Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8358
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor施上粟(Shang-Shu Shih)
dc.contributor.authorHung-Chih Wangen
dc.contributor.author王泓智zh_TW
dc.date.accessioned2021-05-20T00:52:42Z-
dc.date.available2025-07-30
dc.date.available2021-05-20T00:52:42Z-
dc.date.copyright2020-08-04
dc.date.issued2020
dc.date.submitted2020-07-30
dc.identifier.citation1. Aeby, I. (1989). Non-destructive measurements in advanced composite materials and structures using a fiber optic sensing system. Fiber Optic Smart Structures and Skins.986, 140-149.
2. Bodin, H., Mietto, A., Ehde, P. M., Persson, J., Weisner, S. E. (2012). Tracer behaviour and analysis of hydraulics in experimental free water surface wetlands. Ecological engineering, 49, 201-211.
3. Bodin, H., Persson, J., Englund, J.-E., Milberg, P. (2013). Influence of residence time analyses on estimates of wetland hydraulics and pollutant removal. Journal of Hydrology, 501, 1-12.
4. Bodin, H., Persson, J. (2012). Hydraulic performance of small free water surface constructed wetlands treating sugar factory effluent in western Kenya. Hydrology Research, 43(4), 476-488.
5. Bracho, N., Lloyd, B., Aldana, G. (2006). Optimisation of hydraulic performance to maximise faecal coliform removal in maturation ponds. Water Research, 40(8), 1677-1685.
6. Chang, T.-J., Chang, Y.-S., Lee, W.-T., Shih, S.-S. (2016). Flow uniformity and hydraulic efficiency improvement of deep-water constructed wetlands. Ecological engineering, 92, 28-36.
7. Cooper, P., Boon, A. (1987). The use of Phragmites for wastewater treatment by the root zone method: The UK approach.
8. Danckwerts, P. V. (1953). Continuous flow systems: distribution of residence times. Chemical engineering science, 2(1), 1-13.
9. Dierberg, F. E., Juston, J. J., DeBusk, T. A., Pietro, K., Gu, B. (2005). Relationship between hydraulic efficiency and phosphorus removal in a submerged aquatic vegetation-dominated treatment wetland. Ecological engineering, 25(1), 9-23.
10. Farjood, A., Melville, B. W., Shamseldin, A. Y. (2015). The effect of different baffles on hydraulic performance of a sediment retention pond. Ecological engineering, 81, 228-232.
11. Fogler, H. S., Brown, L. F. (2006). Distributions of residence times for chemical reactors. Elements of chemical reaction engineering, 4.
12. Forrer, I., Papritz, A., Kasteel, R., Flühler, H., Luca, D. (2000). Quantifying dye tracers in soil profiles by image processing. European Journal of Soil Science, 51(2), 313-322.
13. Forrer, I. E. (1997). Solute transport in an unsaturated field soil: Visualization and quantification of flow patterns using image analysis. ETH Zurich.
14. Holland, J. F., Martin, J. F., Granata, T., Bouchard, V., Quigley, M., Brown, L. (2004). Effects of wetland depth and flow rate on residence time distribution characteristics. Ecological engineering, 23(3), 189-203.
15. Jenkins, G. A., Greenway, M. (2005). The hydraulic efficiency of fringing versus banded vegetation in constructed wetlands. Ecological engineering, 25(1), 61-72.
16. Kadlec, R. H. (1994). Detention and mixing in free water wetlands. Ecological engineering, 3(4), 345-380.
17. Kadlec, R. H., Knight, R. L. (1996). TreatmentWetlands. Lewis Publishers, Chelsea, MI.
18. Keane, R. D., Adrian, R. J. (1992). Theory of cross-correlation analysis of PIV images. Applied scientific research, 49(3), 191-215.
19. Levenspiel, O. (1999). Chemical reaction engineering. Industrial engineering chemistry research, 38(11), 4140-4143.
20. Liu, J., Dong, B., Zhou, W., Qian, Z. (2020). Optimal selection of hydraulic indexes with classical test theory to compare hydraulic performance of constructed wetlands. Ecological engineering, 143, 105687.
21. Maier, H. R., Dandy, G. C. (1996). The use of artificial neural networks for the prediction of water quality parameters. Water resources research, 32(4), 1013-1022.
22. Merz, S. K. (2000). Guidelines for using free water surface constructed wetlands to treat municipal sewage. Department of Natural Resources.
23. Min, J. H., Wise, W. R. (2009). Simulating short‐circuiting flow in a constructed wetland: the implications of bathymetry and vegetation effects. Hydrological Processes: An International Journal, 23(6), 830-841.
24. Odum, H. T., Siler, W. L., Beyers, R. J., Armstrong, N. (1963). Experiments with engineering of marine ecosystems. Publ. Inst. Mar. Sci. Univ. Texas, 9, 374-403.
25. Persson, J., Somes, N. L., Wong, T. (1999). Hydraulics efficiency of constructed wetlands and ponds. Water Science and Technology, 40(3), 291-300.
26. Persson, M. (2005). Accurate dye tracer concentration estimations using image analysis. Soil Science Society of America Journal, 69(4), 967-975.
27. Persson, M., Uvo, C. B. (2003). Estimating soil solution electrical conductivity from time domain reflectometry measurements using neural networks. Journal of Hydrology, 273(1-4), 249-256.
28. Sabokrouhiyeh, N., Bottacin-Busolin, A., Savickis, J., Nepf, H., Marion, A. (2017). A numerical study of the effect of wetland shape and inlet-outlet configuration on wetland performance. Ecological engineering, 105, 170-179.
29. Savickis, J., Bottacin-Busolin, A., Zaramella, M., Sabokrouhiyeh, N., Marion, A. (2016). Effect of a meandering channel on wetland performance. Journal of Hydrology, 535, 204-210.
30. Schmid, B. H., Hengl, M. A., Stephan, U. (2004). Salt tracer experiments in constructed wetland ponds with emergent vegetation: laboratory study on the formation of density layers and its influence on breakthrough curve analysis. Water Research, 38(8), 2095-2102.
31. Serra, T., Fernando, H. J., Rodrı́guez, R. V. (2004). Effects of emergent vegetation on lateral diffusion in wetlands. Water Research, 38(1), 139-147.
32. Shih, S.S., Hong, S.S., Chang, T.J. (2016). Flume experiments for optimizing the hydraulic performance of a deep-water wetland utilizing emergent vegetation and obstructions. Water, 8(6), 265.
33. Shih, S.S., Kuo, P.H., Fang, W.T., LePage, B. A. (2013). A correction coefficient for pollutant removal in free water surface wetlands using first-order modeling. Ecological engineering, 61, 200-206.
34. Shih, S. S., Zeng, Y. Q., Lee, H. Y., Otte, M. L., Fang, W. T. (2017). Tracer experiments and hydraulic performance improvements in a treatment pond. Water, 9(2), 137.
35. Shih, S. S., Wang, H. C. (2020). Flow uniformity metrics for quantifying the hydraulic and treatment performance of constructed wetlands. Ecological Engineering, 155, 105942.
36. Stadler, D., Stahli, M., Aeby, P., Fluhler, H. (2000). Dye tracing and image analysis for quantifying water infiltration into frozen soils. Soil Science Society of America Journal, 64(2), 505-516.
37. Su, T.-M., Yang, S.-C., Shih, S.-S., Lee, H.-Y. (2009). Optimal design for hydraulic efficiency performance of free-water-surface constructed wetlands. Ecological engineering, 35(8), 1200-1207.
38. Teixeira, E. C., do Nascimento Siqueira, R. (2008). Performance assessment of hydraulic efficiency indexes. Journal of Environmental Engineering, 134(10), 851-859.
39. Thackston, E. L., Shields Jr, F. D., Schroeder, P. R. (1987). Residence time distributions of shallow basins. Journal of Environmental Engineering, 113(6), 1319-1332.
