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ABSTRACT

The treatment efficiency of Free-water surface constructed wetlands (FWSs) cannot
be determined without understanding the flow dynamics of individual parcels of water
through the wetland. Previous studies have indicated that hydraulic efficiency influences
treatment performance, and most of them evaluate hydraulic efficiency with numerical
models under different arrangement such as obstructions, vegetation, aspect ratio, shape
and inlet-outlet configuration. In this study, we propose a novel dynamic disturbance to
show how disturbance from creatures affect hydraulic efficiency. Thirty-six flume
experiments were conducted with Reynolds similitude. Different water depth and
emergent obstructions were placed to create various flow characteristic, including one
kind of innovative disturbing arrangement. We applied two kinds of image techniques,
namely color-concentration prediction and particle image velocimetry (PIV), to analyze
the pulse input tracer experiment. The results show that image techniques are acceptable
for providing time-variant and full-field data, which used to be challenging for flume
experiments. In the experiment, we found different sizes and strengths of flow circulation
appeared in every case. According to the hydrodynamic of the flow, we then classify the
flow characteristic as preferential flow, dead zone, and circulation. Afterward, we identify
the contaminant transportation effects as advection, molecular diffusion, eddy diffusion,
and dispersion correspondingly. The dissipation time of dead zone is related to its size,
velocity gradient of circulation, water depth, and disturbing. We conclude that circulation
is positive for wastewater treatment under the condition of no accumulation problem (or
low dissipation time). If the accumulation problem is severe, we also provide a solution
of adding disturbing in order to change the contaminant transportation condition of

circulation, to reach a shorter dissipation time.
il
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2.1 A 1 B (Constructed Wetlands)
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Water level i1s above the ground surface; vegetation i1s rooted and emerges
above the water surface: waterflow 1s primarily above ground

WETLAND PLANTS AND WATER

Surface Flow Wetland

SOIL
LINER

NATIVE SOIL

Water level is below ground; water flow is through a sand or gravel bed; roots
penetrate to the bottom of the bed

WETLAND PLANTS

SOIL. SAND. AND GRAVEL
LINER
NATIVE SOIL

Subsurface Flow Wetland

% R A 1R B3 TR A 1R (USEPA, 1995)
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Free Water Surface (Surface Flow)
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& > 43235 % PF R (Nominal Retention Time, t,) ~ - 35® § pF i (Mean Retention
Time, tp,)~ % @k & P& (Peak Time, t,)~ % 7% TR (s, ty0)% » * 1132F A1
B KRR A R EARR C RIRERRES

“ L, =

< mean residence time »

0]

short-circuiting

mixing + short-circuiting

Concentration

Time

B 2.2-1 RTD # 42 H # 4 (Wahl et al., 2010)

2.2.1 -k 3 »2 5 g #k(Hydraulic Efficiency Index)
A & :}ﬁ # (Hydraulic Efficiency Index)* 12 3® % A 1 R EE R 5 -k @
e4 0 5 0-1 2 B ehm Fl=vdicle o ok 4 s dpifdd & A 1R 05 R R
A% iE o
Thackston etal. ** 1987 & # ! § »c 4 fif 45 #(Effective Volume, e,) > # 7 % %
R BHABE R R BT M B R kAR A L BRE Y TR
FoRE 2R AR F A L IRE Y R G AR 0 R 9T Y R AP H
o) o BriR 3 e, B4 ,T*L B K R A %*ufl&i ce, et B i G o % Lo
YRR (Cp) B B g R ()2 v B 75 el fidpth

~

:”ls

ey =

(2-1)
‘”_:1 J\’gﬁ7 FWT' r]?*ﬂ%ﬁ‘" ’Z}F'mm};‘ &Lﬁ&gr‘]ﬂ/” gﬁ_a@.ﬂja\ﬁ’lbﬁf)‘(

R % (Dispersion) & #_k & £ £ i & chff A7 % (Diffusion)®m 7 4 F < 3 > 12 R B

A LN FAIRARE OUEF IS -BEFFECANRLRABAFT T Ll‘"ﬁ 2
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RV EFF By B0 A e Bt 0 R A B
PP RTD o 4+ € 3300 0 BF e #8>% i(Tail Effect) o i3 = 9 2k 5 &0 P g
Sk S R 2 S e )2
Persson et al. > 1999 & % 4.k 4 »g & ;}Fl 1% (Hydraulic Efficiency Index » X) » *
R A R R DRI SRS ST P
0-0.57 & ~0.5-0.75 % ¥ ~0.75-1.0 & » H+ 5 3 240

1
1=e,(1-3) (2-2)
N=- tnt (Kadlec and Knight, 1996) (2-3)
n~lp
tm
or N = E(Persson, 1999) (2-4)

H e, 7 k4 (Effective Volume) * N % # ¢ BB dic > & A %’(:}% % (Fogler and
Brown, 2006) > i ¥ i% P& Kadlec and Knight (1996)2_ & & ¥ 1 :x B = 2-3 ;% » E &
i P& Persson et al. (1999)2. T & T ec B+ 2-4 5% > He ¢ 2 BERPFR 5 B is )
¥ oueeE & 2-5 3% (% P& Kadlec and Knight 2. T % ) £2 2-6 ;% ( i% P& Persson 2. T_
£ AT RF 250Gk s Sdgtha 3t E a5t o

I
1y t th—tpy\ tm Xt
A= (1——)=—m><(1— >= 2-5
v N/ t, ty t2 2-5)
1 t t,, —t t
A=ev(1——)=ﬂx(1—m p):—” (2-6)
N/ t, tm t,
dotokd RS R F A R RN § PRAAT BT 20 g RS

ETRy A SRS LR N B R R P RS SR
a4 s Fdg B 3 ko (Tail Effect)  § R &35 5 % 3 5%
& RTD pF 7% % d145 » 7]t Wahl et al. > 2010 & % ) 4 #E4p th(Moment Index, MI)

YA fEA- 1 # R 4E - Moment Index #.41%* RTD o e — B4 B0 2 ey 3t 8

S R R P

1
My = fo (1 - )C'(B)do (2-7)

Moment Index(MI) =1— My, (2-8)
Hoe pF LML (5 rpE - Moment Index F] 5B B % — B9 & 145 i B
BER > PR FARRL e TR BB T AN nh R RN R

AR 4 o T E g 3t 54 RTD » ac #F 4 & 3320 > F]#t Moment Index 7
8
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A% kA% ¥ 44 2 * g% (Farjood et al., 2015) » 2R @ 7 -k % &2 Tpin % 00 S0 % i
S A

2.2.2 “gjn4p ¥(Short-Circuiting Index)

‘2 3p #(Short-Circuiting Index) * r4 & 7= 4 1 j&% ¢ @it o g 23 P &g > @ 2%
AR F TR AR R AP AL L AR E L RT3 RE S FtE
S AFPETFL AL RM AT FREFAL DR BRI L F Y e
T dp iR ts vty A B R AR E R 2 5% 10% o B p T o e R
T35 RTD # #0255 19 400 b — P ARAER] & & 4850 22 o 4% P &8 > Liuetal. (2020)
Rt T 5 it dp i 0 Fl st o kA S gtk B 7 % RAPMIE > T2
BRI IS B kRS2 R R B R L APM » & TRIDTRART PR £yoAE %
3 ’kwﬁ'—_#ﬁ AR &~ F oK EIE A 4 A% - Teixeira and Siqueira (2008) 77 2 3% 11t 1%

% "F'/HL'J:}T%W'J'I‘I"#F]’W o

% 2.2-1 % % ehi@in > 4p (Teixeira and Siqueira, 2008)

Index Definition

t1 Initial arrival time—Indicates the time of the first
detection of tracer at the unit outlet

t1o 10% arrival time—Period of time necessary for 10%
of the mass of the tracer that was injected at the inlet
section to reach the outlet of the unit

t Maximum concentration arrival time—Time in which
the maximum concentration (peak concentration) was
detected at the unit outlet

