Davletov K, De Courten B, De la Cruz-Gongora V, Degefa MG, Dharmaratne SD, Diaz D, Dubey M, Duken EE, Edessa D, Endres M, Faraon EJA, Farzadfar F, Fernandes E, Fischer F, Flor LS, Ganji M, Gebre AK, Gebremichael TG, Geta B, Gezae KE, Gill PS, Gnedovskaya EV, Gomez-Dantes H, Goulart AC, Grosso G, Guo YM, Gupta R, Haj-Mirzaian A, Haj-Mirzaian A, Hamidi S, Hankey GJ, Hassen HY, Hay SI, Hegazy MI, Heidari B, Herial NA, Hosseini MA, Hostiuc S, Irvani SSN, Islam SMS, Jahanmehr N, Javanbakht M, Jha RP, Jonas JB, Jozwiak JJ, Jurisson M, Kahsay A, Kalani R, Kalkonde Y, Kamil TA, Kanchan T, Karch A, Karimi N, Karimi-Sari H, Kasaeian A, Kassa TD, Kazemeini H, Kefale AT, Khader YS, Khalil IA, Khan EA, Khang YH, Khubchandani J, Kim D, Kim YJ, Kisa A, Kivimaki M, Koyanagi A, Krishnamurthi RK, Kumar GA, Lafranconi A, Lewington S, Li SS, Lo WD, Lopez AD, Lorkowski S, Lotufo PA, Mackay MT, Majdan M, Majdzadeh R, Majeed A, Malekzadeh R, Manafi N, Mansournia MA, Mehndiratta MM, Mehta V, Mengistu G, Meretoja A, Meretoja TJ, Miazgowski B, Miazgowski T, Miller TR, Mirrakhimov EM, Mohajer B, Mohammad Y, Mohammadoo-Khorasani M, Mohammed S, Mohebi F, Mokdad AH, Mokhayeri Y, Moradi G, Morawska L, Velasquez IM, Mousavi SM, Muhammed OSS, Muruet W, Naderi M, Naghavi M, Naik G, Nascimento BR, Negoi RI, Nguyen CT, Nguyen LH, Nirayo YL, Norrving B, Noubiap JJ, Ofori-Asenso R, Ogbo FA, Olagunju AT, Olagunju TO, Owolabi MO, Pandian JD, Patel S, Perico N, Piradov MA, Polinder S, Postma MJ, Poustchi H, Prakash V, Qorbani M, Rafiei A, Rahim F, Rahimi K, Rahimi-Movaghar V, Rahman M, Rahman MA, Reis C, Remuzzi G, Renzaho AMN, Ricci S, Roberts NLS, Robinson SR, Roever L, Roshandel G, Sabbagh P, Safari H, Safari S, Safiri S, Sahebkar A, Zahabi SS, Samy AM, Santalucia P, Santos IS, Santos JV, Milicevic MMS, Sartorius B, Sawant AR, Schutte AE, Sepanlou SG, Shafieesabet A, Shaikh MA, Shams-Beyranvand M, Sheikh A, Sheth KN, Shibuya K, Shigematsu M, Shin MJ, Shiue I, Siabani S, Sobaih BH, Sposato LA, Sutradhar I, Sylaja PA, Szoeke CEI, Ao BJT, Temsah MH, Temsah O, Thrift AG, Tonelli M, Topor-Madry R, Tran BX, Tran KB, Truelsen TC, Tsadik AG, Ullah I, Uthman OA, Vaduganathan M, Valdez PR, Vasankari TJ, Vasanthan R, Venketasubramanian N, Vosoughi K, Vu GT, Waheed Y, Weiderpass E, Weldegwergs KG, Westerman R, Wolfe CDA, Wondafrash DZ, Xu GL, Yadollahpour A, Yamada T, Yatsuya H, Yimer EM, Yonemoto N, Yousefifard M, Yu CH, Zaidi Z, Zamani M, Zarghi A, Zhang YQ, Zodpey S, Feigin VL, Vos T, Murray CJL, Collaborators GS. Global, regional, and national burden of stroke, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurology. 2019;18: 439-58. 113. Benjamin EJ, Muntner P, Alonso A, Bittencourt MS, Callaway CW, Carson AP, Chamberlain AM, Chang AR, Cheng S, Das SR, Delling FN, Djousse L, Elkind MSV, Ferguson JF, Fornage M, Jordan LC, Khan SS, Kissela BM, Knutson | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84408 | - |
dc.description.abstract | 脂質體學是一門分析生物體內所有脂質種類的學問。作為代謝體學子科學,脂質體學也能呈現生物體的表現型與病理生理狀態。由於脂質的高度複雜性,脂質體的研究仍有許多挑戰。要達到良好的脂質體分析結果,除了要仰賴質譜分析,樣品的萃取方法也會影響結果解釋。儘管目前現有的脂質萃取方法針對大部分的脂質種類都有好的回收率,但是對於能涵蓋脂質的廣泛性仍有改善空間。另外,由於脂質的重要生理角色,利用脂質體學研究方法找尋具有潛力的生物標記也是具有潛力之策略。本論文分成兩部分並以脂質體學的角度來分別針對脂質萃取與鑑別脂質生物標記兩個主題做討論。 論文的第一部分,我們針對脂質體學發展了一個新穎的萃取方法。此萃取法是以1:1:0.725的環戊基甲基醚 (cyclopentyl methyl ether, CPME)–乙醇–水之體積比例所形成的雙層萃取系統。本萃取方法是利用上層的有機層來萃取大部分種類的脂質,並且同時發現在溶血磷脂 (lysophospholipids)、二酸甘油酯 (diacylglycerol)、與鞘氨醇磷酸鹽 (sphingosine-1-phosphate, S1P),比起甲基三級丁基醚萃取法有較好的萃取率。另外,不能被溶解的殘餘物在離心後會被沉澱在萃取微管的底部,這使得整個實驗步驟變得更簡單,並且適用於高通量分析。由於能夠涵蓋更廣泛的脂質萃取,特別是較為親水種類的脂質,加上其溶劑組成皆具備有綠色化學的特性,環戊基甲基醚萃取法會是一個在例行脂質體分析上有優勢的萃取方法。 第二個部分,我們將脂質體學應用在中風研究,並找尋重要的生物標記來幫助診斷。中風,特別是缺血性中風,雖然已有多種治療方案,但仍是造成全球人口終生失能的主要病因。神經鞘脂,為脂質體中的其中一群,在生物體扮演非常重要的角色。我們先前研究中已經證明,在大腦中動脈阻塞的動物模型中,神經鞘脂會對急性缺血性腦損傷的反應產生顯著濃度變化,暗示著神經鞘脂的代謝途徑也許可作為治療缺血性中風的標的。為了要更進一步瞭解神經鞘脂在臨床上的角色,我們以急性缺血性中風 (acute ischemic stroke, AIS)病患作為研究對象,觀察其血液中神經鞘脂的濃度變化,並且檢示這些變化是否與AIS病患的預後有關。我們從臺大醫院收集30個非中風受測者血清樣品做控制組,也收集了87個AIS病患在中風後48小時與48到72小時的血清樣品。使用超高壓液相層析結合搭配電噴灑游離法的串聯式質譜儀分析血清中不同碳鏈長度的神經醯胺 (ceramide) 與鞘氨醇磷酸鹽濃度。結果顯示與控制組相比,較長長碳鏈神經醯胺與鞘氨醇磷酸鹽在AIS病人的血清中濃度較低,而長碳鏈神經醯胺則是比較高。重要的是,在調整其他潛在的臨床干擾因子後,從48到72小時的血清樣品中可觀察到高濃度的Cer(d18:1/18:0)、Cer(d18:1/20:0)和Cer(d18:1/22:0),與病人預後不好(定義為經歷AIS三個月後之改良式雷氏量表評分≥2)有重要的關聯,暗示著這些神經醯胺可作為之後評估AIS病患的潛在預後標的。 近年來動脈血管內血栓移除術 (endovascular thrombectomy, EVT)已成為急性大血管阻塞的AIS病患重要的替代治療法,因此我們進一步觀察經歷EVT的AIS病患其血中神經醯胺與鞘氨醇磷酸鹽的濃度變化。在此研究中,我們收集75位經歷EVT手術的AIS病患以及19位控制組血漿,並且利用超高壓液相層析結合搭配電噴灑游離法的串聯式質譜儀分析。為了要檢驗這群病人的血中神經醯胺濃度是否與臨床預後有相關性,我們分別在三個時間點收集病患的血液樣品:手術前 (T1)、手術後當下 (T2)、與手術後24小時 (T3)。研究結果顯示,與控制組相比,三個時間點的血中長碳鏈神經醯胺 Cer(d18:1/16:0) 濃度、T1與T3的血中 Cer(d18:1/18:0) 濃度、T1的血中 Cer(d18:1/20:0) 濃度、與T1的血中較長長碳鏈神經醯胺 Cer(d18:1/24:1) 濃度在缺血性中風病患都較高,但三個時間點的血中鞘氨醇磷酸鹽濃度則較低。根據多變項分析的結果顯示,在調整其他潛在的臨床干擾因子後,血中較高濃度的Cer(d18:1/16:0)與Cer(d18:1/18:0)在三個時間點,Cer(d18:1/20:0)在T1與T2,與Cer(d18:1/24:0)在T2都仍與功能性預後不好有顯著關聯。這個結果暗示長碳鏈神經醯胺,特別是Cer(d18:1/16:0)與Cer(d18:1/18:0),可以作為經歷EVT手術的AIS病患之早期預後診斷標的。 在本論文中,我們提出了一個適用於脂質體學研究的新的脂質萃取方法,並且針對缺血性中風找到了一個有潛力的預後生物標記。我們期望這個新穎的萃取方法可以適用在各種脂質體學的研究上,而被發現的標記則可以有益於中風病人的臨床照護。 | zh_TW |
dc.description.abstract | Lipidomics is the systemic analysis of total lipid in biological systems. As the subdiscipline of metabolomics, lipidomics could exhibit the phenotype and pathophysiological status of an organism. Due to their great structural diversity, lipid analysis remains a challenge. Sample preparation techniques, as well as mass spectrometric analysis, are important to obtain comprehensive lipidomic results, influencing the biological interpretation. Although good recoveries of different lipid subclasses could be obtained for most current lipid extraction methods, the lipid coverage of these methods still needs to be improved. In addition, due to their versatile biological functions, lipidomics is considered a promising strategy for identifying biomarkers for diseases. In this