40. Thielicke, W., Stamhuis, E. (2014). PIVlab–towards user-friendly, affordable and accurate digital particle image velocimetry in MATLAB. Journal of Open Research Software, 2(1).
41. USEPA, 1995. A Handbook of Constructed Wetlands
42. USEPA, 1999. Free Water Surface Wetlands for Wastewater Treatment: A Technology Assessment
43. Vymazal, J. (2011). Constructed wetlands for wastewater treatment: five decades of experience. Environmental science technology, 45(1), 61-69.
44. Wahl, M. D., Brown, L. C., Soboyejo, A. O., Martin, J., Dong, B. (2010). Quantifying the hydraulic performance of treatment wetlands using the moment index. Ecological engineering, 36(12), 1691-1699.
45. 行政院環保署水質淨化現地處理站,2007,人工濕地規劃設計操作管理參考手冊。
46. 李瑋婷,2014,深水型人工溼地水力效率改善之研析,國立臺灣大學生物資源暨農學院生物環境系統工程學系碩士論文。
47. 新北市政府高灘地工程管理處,2020,濕地介紹,Retrieved from: https://www.hrcm.ntpc.gov.tw/Home/Page?page_id=213
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8358-
dc.description.abstract表面流人工濕地之水力效率與其水力表現有關,意即不同配置下的流場型態與物質傳輸行為才是影響水力效率的主要原因。過去研究多探討不同障礙物、植生、形狀、入出流配置等靜態配置對水力效率的影響,並且常用數值模式來模擬人工濕地之流場與物質傳輸過程;本研究提出動態擾動的配置,以此反映生物利用對於人工濕地之水力表現與物質傳輸過程的影響,受限於數值模式無法模擬動態擾動的限制,本研究建立36場水槽試驗,利用「顏色—濃度預測」與「粒子影像分析」兩個影像技術來獲得全域隨時間變化的流場資料與物質傳輸過程,以解決過去水槽試驗難以獲得全域實驗資料的缺點。水槽實驗結果不僅能夠完整呈現污染物進入人工濕地之後的物質傳輸過程,更能依據內部流場之水理特性將流場分為優勢流、環流區與死水區,對應不同水理特性有不同的主要物質傳輸行為,分別為平流效應、渦流擴散與延散、分子擴散;另外,本研究亦說明了死水區中的物質消散時間受到死水區大小、環流邊界之流速梯度、水深與擾動的影響,對於不同配置下的物質累積問題進行評估;值得一提的是,動態擾動對於物質的傳輸過程有著明顯的不同,加入動態擾動能夠改變局部的物質傳輸行為,能夠有效改善物質累積問題。本研究針對不同的流場型態進行物質傳輸過程的探討,並且發現在不形成累積問題下環流有助於提升水力效率,若有累積問題時,亦可透過動態擾動來縮短消散時間、改善局部的物質傳輸行為,對於人工濕地中的污染物累積問題與後續研究提供水理與物質傳輸過程的觀點。zh_TW
dc.description.abstractThe treatment efficiency of Free-water surface constructed wetlands (FWSs) cannot be determined without understanding the flow dynamics of individual parcels of water through the wetland. Previous studies have indicated that hydraulic efficiency influences treatment performance, and most of them evaluate hydraulic efficiency with numerical models under different arrangement such as obstructions, vegetation, aspect ratio, shape and inlet-outlet configuration. In this study, we propose a novel dynamic disturbance to show how disturbance from creatures affect hydraulic efficiency. Thirty-six flume experiments were conducted with Reynolds similitude. Different water depth and emergent obstructions were placed to create various flow characteristic, including one kind of innovative disturbing arrangement. We applied two kinds of image techniques, namely color-concentration prediction and particle image velocimetry (PIV), to analyze the pulse input tracer experiment. The results show that image techniques are acceptable for providing time-variant and full-field data, which used to be challenging for flume experiments. In the experiment, we found