(r\g,—ri,);f te Thirumurthi’s index—Represents how far fy 1s from
t,, where rga is the center of mass of the RTD
function.

ts 50% arrival time—Period of time necessary for 50%

of the mass of the tracer that was injected at the inlet
section to reach the outlet of unit

Icc Groche’s index—Represents the area below the RTD
function between t=1,—(t,~1;) and t=t,+(t,~1,)

HBP Hold back parameter—Represents the area below the
cumulative RTD function from 0<<f< 1
SEG Segregation parameter—Represents the area between

the cumulative RTD functions for the real and
complete mixing flow regimes from the time that the
tracer was released into the unit until the time that
the two RTD functions intercept each other

1, =T[F0E(0)d6/ [JE(6)d6.
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223 R & :}F, - (Mixing Index)
R & g H(Mixing Index)* ™ & 77 4 1 R# P R oA T PR FOR &0k
TP B3P A 1R P T AP ARTE B BT T L B AT 0 T ) R

A 375 %4 o K % 50R £ 4183 o2 ~ Morril Index (Mo) » 4 5| 14T = & 31

M*
2 2
o° = 2-9
e (2-9)
t
Mo =2 (2-10)
to

H¥ > M;% 7 RTD ¥ &te—- 46> f5 i RTD & A58 =% » @ My 4 5= RTD o
S enz = 4E o Liu et al. (2020)#2 Teixeira and Siqueira (2008) 5 i 3% 4 Mo T 5 2 &
PR gt o

£ 222 ¥ LavR & ip 1&(Teixeira and Siqueira, 2008)

Index Definition
a’ Dispersion index—Ratio between the temporal
. ~ B g 2
variance of the RTD function (0'!2)d and 1,
Mo Morril index—Ratio between the period of time

necessary to 10 and 90% of the mass of tracer that
was injected at the inlet section to reach the outlet of
the unit, Mo=tgy/)

tog—tio Time elapsed between t,g and fqq

t75— 15 Time elapsed between to5 and 75, where f,5 and
r7s=period of time necessary to 25 and 75% of the
tracer that was injected at the inlet section to reach
the outlet of the unit

Dy Time interval between two successive occurrences of
E(8) equal to 0.1
Dy Time interval between two successive occurrences of

E(8) cqual to 0.5
Sol=T2[;0%E(8)d8/ [{E(9)d9.

224 #=REFIPMEL

Teixeira and Siqueira >+ 2008 # jc f 7 14 f87 o= ipih - & 5 8 fAEin
F (S 6 R &4 EMI) > £ 5 27 kRl 2 FHREI I FIRFERT
RTD w &> &2 A ulig* 2 Foan®higihid & > 2R FARGHFERE (£
R R ) HH T 5 5 B E o N e R Ap R (7 4 47 - Teixeira
and Siqueira 7% FLp? 3= i dg R E * o % L3 B AE

L @4 e il FRE R PR
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2. Fhdg ik P AUF P A P ARR IR G 2 KIgACR o
3. #Fhdpth iy ¥ ML o
SRR pEindgtReni@ t bt VR KU = BEER > WA ek phoT B
A R At P e R ) o T b LR AR 1R o iR B
B A AR A T AR R o F PR T BBA A PIE PR R oot 1] © Rk BT
PRk R AREY R RN R DR 2 BEE B RoP BT IE
% ~ Ai@d F R HCA) L (Kinetic reaction models)i# * &g - e §_A R & 42 & fi i<
fie B ¢ o2 fdi kR o L Mo RIRGE £ LG 3TRIR SRR iR Bl A
TR R B WL F DR o
Liuetal. »* 2020 # jc & 7 8487 F eanFRipih » L2 BH & 5 = 47 1 K4 2%

¥ 4p #-(Hydraulic Efficiency Indexes, HEIs) ~ “&73 45 #(Short Circuiting Indexes, Sls) ~
#® & 3p ¥(Mixing Indexes, Mls) » = 2 31 % < o @ % 32 3 (Classical Test Theory, CTT)
kiEipie 8 fadpik 0 4 5 ¥ 5 & (Compatibility) ~ # %] & (Discrimination) £2 i &
(Difficulty) = 7847 & k feARVSL Jp e 2 & 44 > B % Aot 0 ok seFipikd o

LG S G RAERRRES R - RSB G B g R AU F A R AIL N
Pnig g F 2 B Y R R I EBE R S A A BB T A
kA4 %;3:;?:};11‘;3}.-“ e ST G ?»'3:3}\“5};]’[‘%-7\,; B e :}H;i%-v‘ vt C b= BAE W AP
A )itk S dg iRt 5 U F AR MR T AR iR T E R Y £
AR &R o’ fr Mo dp ik & PEEF oA FHREER Y Mo £ IR Y
o Tl R £ iR EikiE ¥ Moo

% 22-3 2tk i 4 (Liuetal., 2020)

Compatibility  Discrimination  Difficulty

Hydraulic efficiency index An 0.41 0.49 0.44
A 0.70 0.59 0.53
Ap 0.61 0.52 0.52
MI 0.68 0.32 0.18
MCM" 0.79

Short-circuiting index fs 0.97 0.65 0.50
tio 0.96 0.65 0.45
MCM 0.98

Mixing index o 0.94 0.67 0.62
Mo 0.94 0.76 0.55
MCM 0.97

# MCM represent maximum compatibility model.
11
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éﬁuiﬁﬁpi%*’kﬁ,k4*?%+ FREEPER R TEE A

2 f8ac 392 T fEL - A DR 5 R RIE A F 4 o ﬁf,t:;q#—g— B 2-id 7
JRRGT R 2 FIP A Aok s gtk EH L ot ROTH B e dp iR
L5 RAM S BRI E A 10%5 SR SR ¢ 7 TR T A A o

ot i g i P o I MO AR E B R SRS R B R iREE T

s Lk MR S S AR

e

tlo—b—'? Mo "(’I‘]p Fj’} AT 14 —V/HL'/'%‘FLT]/ °

k4 s Ap A g

BoREE A A 1R P F R ARIE R 4 i B W R R R -
d A 1B PG A S ] LR P B B Flptdee g Uind P i 5
B GRS o R ARIEY S Aok DR FF S A E R KE S RE LT
WA IR N R R E FFIR GG LIRS il g T A

LB enFE A BRP .

2.3.1 -ki%*(Water Depth)

AL RPN 2 RIFE RS IF IR F Y PR T RFARE SR A PRI AR
# (Holland et al., 2004; Shih et al., 2013; Chang et al., 2016; Shih et al., 2017;) » F]* »
A3 R aER R H_0 B gl ¥ % 5 Holland et al. (2004)4% 33 4 1 j& 3 2_-KiF 22
M EEP RTD o e 5> 2% I RTD 7 5 X FRFEH4em 2o 3 B FK

'
S

BTV e AT E ST & F O o Changetal. (2016)% #6317 7 B IFR R
APk e PRE A 0 b R R T KRS Bk 4 %% S Shih
et al. (2013)iF 41— FILE b HILAE B0 o A ¥RE 0.1-2.0 2 ¢ 4p$ ik 4
PeFRGFIE 0 EFHOKIE] Y 0.8 2% A A A 1 RE HVRIE S B B a5 50

120 £2 30— BT TR K2R -

12
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2.3.2 A5k 82 & F v (Aspect Ratio)

Persson et al. (1999)3%k 3+ 13 &7 & Fvb ~ B AR E Mm@y fe ¥ ot 1 /R
Boo@ P AR S ikt HAIER 4 > BEMT KA xF gL EXGe
JoauE g g chr ARl s A E R B mE LA Al
k4 v g id ; Suetal (2000)7FE B AR 4 s hR R BFRE L T
A SR R FEF A EE09) TR EAS B TR BEFE T A 1.88
HAp gt ek 4 2o g i 7 822 % 5(0.7) 5 Sabokrouhiyeh et al. (2017)R]3% 3
AR TSR AR R S R BRI g T K 2 A bR T R
BE KPP B R AL AN AFRIA R B R T Y g e oK
A3 o A ERIAERE FIE 07 0 R AR ERELAF { 5355 > AT L RE

A GRS RS Rk T SRR Ak e E S AR i
| T
A G J | O S
> N + 7 b
-+
B P
-4 — = 4 =L -0 -
i
C Q
b L —+ I b —$
K -
E
- -+
SN |
¥
Category ~ Cases
Poor Hydraulic Efficiency ABCDLHK&O
Satisfactory Hydraulic Efficiency P&Q
Good Hydraulic Efficiency E.G &J

B 23-1 7 ¢ % 1 B fie ¥ 22 H -k 4 s (Persson et al., 1999)

13
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I
0.7 f/

0.5

0.4 i’
f

.3
y.
0.2 ]
0.1

[. L i i i i i
0 5 10 15 20 2

ARy,

Bl 2.3-2 £ 5t 270k 4 sk B f(Su et al,, 2009)

1.88

30

L |

2.3.3 {22 (Vegetation)

A A TRE A E R F 2 - o Jid 484 DR L Bl d b Sy
fedrmja-kd dF e LA LRBBGFE R DERF o2 - 5 RA JORRDE
RELSF PR Pos gk o WA R IRAE A i 2 G B 2 A7 S (Serraet al., 2014)
T2 L BRYHERRBE R TR - TR O Fpt e 2 gl
S R R KT F Ak v A

WA gt WA e 2 AR R0 7 A~ H 4ok 4 225 (Bodin and
Persson, 2012; Jenkins and Greenway, 2005; Persson et al., 1999) » Savickis et al.(2016)
RS $0 k4 e F B G AR AR F R e b4 1 RM 2 3%
% (Main Flow Channel, MEC)p#¥ > iy 3 #xefc & Roninme o F > Tecd K4 2 o
R g2 BARKT I - TRAF O RHEL F3 RS e F et g oonk G 'L
Sabokrouhiyeh et al. (2017)4F 3446 24 % & 0-1000 & (stems/m?)pF ch-k 4 2% » 28 AL
2R E 300 M RaP A PREEDAFTT S T BAKA T -

RALR PFec ok 4 2k ek § 1L

14
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0 200 400 600 800 1000
Vegetation Density (stemsim?)

200 400 600 800 1000
Vegetation Density (stems/m?)

1WWr—
5 R I
0.8 f{-;_o_ N o o
Qi:: 'r” L ¢
- 0, !
= Y¥yg
> ‘e
D 04 0,*. é
‘Pif —— R1 | —e— Ri
o E : o— E
°2 —-v— R4 02, --w-- R4
a- E4 -t E4
e - 0.0 . : ; .
0 200 400 600 800 1000 0 200 400 600 800 1000
Vegetation Density (stems/m”) Vegetation Density (stems/m?)

B 2.3-3 152 %A ¥ < 2 # F(Sabokrouhiyeh et.al., 2017)

2.3.4 Ri#g$ (Obstruction)
fie B 3 A 1 RE ¥ R 0 7 % 220 K A (Submerged Obstruction, SO) 2% _i&

e ;’;g*ﬁ LR BRI

¢

%] (Emerged Obstruction, EO) » % i %

g

e B 2§
B OR RS RIT R EA B A INEI53 R - Suetal (2009) A& T G 1.88 04 1
RN I /7 S B S SN ET L 1 NS S
vk ad p nE T A B S s ) - BRIEIT RS PE o A BL R
R4 xRt ARG fel IR@ P R F S AR Al B e R Al ool E 4
Shih et al. (2016)%? Chang et al. (2016) ¥ i & #ie-k 4] cnfsgdr { ac  renzc §-kon
B Ao deEEi 0 4 B A A g Gk 4 sedol ok A sk 54 o

15
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T S
v I I 3cm v g v 13 m
I 3cm 3cm
8cm _f *
J_ I I 5cm 5ecm
. 1
Emergent obstructions Submerged obstructions Emergent vegetation
(a)
=> = -
1Cem
10cm ]iocm 120cm
t“m = I — =
11 1-2 1-3
’1’;/ 10¢m
- ;‘Dcm - 50‘;; cm - 120 cm
10 cm 10¢<m 'fmm 120em
| L e il I
2-1 2-2 2-3
cm A0 con
= om =t "m'
e 120 cm

2-4 2-5
== :om = 20¢m
10em 10cm ML 10em
10cm 10cm 10cm
‘I; ‘.‘ 80¢m 80¢cm
| 40 cm 40cm | mmmp 1 0 =
341 3-2
(b)

B 2.3-4 ()2 ~ A REP Saeek Pt 7 LB

(b)3 % % /e % (Shih et al., 2016)

% 23-1 7 el T 2 -k 4 »z3 (Shih et al., 2016)

Cases ty (min) tm (min)  #p (min) e A Hydraulic Performance

1-1 21.6 16.6 84 0.77 0.48 Poor
1-2 213 16.9 9.8 0.79 0.56 Satisfied
1-3 211 17.1 11.4 0.81 0.65 Satisfied
2-1 213 16.6 6.1 0.78 0.35 Poor

Low aspect ratio 2-2 20.8 16.8 7.2 0.81 0.41 Poor
2-3 20.3 16.9 9.1 0.83 0.52 Satisfied
31 211 16.7 7.6 0.79 0.43 Poor
32 203 16.9 10.0 0.83 0.57 Satisfied
33 19.5 17.5 15.2 0.9 0.87 Good
2-4 203 16.4 5.0 0.81 0.29 Poor

High aspect ratio 2-5 18.7 16.6 458 0.89 0.27 Poor
2-6 17.1 16.7 5.1 0.98 0.29 Poor

16
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2.35 » d17ige ¥ (Inlet-Outlet Configuration)

Pl DR B A E R R R A 1 RE iR B R L B
7 e ag Al enr IR B i (77§ (Suetal., 2009; Sabokrouhiyeh et al., 2017) » & &1«
voEL, AlibAe
PRV B A A R AE B aR A ng o A P B B e g F— 4

ES AL RS S B B R F AN A R R R A5G IR

FRW L RFAFI0S R R RS A KRR A ] T A

fH\b
Wi
|

BF kT B A B Bt B ARG A KRR AL

Yy A -k R [ »
&_-/Fz, Bor iRk eny ’l‘ﬁlﬁﬁr_,‘, 11ﬁ_,‘\m7f§m?‘-“’J\T¥p°
Case R4-a Case R4-b
! : : ; X107 50 ' ' ™ x10%
50 ok F i
sy 1115 G TS 15
Eo 1H 10 vl 10
> ] > |
1 5 t 5
50, . ' . 5 0 S0L, L L L L 0
-100 50 0 50 100 -100 -50 0 50 100
x (m) x (m)
Case R4-2i Case R4-3i
T T ' %10 1 x10™
0 F3 20 50 |F120
115 1 15
10 18 10
5 15
50 g o -50 . . il
-100 -50 0 50 100 -100 -50 0 50 100
x (m) x (m)

Bl 2.3-5 » diinpe B 2 H 30k % % (Sabokrouhiyeh et al., 2017)

1.0 1.0
E——
T '_H:_:_:_..A
0| 27 ™ 09
- -"”'-“‘-.v
0.8 e _.os
= < e
T
5 0.7 a 0.7 &
R —e— Ry
6 _.;_ R:-a 0.8 wOe Rgma
e, Ryb —v- Rgb
0.5 0.5
0.0 0.2 0.4 0.6 08 1.0 0.0 0.2 0.4 0.6 0.8 1.0
biw (-) biw (-)
() d
1.00 1.00 o)
0.95 085 ] 4o B
0.90 __ 090
- -
e ko]
& 0.85 @ 0.85
—e— Ry
0.80 g Rg-21 0.80
—y— Rg3i
0,75 0.75
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
biw (-) biw (-)

B 2.3-6 2 > dRAe B 3 2 2 B 5 (Sabokrouhiyeh et al., 2017)
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BEDPAPLEE AL HRERY £ A FRF LSRR TR
i l5 Fd- BAMT EoEHBE ) T ¥ Al sk AR Rbsbe R
AR R HAem e IR EA PR s F Vs AFE T TR ARE
¥ o400 fER B F Ao rstziz/%}iif‘m*"?@%]ﬁa?\ AR E BB RO R RS
B3R i eak B B AR g T 2 BB AR Y & EE B BT o
B o B AEINT - P 4

2.4 BB

PSR e Er SRR ARSL AT T - A 2 A kR
(Digital Image) | ¢ % (pixel)ie= » = Bifid R-G-B=BEd Lz izl en
o ipd ok AT B gt T e A N gy - R TR T E K
d A T ReE B a4 R o Ay A i‘_ﬁvﬁ;’ﬁgmﬁ; s fio & B B e
T B RohdE e S b A FERET R Gt B 2 2 2 TR e TR S B0 1T
el Fem AT TR SR o

241 BEd —k B FES

PR —RAEFERIAY B B FA AR KM ROER D 20 RS
AR AIERHY o ERR 3 GR T Bk R & F (Maier and Dandy,
1996; Aeby et al., 1997; Forrer et al., 1997; Forrer et al., 2000; Persson and Uvo, 2003;
Stadler et al., 2000) = Forrer et al. (2000): -/ cd 1) — £ = B e e in % 0 85 7
ERHREAY (¢ ZIETHSEFT R - Fies  FEBRRAER A 1)INR o
B(# 7 ARE ~RRRE 0 TR )EE FRA] (FREHRE) TG e
WP o Persson (2005)f) v 27 i@ * RGB % % #icsine Eﬁ?ﬁ"_‘;‘] > LogC~C &34 5§
PREEH o FRCY > B Y LogC ¥ C & mde™ ¢

LogC = a+ bR + cG + dB + eR? + fG* + gB%* + hRG + iRB + jGB (2-11)
C=a+bR+cG+dB+eR?+ fG*+ gB% + hRG + iRB + jGB (2-12)
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BEHE SN M G 2 354 RMSE £ 83 4 0 £ 72 BHAT
Wi g g

band of tracer application x/cm  band of tracer application

Q 1000

25<“..:~
S0  FAENGE Y L
N
el J
75 {
sand lenses D sand lenses
100 e, ;
T e—
0.03 0.1 0.3 1 3 10
C/kg m3

B 2.4-1 23> ¥ 9%k 4 44k R~ # Bl (Forrer et al., 2000)

2.4.2 ¥ 3 i, 7 (Particle Image Velocimetry, PIV)

.+ B i~ 37 (Particle Image Velocimetry, PIV)&_f1| # =3 %3+ 5 4871 o0
B S F ORI R > AT R R TR S BB R e 3t Y

B
Bro chihig A o gt hB B AT SR G SR T S R4S 15T

—\\

FIAEPERFTROAA N BAATERIERET > S EFIL P FunE TR L
FoveEfpin g A # o 2 5 2hi 0 38 2 RI(Non-Intrusion Measurement) 7 #2585k 3 ¢
wHTE e

PIV & Bk f+ & 5 B i Mg a5 N & %P3 fr i i einag &
G S EE G A PR e e A TS AR o B R R
- P B & - o] 04 en P HE T B (Interrongation Area, TA) » ffs — R B if? &F
Hr- PiEwE B oA * 2 23 4p M > 2 (Direct Cross-Correlation Method) %
VP R I A - R P i ¥ (7R 7 fe(Keane and Adrian, 1992) »
B A % ik i = F & 4 (Fast-Fourier Transform, FFT) #- % & % 4f 5 &

(Frequency Domain)fé £ & {7 7 fie » T ¥ 3t 5 - s B 1f2 P R IP - ¥ K&t =
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HETEIFZIAREE D o ST PRBEEAFEFTE T @R

Berjnid B A o

o
o ®
t=t,
@
e {:“u
' :
L o%,
t=t,

Bl 2.4-2 .3 B A R

dow - TR T BB R P R crpn o TP AT 7 AR %S
feP R R R Gk B BRI R & 5 BT 0 N9 B
MRDE RS RRE TR VR E KT RBEET 2BEFR R TS

Eal-
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AL RE R RFAMPF L A RS ERF TR KT RS A BB E
A R EFIREET S IUERE RTD o S Gis F A 47 o It F ok d 304 1R 200
BER-BFFEFEEIRT] FHRELAAFGP PR T2 33752 § i ]
EFFZEERRES AN FRNLST R DA 1 BF FE AT N FHF
o HA4r1@ \ﬁ = % #%4p 11 = (Reynolds similitude)(Serra et al., 2014; Shih et al.,
2016) - B2 28— TAZR b1 0 IR OERIR > A0 TR R Al {
Z LIRS F PR TS S5 S SRR a1 1
FOREEORE DT HF TR R S R RR TR D@ 2B
FHRFTAAF CERF ERFE R Ra B E R R £ F PR R
i By
T LRI RTD & 3 jgd B ipams 53 7 Plick e st e 2 8 F Sedicdy (@
B~ RRE) ER =P IRELA 4T o

AT %% Su et al. (2009)% % 35 4-(2014)2 F Befic B 0 LN P B HE L]

tt;dxpzi’gf%mg?ﬁ@’%ﬂ;;zaﬁﬁéﬁ FIDIL G o A e AR A

\\\xr

g A B URIEI 0 BT R A 1B AL R A REA RS R
YAAMF LA FEALRBE 2 kA f Y
0.4m/d) » EFFAp¥ 2 BAFE G 5 941 mYd > EF-KIE 1-3 m Ap e cha % i
R G 255765 % 0 4 R RS AL UIE T @EA L EL U] AR L
125> 2 5d $3] F @67 @ 3R %k~ 5 1.omx 24m > k& 5 436
mL/s > ok R A F k1 R - T T %Y

F TRy % iPhone 8 i T4 » B2 7 #3345 30fps 0 RIp 7 F o RiFSr
PR XL 1854 At BB FH-FREAY F BREFRR > S HR
FRJEZH o X G KR A ARSI L0 IRR R BRI e B %

“F

6 ff 2 2400 % 2 2 0 g

o

KRR T ERG FRBRHIIEL > L AR ALRF RO
D F %R0 Matlab 2018b it (7 (5 AJE - p RERALS MR P ATA S 5 B
AR pEEERT R SRR LRSS R L T HER R 1)
— 5 ~PIV # %% 0.1 - 5% -
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3.1 #3731
BE AR B F @ % 4RA% Bic(Froude Number, Fr)fp 122 » 2 & 1 Bk F]iRiE &

B~ fEd ERES el CARF RS (i & @ % T #¥c(Reynolds Number, Re)
BT Ske (Schmid et al., 2004; Serra et al., 2014; Shih et al., 2016) ; 4= 3-1 3% :

Re = = (3-1
[ S )

pVL £ 4

HY bp R AR BRE DR AT HAF GV ALATHER LA FER

b

ERE RS ST DRSO S EST Y TS P ST

Re, = Re,, (3-2)

Pp V;a Lp _ Pm VinLm

= 3-3
Hp Hm (3-3)

3-2574 23350 Tk p A RADKGE » TR m R A HAR G S gt b o d Y R

WAl ¥ R ER S RRNRREIFEAF > R TPy =P~ Uy = fm * P

33 8T Uy A

Vin
22 _-_F _ 925 34
A (3-4)

FAlE RAI2 RE BT L 25 B - HPEEE L E SRR EA R

B B -

2
Im _ L_m/V_m= AN (3-5)
T, 1,/ 7V, \L,) ~ez
3
Q_m=<L_m> /T_mzL_mzl (3-6)
s \1,) /T, 71, T3
22
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TE RS R T S 1625 B R S 1250 KEL A g

N ;'-_
W2 Rb3t 8 FEar 4 31-1¢
F 3.1-1 #4) F 8 2% dem AKiF)
£ER g PR P
Hg v 1/25 25 1/625 1/25
R A 60m x 40m - 2.55 day 941 cmd
A 24mx 1.6m - 352 sec 436 mL/s

32 kip L%
P ook E LI BT IR EY24 208 F Y16 2

o Smm B FEA > A IRE R G408 0 M IR L A — 4T H
v OEGK B B 0T AGK B SRR § 1945 Suetal. (2009)F 3% 0 4 1 iR
P2 E R AR ESHAE 188 3 RV RLSREW0T) Ft AR LR ET
WL 1S B P AHRAKRIFES 1308 v 2SS LRREFD R AT

el

B
SRR KR 412 24 o FEd FUR AR R E o SRR 2 ke

FIKiE > T2 FIRNAE TS BB 4 BRIRIT R SRR ALY SOk RE

Bl 3.2-1 KRR ~Ep-kfaRyEERIRFERS
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| 1 1 | 1 1
1 ! “ 1 1 ! 1
e | ! : | 1 ' '
e ! | I ! ! 1 1
x | | L L !
ﬁn 1 “ 1 I 1 1 “
“ 1 ! | 1 1 1
| 1 “ “ 1 “ 1
I e e e e e e e e e e e e - = 1 L e e e e e e e e e e e e e e e e e e e e - - F Y S
| = [ | |
= L L L
j—
5 B
<+ m %
't E N
3
A|v_.ﬂ5 _\
) 5 & ¥ o
3 g 3 5 .
] o “ 5 g
v Q 5
— (= )
- » =t o~ ]
o T¥ 2 >
3 AN 5
& g 5 o ol
g o 't & g
% = g g S o
) < = o IS
— [ o

i

Case 2
Case 3

Case 1

(
(
(
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AR AR 1 ez P ke 3 ek P %(Case0 Case 1-3)» & 2% e
P E BAct B 322977 s HP R FTHRABEXE I FRBESFEZES KRR R
w5 Bkt (Emergent Obstructions, EOs) » & <} '# % 60cm x Sem x 12cm > Case

LA B ARITI N v 860 24 AR S BHG > Case2 s lmb £ B

D

0 BHK > Case3 6 * Casel 2 fie® T 7 3 4edfd K> fd KR+ 7 & 23

3

2o 2455 7.5cmx2cmx 3.5cm i fg ok Y b - L o
FERERT A TR T R FRERRRT R TR K T HE

BERA A Tp

321 7 BuH R %

A Y @ * B4 P (Rhodamine WT,RWT) i® 5 7 g - H 3R g8 d RBERIFE
RF RGP B TR R PARERER L 21.33% 0 54
PO » v i 5 R REARY T HSGHT L R KRR S 2133000
ppb (part per billion, A 2 - ) B2 P Rk £ 5 133 od F-0 (57 B
ARy E S 10033 FIRBEVARG BRI o F X R B E e L AR AR T
2oRGFE T BAMER > B3 )R T A T Rk 20 mL SR 1 2 i > E 3
MHAERIDYRR A E B AEE F BT RHR R LTk i £ AT
KoL - FRGITHRBPFT - FOR RS E T RIELR TR’ T Matlab

2018b & (7ATfR » B 1§ 5 B PR 01— 3R B TG

B 3.2-3 71 B R S B
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@ RID o seh™ 2 5 aF %P uh i i g Bo- B H 2% ¥ 0 ek
FSEP G %BRGB B 0 F I fFHCA 8 F - PP T 3% RGB EARE T
SR R B S SUR T A RTD # 80 RTD jk & s inie % | @ 45 Bodin
ctal. (2013)2 2 FR$F ¥ 3 B, (75 B2k L Brenpr gL A 0 R GPFE § A 4§ ok
Mk dpthe, ® Bepfia) ¥ oo 31 BRA RFilRdrkdrp i T T 3k AR
O HAE LT 0 PR R Ay AR {17 g ke 2 TR kR
A SUELRI R R R R A

Simulation Data analysis method RTD truncation method
name/
method
Tz Trapezoid integration rule 3ty
Te: Trapezoid integration rule Br background concentration
Tui Trapezoid integration rule Li* background concentration
Ga Gamma model 3ty
e N Removal rate (%)
True Ts Ta Tu Gs True T: Tar Tu Gy True T: Ti Tui Gy
R1 0.82 0.90 0.79 0.82 0.82 4.1 27 43 41 41 61.2 62.1 60.6 61.2 61.3
R2 0.82 093 0.79 0.83 0.82 4.1 26 48 40 41 61.2 62.9 60.6 61.4 61.3
R3 0.82 098 0.79 0.85 0.82 4.1 24 48 37 4.1 61.2 64.0 60.6 61.7 614
R4 0.82 1.02 0.79 0.86 0.83 4.1 23 47 35 4.1 61.2 64.9 60.6 62.1 614

B 3.2-4 RTD #5~i% b pF Y 22 2 % 2_ % 3 1725(Bodin et al., 2013)

322 ¥ ERRZREE

WXREARERZBLIPRAREG ARG o F P Ao EE kR 2
RApgd iR A LR GRS - o FAEERZ I G RANNT K PBERE
W2 % ; Forreretal. (2000) & Sk erig (FiE /27 BN A Rk B o0t £

pord
[
g
B

FREASIT RS RATER DS B KA SRR FHEER DI RS
R FIRAT T 2 AL RS M AR SR Bk P R
eI el Ak R BB P XY etk Y 4ol 3.2-5 #r

Bl 3.2-5 &RFBRRE
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FUBH O~ F Bkt 2 7 BAE R § EF PR B A 0 A e R
24 f87 Fe k Behe doip o d DR A 21330 ppb B iR 3P ¥ hE B 10 Bk
%H RGB = ¢ #1 kR 2 o NEMA4cH 3265 F Fli 2 F-KiE2 3% Tt ok
—ERTOEERARES T RHR AT Y R FRIRZ B A B R
HpEd BB TIEDMANE 100X 100 BijF ¢ chgpd (T, F5 L RLp
HEARAZER KIET RS o p e R RS BB R F R RIERED S S
TSR RTERIBA L AL FETERER c AP R Y Pl 0 8 ke ik R an

ik v (75 A S - 4o 3.2-7 S o

RGB - Concentration

%104

0 50 100 150 200 250
“ 4
-% x10
Z2r %
S
St G
C
3
< LK I )
[e]
ST 50 100 150 200 250
%104
2 ..
°
®e
1 ®e o o B
®e b { T
O 1 1 1
0 50 100 150 200 250
RGB Value

Bl 3.2-6 %% RGB » # (4cm -k iF)
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o0 9013 | 10360 | 11908 | 13532 | 15377 | 17277 | 19197 | 21330

(a) 8

66389 | 9556 | 13651 | 17064

(b)

Bl 327 2 bokiRT 2 ingmd A% QB LREE OFLRRE
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323 £ IF I %

7i%ﬁﬁ§W$mﬁmn’%mﬁm%+aétiiﬁﬁ¢mﬁ%ﬁ
(faithfully follow the flow) > ® %] & A 1 /B cinin 5 5 onsd 3 Boenkg on > Fpt
PEep IR FERYERE -BA R T I A R UG AN MY 0 5
WS R AR R TR A RIE IR A G i 0 B R A
A EMEEER TN AR B RER S S A S o 2 L3
Ut R O T FlinE Pea A LR T B R UE 0.1 f- 5k E S REE
Pl X2 3 o #3553 i i 10 R P 7447 ©

3.3 BigA 7

B 447 Matlab 2018b A (7447 > i FEBENRFTHREF LE
- R FATIES S B T2 R T RO 0 4 B AR RR AR
b > TV EPRTE S G R E > doB 3.3-1 2 332457 o Z SR A LB
R A7 o R — R R PRSI TEBRAEN A7 0 3 PIV R4 Rl * PIVIab
2.01 (Thielicke and Stamhuis, 2014) °

]
[]

[
3]
]

g

N

g

g
3
g
3
g
3

0N
Wil

™

| B B

:
3
:
3
g
3
;
3

000030 pg

g
!

]
]

0000

A

g
¥
g
H

]
i

000037 jpg

g
!

(a) E E—»

C1 _C_4cm.MOV 000039,j0g

n
M
]

i
8

b
0
b

§
b

AN
3 3

g

2
H B E
§ 2
!

3
3
3
3
i
]
3
H
H

o on
0 00
0 ponn

2

2
: 8 aF
E §D 3

3

g

§ r:E

% E

n

g
3
2
3

000003 jpg

7
3
g

= g

3 8
g

§
2
§
3

[]
h
[]
h

"2ipg

® —
C1_P_4cm_Trim.
mp4

0
B
b

s
g
3

g
3

000021 jpg

i
g

[]
a
]
]
a
I

8
2
g
g
b ]
:
3
2
3
2
8

Bl 3.3-1 F%F 44712 QERAF%H b B iF %
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LR

L3

N

B 332 B8

331 B —ik A yES
BRSBTS R R E TR THR A RO LR RFREAD
1 (Correction of inhomogeneous illumination) 22 & T =i} it (Correction of white
balance) » £ & i & ¥ %% £ RGB (Red, Green, Blue)¢ 454 3> ;N3 3 HSV
(Hue, Saturation, Value) ¢ 2% 8= 3% > H ¢ V N & 2% ifF R L R - B3R T3
FF VI T @R enT oR LR Vo L #9rg B e Vi T a1 T E 5 et

F RGBT IERERV PR LB E BRIV I Y T 2N ER D

V' =V X

SRS

(3-7)

B R R R B ARS FIR IR LA A e 0 B2 L AR RS
Bobay 2 w21 pE AR

F PN BRE P 21 B AR e RGB 0 F)
FEPG L F A6 BAMNRGB B0 #5TF B A A AR en RGB B B
(60 B uIEE 21 BARE AT AR RGB Y o T @I AT R i
Abp? AT & A RGB ¢ ko B i £ M AP 2 RGB MEp &3 4 0-255 4 &
21 %4 RGB > 8 % 47 43 F R B o & enrp & L2 R S
2550 F UEFA RS EAFE vk S SEBEE R PRRS F B
#IRGB 37 fid A FERIA h2] BREHBEIAFEH2 BRE > 12 LB D
Gk e hFEE BB L (TR ER Mg FARBE $5 4 B FahE L

DFAFHREY VAR FP LSS BT o
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&

R

TG R R SRR E 2 B AR R

RGB &7 % 78 ;\ 1% Fcr?l ® B~3| = = 78 (Forrer et al., 2000; Persson, 2005) » # # 7 7] =

LN

b i

34T
logC =a+ bR+ cG + dB + eR?* + fG* + gB? + hRG + iRB + jGB (3-9)

AT R FRKGERAT P RE RS AT ROPT L LA %
KRR PRI BB ORAF L URFMAFTELR2L RGBA T §d 2 kR
WA P AMERPED ST HHES BT T BES o L P ARESAIESRLER O

PRI RRGBZ BEAB X I PRLFERTHRFH HRR IR H
- B GREA BEEI — S e ek R TR b kAR B TR il B UM 3p i
RFRREFS R o

3.32 P+ R AL 7

PIV 4 47 * Matlab /& * 4% ;% PIVIlab 2.01 (Thielicke and Stamhuis, 2014) » & &_
- FEE A MR TTOPIVRE R Y N ERELS TR B8 E AT
ﬁ?ﬁ%%%@i‘ﬁﬂ%%iﬁﬁviP{ﬁ*@ﬁﬂO%%%ﬁﬁ&ﬁ’ﬁﬁ
2R S fETE D - B RS- S BORHT BTG R AN KRR &
% 3 (Interrogation Area, IA) % 32 pixel » #7%&F % 3 (Searching Area, SA) 7 64 pixel >
A1 E R T5x 5] BERWE o F B opixel 5 1.98 mm F A ERPGEEHE
pixel % & 2 Fins-¢ ik ¥ 5 0.01981 m/s © PIVIab ¥ 4 5 777 B g Frie {7
1. =rorEH R P
2. ER PRI LEORBEPFEI LY DEH
3 ER P L ~ B it iz (EHMBRF )
4. EHPFwE ]
5. #4& BT SELEEEERHKFFIGIFEL BTRY
6. EH/SFTRALY ¢ REHAE S KR T SRR
T ESE R
8

FEIBEREF CAFERKSA IS S .
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2 &
4 PIVlab 2.01 by W. Thielicke and E.J. Stamhuis - a X

File Image settings Analysis Calibration Post-p ing Plot E: i istics Syntheti

particle image generatic Help / Referencing
[~ Analyze (CTRL+A) ;

Refine velocity limits
[ display all frames in scatterplot
‘_ Lir SE—

wvalid u: -10.58 to 20.41 [px/frame]
valid v: -7.82 to 10.45 [px/frame]

Apply to current frame

Apply to all frames

Undo all validations (all frames)

Frame (3/3):

B 3.3-3 PIVIab & it& w

34 A1 R¥ AR 4p TR

A LRE ST S aRER AR A Nk R ESRATE A ko 2 A
Jr p »t Danckwerts #1953 & #% 11 /% § BF F & % (Resident Time Distribution, RTD)
SPLE A LIRS - B DR i 0 X IBRPRI O~ T B GRS ok
FopA 3R P R R A, s 4 3R N g iR (Levenspiel, 1999) »
B RTD & K75 7 fed N5 5 4 b 080 28 5% A 1 BE cin i o

¥ r S E g apF R il T E5% F pF R (Mean Retention Time, t,,) ~ =%

i % p+ [ (Nominal Retention time, t,,) » 4 %% * 3-9 34¢2 3-10 3¢ & & :

_Jy tC(®dt
[T et

m

(3-9)
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v (3-10)
Q

t, =

€1 4R e %@fa@wﬂfm& DG TR b e Bl (7R R S

Be (@2 REFEFTIC FRIGER FLKMHBMA Qg oty & T

TR RO RTD o S A € 5 & =34 # (Tail Effect) > #2285 £ R3] 110k )k & @ ¥y
AT R RRIZPER S Ft g By ¢ icis § P (Median Retention Time, tsq)

A&7 0 gamma N # e RTD £ Rl % > & £ 3 B @ g i gl v 535
¥ t, 4 B (Bodinetal.,2013) 242 3 £ * %éi;ﬁ?';é: P E B BRI G s
tro ~top * A Bl R 44 BIE R PR « R AT 5% 10%  90%- HiHL BRERE > AAD

TH* 3Bk e dgdh st W R B E 0 by LRI R R £ iR
(Mo) -

PO b atadpiR (8 AP RR Y dg R 5 2 <8R4 RS 4 R (HED

{27545 H(SC) ~ iR & 3 (M) (Liu et al., 2020) = 2tk 4 s2F g3 48 * A~ e, 0 *oim
PR Pt YR B4R Y Moy A N 314 3 317 S A

HEI : fm X © 3-14
' trzl ( - )
t
e, = — (3-15)
tn
SC - tio (R#E) (3-16)
. -1 _ two }
MI : Mo = Too (3-17)

HeY > A1<055723F-050<1<075578#% ~1>0.75% iF ;tlo§r,4rt,n‘ztn+%i$
L iR Ftyo > 03PF & 7 Einst ik P& (Farjood et al., 2015) o
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Frf BRELH

KRR AR SRS E R B% - TN DHREFE 3 BT
% 12 P (Bodinetal., 2013) » %) 5 20-60 A 487 % ; F %P A v Aoy 7 bk
T BiFlomenk > ARE Y E4-12em RiF > T AR SF KRB e WK
= B R TR T
TERF 39 %P
WA R s 105 i AR AR AT o LR E Y R 10-20 §) ik
T4 47 o

BFRISE SR E S A4 MAEWMHE RN ER
10

%ﬂ

» 20 mL ~ 2133000 ppb 2. B P ¥ B 4n4R T 3 RID% B

41 B ihEss %

411 kKRB ¥R
ipi@w%ﬁﬁﬁﬁﬁ%%a@%a%ﬁaﬁ%z&’fwﬁwaaﬁﬁ

H#-7A| (piecewise regression model) > #- RGB = 78 4 B p? T2 RYpAp BB i

KORF -~ dp i~ s ) e Sf.‘a‘éiﬁxu'*ﬁ B T fFHCA] > B KT Aol 4.1-1 ¢

Piecewise Regression Model of RGB

4 R 4 B 4 G
Py alha— . ‘ g0 = Pyl :
181 1 18¢ _— 181 o 1
Con = 71354%¢0-017'B Con = 6006.7*¢0018°C

16+ 4 16+ R2=0.99 4 16F R2=0.99

14} E 14} g 14}
=)
Q.
S12f 1.2F 1 1.2F
c
S
S 1 1 I
Z
(]
Sosft 0.8} 0.8}
o
(@]

06 06 06

0.4 Con =-289.62*R+76555 1 0.4F 0.4+

R2=0.97
021 021 0.2r
0 . . . P 0 . ; , .
190 200 210 220 120 140 160 180 200 220 50 100 150 200 250

B 4.1-1 » K EF: %% (4 cm-RiF)
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2 4.1-1 7 i jF ol 2 4p B R dc(4 om -RIF)

G B R
Linear R?* =0.82 R*=10.96 R?=0.97
Exponential R? =0.99 R? =0.99 R?=10.95
power R%? =0.97 R%? =0.98 R%* = 0.94
30412 3 FORIET 2 A R FRCAIZ G
G B R
C = 6007¢~0018¢ C = 71354700178 C = —289.62R + 76555
4 cm R%? =0.99 R? =0.99 R%? =0.97
50/ 255 113 /224 189 /227
C = 4624¢~00186 C = 48354¢~0-016B
5 cm R%? =0.99 R? = 0.995 _
50/255 52/219
C = 355895967199 (C =38701e7 00155
6 cm R%? =0.99 R% = 0.996 ]
43 /255 43 /201
C =3136199G719%*  C = 3536000165
7 em R%? =0.99 R? = 0.996 _
44 /255 36/204
C = 2417152671872 (C = 31578¢7 00165
8 em R% = 0.996 R%?=10.99 _
42 /255 33/198
C =1907747G 1845  C =25162¢700158 ¢ = —163.43R + 43376
9 cm R* =0.99 R?* =0.99 R* =0.99
40/ 255 56/192 136/ 195
C = 188039067185 (¢ =23225¢7 00158 (C = —170.42R + 43845
10 em R? =0.995 R%?=10.99 R? =0.99
45 /255 47/196 133/ 186
C = 1243580671781 (C =22323¢700158 (¢ = —172.13R + 43347
11 cm R? = 0.997 R? =0.99 R? =094
46 /255 43 /207 136/ 184
C =1249398G7179  ( =22039¢700168 ¢ = —170.15R + 42525
12 cm R? =0.998 R?* =0.99 R* =0.99
52/255 477210 125/ 187
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F IR 8 kR EEd AF RBBEHD 0 % P42 RMSE o
S N BT o AR 4.1-2 o o fé H A\ﬁiﬂﬁﬁ?ﬁﬂ%f‘%éﬁ?ﬁ‘i AEGEEF TR RIER
FER SR > N AT R L R B AMERBILEREE T F I
Bhoded @ G RBCE R A MORR GRS B R FR AR MR L
5o ARA AR PERER T LT 200ppb 0 K g Bk R PIARAR 3 ¥

e

Multi-Regression Model Piecewise Regression Model

20000 20000

Q73.75%
15000 15000

5000

Predicted Concentration (ppb)
Predicted Concentration (ppb)

5000
RMSE = 271.83 1.64% RMSE = 266.53
T2Q¢70
0 '©=14347% * 0 L L
0 5000 10000 15000 20000 0 5000 10000 15000 20000
Known Concentration (ppb) Known Concentration (ppb)

Bl 4.1-2 -3 % % % % (4om 7k iF)

412 PIV im¥i ¥

AR &+ s 17 (Particle Image Velocimetry, PIV) » *% /R H 385 148 ik
P> A iy S I LA = 275 B 35 SE i SR LBIIE, S-S A i E A R SR 6
d PIVIab 245 B3] % & jish > 1500 K incided MR35 B > 5 @ IEA T
i R RS TR EE TR A I RE P REER F L K IR R(Re < 2000)
FIOVERKIFER T e i@ e VO P R 6 A 0 e 441 30

2
u(y) ==X S x (hy =) (3-1)

My = hF ~ 41 8¢ TR A2 NG ik o RERAMA T 43 X T o

B Bk oo nik ",lrf L aTRiE o WwE F R A G iR TR ag hf N o de 44 5N
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h2
—u) =PI xsx L
u 2 4-2)

h
ﬁ—f u(y)——x%xth2
u (4-3)

= 1.50 (4-4)

SIBS

E} 4 N fr”/[d“”’ = %EMT]F' T“J m/u 13; =3 Z\ U‘ /u 13; 'Q K,% P 15 gé' —Ifé’l,;ii 4

4 5
R BRI auEARY 50 A > Fp Ay W HIIRE 0.000436
m’/s “,ﬁ% YU R %R bh BT T 3ok 0 £ I Case0 A F B Bigidr prens TNk
BHILE > SRFEAPEZ A s Tind 14168 2G g
i B Al 4130 FlP R BER TV E R AF Y g onid B TN

g TROFREE RRI B FA R i BT IERE 14168 7F X

Surface Vel. & Mean \el.

0.25
Q O Surface Vel.

0.2 AMean Vel.
@
@ G-
£ 0.15
= A Q y = 0.8268x-0981
2 A O...... R2=0.98
2 01| B A. O-Q... Q
> A Ap 2 0

0.05 y=05447xt " A Y. U A

R2=1.00
0
3 5 7 9 11 13

Water Depth (m)

Bl 4.1-3 ok x v AT E0ini 8 A G s B B

PIVIab :* & P &7 #2 & B A N A e AfF » @ % o1 & = F 4 32 (Fast
Fourier Transform, FFT)#-% & 3% 3 #4F 5 32 (frequency domain) £ & {7 fiz 1% 3| >

v g 0 BRI GPER IR 25 0.1 45 0 i Flendo) PHRT R R 32x32(px)
Hiz4r R 5 I5xS5 7 Theyd2 65 B %iH L3 5S7T04 B2 e £( % 4.1-3);

W e BHH L AR REE L LR L RniE 2 A SHEER S
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KK 1600 mm 0 B SE G2 BFEE 5 0.1 s 3B 4118 B2 & B ifd (pixel) 5 1.98
mm > G SRR B 1B et A i 5 0.01981 m/s 0 Befs 0 d 3G P
SRiEARY Gt v Aun i RE P R F B aut Ak F o FE d o~ v T
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% 4.2-1 Case 0 § %2 %

Water Depth  VVolume th tm tp 2 1
Mo Mo* Rec.R
(cm) (m3) (s) (s) (s) A ev ts t10 too o
4 0.1536 352 206 42 0.07 058 0.09 0.09 1.62 1.40 17.27 0.06 2.20

5 0.192 440 213 46 0.05 048 0.08 0.09 1.30 1.49 14.64 0.07 2.09
6 0.2304 528 239 40 0.03 045 0.07 0.08 1.35 2.01 17.44 0.06 1.89
7 0.2688 617 339 59 005 055 0.08 0.08 1.57 1.52 19.40 0.05 1.69
8 0.3072 705 371 60 0.04 053 0.07 0.08 1.46 1.48 19.11 0.05 1.17
9 0.3456 793 548 62 005 0.69 0.07 0.08 2.03 1.32 25.92 0.04 1.17

10 0.384 881 578 72 0.05 0.66 0.08 0.08 1.86 1.28 23.10 0.04 1.24
11 0.4224 969 734 81 0.06 0.76 0.08 0.08 2.08 1.13 25.82 0.04 1.47
12 0.4608 1057 786 89 0.06 0.74 0.08 0.08 2.05 1.14 25.48 0.04 1.32

% 422 Casel § % 2%

Water Depth  Volume th tm to 2 -1
Mo Mo™* Rec.R
(cm) (m3) (s) s) s) Aoe b o o ©
4 0.1512 347 235 92 0.18 068 025 027 139 017 525 019  0.61

5 0.189 433 446 113 027 1.03 0.23 0.26 2.14 0.48 8.28 0.12 0.78
6 0.2268 520 393 126 0.18 0.76 0.24 0.25 1.58 0.55 6.32 0.16 1.42
7 0.2646 607 588 153 024 097 025 0.27 2.06 0.53 7.68 0.13 2.17
8 0.3024 694 575 183 022 083 0.25 0.26 1.79 0.59 6.78 0.15 2.22
9 0.3402 780 747 233 029 096 0.28 0.31 1.95 0.47 6.37 0.16 1.77

10 0.378 867 916 267 033 106 0.29 0.32 2.18 0.46 6.89 0.15 1.53
11 0.4158 954 947 278 029 099 0.28 0.31 2.05 0.48 6.69 0.15 1.69
12 0.4536 1040 1110 277 028 1.07 0.27 0.30 2.23 0.47 7.30 0.14 1.79
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% 423 Case2 9 %2 %

Water Depth  Volume th tm tp 5 ]
(cm) (md) (s) s) () A €v ts tio too c Mo Mo-1 Rec.R

4 0.1488 341 385 113 037 1.13 031 0.34 2.27 0.44 6.75 0.15 1.88
5 0.186 427 422 122 028 099 0.28 0.30 2.10 0.54 6.99 0.14 1.99
6 0.2232 512 583 166 037 1.14 0.33 0.37 2.16 0.36 5.81 0.17 1.12
7 0.2604 597 632 184 033 1.06 031 0.35 2.02 0.37 5.82 0.17 1.03
8 0.2976 683 605 220 029 0.89 031 0.32 1.81 0.47 5.66 0.18 0.95
9 0.3348 768 764 261 034 1.00 032 0.35 1.96 0.42 5.66 0.18 1.06

10 0.372 853 822 292 033 096 031 0.34 1.89 0.41 5.61 0.18 1.25
11 0.4092 939 1124 376 048 1.20 0.39 0.42 2.20 0.33 5.21 0.19 1.18
12 0.4464 1024 987 320 030 096 0.30 0.32 1.83 0.37 5.66 0.18 1.07

% 42-4 Case3 § % 2%

Water Depth  Volume th tm ty 5 ]
(cm) (md) () (s) ) A ev ts t1o too o) Mo Mo-1 Rec.R

4 0.1512 347 389 105 034 1.12 0.28 0.30 2.32 0.46 7.66 0.13 2.17
5 0.189 433 366 116 023 084 024 0.25 1.79 0.57 7.24 0.14 2.40
6 0.2268 520 457 129 022 088 0.24 0.25 1.88 0.57 7.51 0.13 1.46
7 0.2646 607 413 179 020 0.68 0.24 0.26 1.49 0.66 5.75 0.17 1.60
8 0.3024 694 456 202 0.19 0.66 0.26 0.27 1.35 0.45 4.93 0.20 1.36
9 0.3402 780 562 240 022 072 0.28 0.30 1.45 0.44 4.90 0.20 1.12

10 0.378 867 788 247 026 091 0.27 0.29 1.96 0.56 6.70 0.15 1.50
11 0.4158 954 624 286 020 0.65 0.28 0.30 1.29 0.20 4.24 0.24 1.20
12 0.4536 1040 657 317 0.19 0.63 0.29 0.31 1.25 0.01 4.04 0.25 0.88
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4.3 P IR

WA F I Y B Ao ec g A 1 RE ¢ enfie B (Persson et al., 1999; Su et al.,
2009; Farjood et al., 2015; Savickis et al., 2016; Shih et al., 2016; Chang et al., 2016;
Sabokrouhiyeh et al., 2017) » & ¥ iv e s i EF G vk 4 3 5 R
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(advection) 4p # >+ 4~ + # F7(molecular diffusion)i? 4p £ #c+ & 3 #&F & 2 % (Shih
and Wang, 2020) » * — L% 7 1153 5 i 3P gl B EGRp

advective transport rate Lu
Peclet Number = — - = — (4-5)
dif fusive transport rate D

B L afFck R usinigd D 2 A FHichde: Xa ¥ by \indgic(eddy
diffusion)¥? zf §7 3R % (dispersion) % T i 5 7> Fpt "f LR e O3 Rl I AL
L0431 8N 5d RSP IO > 432 PR BRRER SR IR R
I | R Rl TN BTl I

431 :# B3
PIV i3t B 12 @ 5| % b Kigayid4ch 43-1 2 B 4.3-3> 3 %8kd iz
i F Bk 32 KiF o B2 30°C ok ends ABF % Bic(kinematic viscosity, v ) 5 0.801 X

106 (mz/s)?;éﬁ P TS T Ao 4.3-4 3 B 436
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Wl 4.3-4 Case 0-3 7 # 8~ 7 (d=4cm)
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Wl 4.3-5 Case 0-3 7 # 8~ 7 (d=8cm)
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B 4.3-6 Case 0-3 F ##~ % (d=12cm)
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Velocity gradient (| VV|) Velocity gradient (| VV|)
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B 4.3-7 Case 0-3 ;nig $ & 4 # (d =4 cm)
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Velocity gradient (| VV|) Velocity gradient (| VV|)
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B 4.3-8 Case 0-3 /iii& $ & ~ # (d =8 cm)
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Velocity gradient (| VV|) Velocity gradient (| VV|)
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Bl 4.3-9 Case 0-3 /it & &4 % (d=12 cm)
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Bl 4.3-10 Case 0 k2 3% i (d=4cm, t=0-1120s, step = 56s)
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Bl 4.3-13 Case3 R ¥ %1 (d=4cm,t=0-1151s, step = 57s)
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Bl 4.3-14 Case 0 k& 3% *(d=8cm, t=0-2142, step = 107s)
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Bl 4.3-15 Case 1 kR 3¥% 1 (d=8cm,t=0-2188, step = 109s)
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B 43-16  Case2 ik & 3% (d=8 cm, t = 0-2205, step = 110s)

doi:10.6342/NTU202002100



Bl 4.3-17 Case3 kR 3% (d=8cm,t=0-2172, step = 108s)
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Bl 4.3-18 Case 0 k& 3% i (d=12cm, t=0-3241, step = 162s)
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Bl 4.3-19 Case | JE R 3% i (d=12cm, t=0-3258, step = 162s)
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Bl 4.3-20 Case2 kR 3% i (d=12cm, t=0-3036, step = 151s)
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Case3 JE R ¥H% i (d=12cm, t=0-3242, step = 162s)
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Velocity Derivative & Velocity Profile
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Case 2

Case 3

Velocity Derivative & Velocity Profile
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