dissertation, I will divide it into two parts, including the development of a lipid extraction method and the identification of lipid biomarkers for stroke. First, we developed a novel extraction method for lipidomics studies. This two-phase system contains cyclopentyl methyl ether (CPME), ethanol, and water, giving the final volume ratio of 1:1:0.725 (v/v/v). The mixture of CPME–ethanol–water used the upper phase to extract most of the major lipid classes and had higher recoveries of lysophospholipids, diacylglycerols, and sphingosine-1-phosphates, than the methyl tert-butyl ether (MTBE) extraction method. In addition, non-soluble debris is precipitated at the bottom of the extraction tube after centrifugation, making the whole experimental procedure more simple and suitable for high-throughput analysis. With expanded coverage of total lipid, including polar lipid classes, and the green solvent properties, the CPME method is represented as an attractive method for routine lipidomics analysis. In the second part, we applied a lipidomic approach to the analysis of stroke, and found potential biomarkers to help diagnose. Stroke, especially ischemic stroke, is the leading cause of lifelong disability worldwide, despite multiple available treatment options applied. Sphingolipids, one of the lipid subclasses, play important roles in biological systems. Our previous study demonstrated that sphingolipids significantly changed in response to acute ischemic brain injury in an animal model of middle cerebral artery occlusion (MCAO), suggesting that sphingolipid metabolism may serve as a potential therapeutic target for ischemic stroke. To further understand their potential roles in clinical, we investigated the levels of sphingolipids in acute ischemic stroke (AIS) patients and examined whether these lipids were associated with AIS outcome. We collected 87 plasma samples from patients with AIS at <48 and 48-72 h post stroke and 30 nonstroke controls at National Taiwan University Hospital (NTUH). The plasma concentrations of ceramides with different chain lengths and S1P were measured by using ultra-high-pressure liquid chromatography-electrospray ionization tandem mass spectrometry (UHPLC-ESI-MS/MS). The results showed that compared with nonstroke controls, very-long-chain ceramides and sphingosine-1-phosphate (S1P) were significantly decreased in AIS patients, while long-chain ceramides were significantly increased. Importantly, higher levels of Cer(d18:1/18:0), Cer(d18:1/20:0), and Cer(d18:1/22:0) at 48-72 h were significantly associated with poor functional outcomes, defined as a modified Rankin Scale (mRS) score ≥2 at 3 months after AIS, after adjusting for potential clinical confounders, suggesting that these ceramide species could be potential prognostic markers for patients with AIS. In addition, we further profiled ceramides and S1P in AIS patients subjected to endovascular thrombectomy (EVT) treatment, which has become the alternative therapy for AIS patients with acute large vessel occlusion. We investigated the same analytes in 75 AIS patients undergoing EVT and 19 age- and sex-matched controls by using UHPLC-ESI-MS/MS. To examine the association between ceramide levels and clinical outcomes among AIS patients undergoing EVT, plasma samples were collected from AIS patients who underwent EVT before (T1), immediately after (T2), and 24 hours after (T3) the procedures. The result showed that the plasma levels of long-chain ceramides Cer(d18:1/16:0) at all three time points, Cer(d18:1/18:0) at T1 and T3, and Cer(d18:1/20:0) at T1, and very-long-chain ceramide Cer(d18:1/24:1) at T1, in AIS patients were significantly higher than those in the controls, while the plasma levels of S1P in AIS patients were significantly lower at all three time points. Multivariable analysis showed that higher levels of Cer(d18:1/16:0) and Cer(d18:1/18:0) at three points, Cer(d18:1/20:0) at T1 and T2, and Cer(d18:1/24:0) at T2 remained significantly associated with poor functional outcomes after adjustment for potential confounding factors. These data suggest that the levels of plasma long-chain ceramides, especially Cer(d18:1/16:0) and Cer(d18:1/18:0), could be early prognostic indicators for AIS patients undergoing EVT. In summary, we proposed a new lipid extraction method for lipidomic studies and identified potential prognostic markers for ischemic stroke. We anticipate the novel extraction method could be applied to various lipidomic studies, and the identified markers could benefit clinical care for stroke patients. | en |
dc.description.provenance | Made available in DSpace on 2023-03-19T22:10:40Z (GMT). No. of bitstreams: 1 U0001-2909202216024800.pdf: 2131589 bytes, checksum: 6531b66d44eb78f2ebfb0d8b62925742 (MD5) Previous issue date: 2022 | en |
dc.description.tableofcontents | 誌謝 i 中文摘要 ii Abstract iv Contents vii Table contents x Figure contents xi Chapter 1 Introduction 1 1.1 Lipidomics 2 1.2 Extraction method for lipidomics 3 1.3 Stroke 4 1.4 Ceramide and Sphingosine-1-phosphate 6 1.5 Research aim and organization of this dissertation 8 Part I Development of a novel cyclopentyl methyl ether extraction method for lipidomics 9 Chapter 2 Development of a novel cyclopentyl methyl ether extraction method for lipidomics 10 2.1 Introduction 11 2.2 Methods 13 2.2.1 Solvents and lipid standards 13 2.2.3 Sample preparation 14 2.2.4 Targeted and untargeted lipidomic analysis by LC-MS 15 2.2.5 Data analysis 17 2.3 Results and discussion 17 2.3.1 Selection of solvent for lipid extraction 17 2.3.2 Comparison of the CPME extraction method with the MTBE method 18 2.3.2.1 Recovery 18 2.3.2.2 Establish the LC-MS/MS method to compare extraction performance by using plasma samples 19 2.3.2.3 Untargeted analysis 22 2.4 Conclusion 22 Part II Investigation of the relationship between plasma sphingolipids and outcome of ischemic stroke 31 Chapter 3 Plasma ceramides are associated with outcomes in acute ischemic stroke patients 32 3.1 Introduction 33 3.2 Materials and Methods 34 3.2.1 Study population 34 3.2.2 Clinical protocol 35 3.2.3 Measurement of plasma ceramides and S1P 35 3.2.4 Statistical analysis 37 3.3 Results 37 3.3.1 Characteristics of the study subjects 37 3.3.2 Comparison of ceramide concentrations in controls and AIS patients 37 3.3.3 Ceramide concentrations and functional outcomes 38 3.4 Discussion 38 3.4.1 Elevation of long-chain ceramide concentrations after AIS 39 3.4.2 Significant decrease in S1P concentration after AIS 40 3.4.3 Diverse responses of long- and very-long-chain ceramides in AIS 41 3.4.4 Higher ceramide concentrations are associated with poor outcomes in AIS patients 42 Chapter 4 Investigating sphingolipids as biomarkers for the outcomes of acute ischemic stroke patients receiving endovascular treatment 50 4.1 Introduction 51 4.2 Materials and Methods 52 4.2.1 Study population 52 4.2.2 Endovascular treatment 53 4.2.3 Clinical and neuroimaging outcomes 53 4.2.4 Collection of plasma samples 54 4.2.5 Measurement of plasma ceramides and S1P 54 4.2.6 Statistical analysis 56 4.3 Results 57 4.3.1 Patient characteristics 57 4.3.2 Ceramide concentrations before and after EVT 58 4.3.3 Ceramide concentrations associated with functional outcomes 58 4.4 Discussion 59 Chapter 5 Summary and Perspective 71 5.1 Summary 72 5.2 Perspective 74 References 75 Publications 90 | |
dc.language.iso | en | |
dc.title | 脂質體萃取方法開發與鞘脂質於中風之研究 第一部分:利用環戊基甲基醚開發液液萃取法分析脂質體 第二部分:探討血中神經鞘脂質濃度與缺血性中風預後的相關性 | zh_TW |
dc.title | Development of a Lipid Extraction Method for Lipidomics and Sphingolipid Investigation in Stroke Part I:Development of a novel cyclopentyl methyl ether extraction method for lipidomics Part II:Investigation of the relationship between plasma sphingolipids and outcome of ischemic stroke | en |
dc.type | Thesis | |
dc.date.schoolyear | 110-2 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 湯頌君(Sung-Chun Tang),李慶國(Ching-Kuo Lee),林靖愉(Ching-Yu Lin),賴建成(Chien-Chen Lai) | |
dc.subject.keyword | 樣品製備,液相層析質譜,脂質體學,神經醯胺,鞘氨醇磷酸鹽,缺血性中風,動脈血管內血栓移除, | zh_TW |
dc.subject.keyword | sample preparation,liquid chromatography-mass spectrometry,lipidomics,ceramide,sphingosine-1-phosphate,ischemic stroke,endovascular thrombectomy, | en |
dc.relation.page | 90 | |
dc.identifier.doi | 10.6342/NTU202204234 | |
dc.rights.note | 同意授權(限校園內公開) | |
dc.date.accepted | 2022-09-30 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 藥學研究所 | zh_TW |
dc.date.embargo-lift | 2022-10-17 | - |
顯示於系所單位: | 藥學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-2909202216024800.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 2.08 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。