different sizes and strengths of flow circulation appeared in every case. According to the hydrodynamic of the flow, we then classify the flow characteristic as preferential flow, dead zone, and circulation. Afterward, we identify the contaminant transportation effects as advection, molecular diffusion, eddy diffusion, and dispersion correspondingly. The dissipation time of dead zone is related to its size, velocity gradient of circulation, water depth, and disturbing. We conclude that circulation is positive for wastewater treatment under the condition of no accumulation problem (or low dissipation time). If the accumulation problem is severe, we also provide a solution of adding disturbing in order to change the contaminant transportation condition of circulation, to reach a shorter dissipation time.en
dc.description.provenanceMade available in DSpace on 2021-05-20T00:52:42Z (GMT). No. of bitstreams: 1
U0001-3007202013545900.pdf: 12448928 bytes, checksum: 3730c95d2d818a231d8cfd87cfb6c3c0 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents口試委員會審定書 #
誌謝 i
中文摘要 ii
ABSTRACT iii
目錄 v
圖目錄 vii
表目錄 x
符號表 xi
第一章 緒論 1
1.1 研究背景 1
1.2 研究目的 2
1.3 研究內容 3
第二章 文獻回顧 4
2.1 人工濕地(Constructed Wetlands) 4
2.2 評估指標 6
2.2.1 水力效率指標(Hydraulic Efficiency Index) 7
2.2.2 短流指標(Short-Circuiting Index) 9
2.2.3 混合指標(Mixing Index) 10
2.2.4 評估指標相關研究 10
2.3 水力效率相關研究 12
2.3.1 水深(Water Depth) 12
2.3.2 形狀與長寬比(Aspect Ratio) 13
2.3.3 植生(Vegetation) 14
2.3.4 障礙物(Obstruction) 15
2.3.5 入出流配置(Inlet-Outlet Configuration) 17
2.4 影像技術 18
2.4.1 顏色─濃度辨識 18
2.4.2 粒子影像分析(Particle Image Velocimetry, PIV) 19
第三章 研究方法 21
3.1 模型律 22
3.2 水槽配置與實驗 23
3.2.1 示蹤劑實驗 25
3.2.2 標準濃度液配置 26
3.2.3 粒子影像實驗 29
3.3 影像分析 29
3.3.1 顏色─濃度辨識 30
3.3.2 粒子影像分析 31
3.4 人工濕地相關指標 32
第四章 結果與分析 34
4.1 影像辨識結果 34
4.1.1 濃度辨識 34
4.1.2 PIV流場計算 36
4.2 人工濕地指標 38
4.2.1 空池試驗 38
4.2.2 障礙物擺放試驗 39
4.2.3 擾動試驗 41
4.3 內部流場 48
4.3.1 速度場 48
4.3.2 濃度場 60
4.3.3 內部流場綜合分析 79
第五章 結論與建議 87
5.1 結論 87
5.1.1 影像技術 87
5.1.2 人工濕地水理特性 88
5.2 未來工作及建議 90
參考文獻 91
dc.language.isozh-TW
dc.title應用影像技術分析濕地流場及物質傳輸變化zh_TW
dc.titleTracer Experiments to Characterize Hydrodynamics and Contaminant Transportation in Wetlands Using Image Techniquesen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee俞維昇(Wei-Sheng Yu),何昊哲(Hao-Che Ho),郭品含(Pin-Han Kuo)
dc.subject.keyword人工濕地,水理特性,物質傳輸,環流,擾動,zh_TW
dc.subject.keywordConstructed Wetlands,Hydrodynamics,Contaminant Transport,Circulation,Disturbance,en
dc.relation.page94
dc.identifier.doi10.6342/NTU202002100
dc.rights.note同意授權(全球公開)
dc.date.accepted2020-07-30
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept土木工程學研究所zh_TW
dc.date.embargo-lift2025-07-30-
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
U0001-3007202013545900.pdf12.16 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved