Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83905
Title: 兩物種的羅特卡-弗爾特拉擴散競爭方程組之非單調行波解
Non-monotone travelling wave solutions for the two-species Lotka–Volterra competitive system with diffusion
Authors: 楊哲瑋
Che-Wei Yang
Advisor: 陳俊全
Chiun-Chuan Chen
Keyword: 行波解,上下解,不動點,非單調解,羅特卡-弗爾特拉,
travelling wave solutions,upper-lower-solutions,Schauder’s fixed point theorem,non-monotone solutions,Lotka-Volterra,
Publication Year : 2022
Degree: 碩士
Abstract: 本篇論文主要研究兩物種的羅特卡-弗爾特拉擴散競爭方程組。我們透過研究行波解來了解此系統。我們成功地證明了非單調解的存在性,其中此解連接了兩個平衡態(0,0)和(0,1)。在過去的文獻中,鮮少有這方面相關的研究。然而,此類型的非單調解在生態學中扮演著重要的角色,可以啟發我們發現一些特別現象。我們主要的研究方法是用不動點定理配合適當的上下解去證明解的存在性。我們也運用了縮小區間的手法證明解的右半部逼近行為。此外,藉由證明速度小於某個特定值時不存在解,我們也刻畫了此系統行波的最小速度。
We study the two-species Lotka–Volterra competitive system with diffusion. To understand the dynamics of the system, it is fundamental to investigate the traveling wave solutions. We successfully show the existence of non-monotone pulse-front travelling waves connecting the two equilibria (0,0) and (0,1). In the literature, fewer results are known for the existence of such waves. These waves play an important role in ecology and may motivate us to explore other interesting phenomena in the Lotka– Volterra system. Our approach to prove the existence of traveling waves is based on a method by applying Schauder’s fixed point theorem with the help of suitable upper-lower solutions. One of our main breakthroughs is the construction of such appropriate upper-lower solutions for the competition system. We also apply the idea of shrinking rectangles to the derivation of the asymptotic behavior of the right-hand tail. Moreover, by proving the non-existence of traveling wave solutions with speed less than a critical value, we characterize the minimal wave speed of traveling waves for this model.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83905
DOI: 10.6342/NTU202200949
Fulltext Rights: 未授權
Appears in Collections:數學系

Files in This Item:
File SizeFormat 
ntu-110-2.pdf
  Restricted Access
2.01 MBAdobe PDF
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved