請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83525
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 潘敏雄(Min-Hsiung Pan) | |
dc.contributor.author | Wan-Chen Cheng | en |
dc.contributor.author | 鄭琬蓁 | zh_TW |
dc.date.accessioned | 2023-03-19T21:09:37Z | - |
dc.date.copyright | 2022-09-07 | |
dc.date.issued | 2022 | |
dc.date.submitted | 2022-09-02 | |
dc.identifier.citation | Ahn-Jarvis, J. H.; Parihar, A.; Doseff, A. I. Dietary flavonoids for immunoregulation and cancer: Food design for targeting disease. Antioxidants. 2019, 8, 202. Ajayi, B. O.; Adedara, I. A.; Farombi, E. O. Pharmacological activity of 6?gingerol in dextran sulphate sodium?induced ulcerative colitis in BALB/c mice. Phytotherapy Research. 2015, 29, 566-572. Ajayi, B. O.; Adedara, I. A.; Farombi, E. O. Benzo(a)pyrene induces oxidative stress, pro-inflammatory cytokines, expression of nuclear factor-kappa B and deregulation of wnt/beta-catenin signaling in colons of BALB/c mice. Food and Chemical Toxicology. 2016, 95, 42-51. Ajayi, B. O.; Adedara, I. A.; Farombi, E. O. 6-Gingerol abates benzo[a]pyrene-induced colonic injury via suppression of oxido-inflammatory stress responses in BALB/c mice. Chemico-Biological Interactions. 2019, 307, 1-7. Al Aboody, M. S.; Mickymaray, S. Anti-fungal efficacy and mechanisms of flavonoids. Antibiotics. 2020, 9, 45. Alomirah, H.; Al-Zenki, S.; Al-Hooti, S.; Zaghloul, S.; Sawaya, W.; Ahmed, N.; Kannan, K. Concentrations and dietary exposure to polycyclic aromatic hydrocarbons (PAHs) from grilled and smoked foods. Food Control. 2011, 22, 2028-2035. Androutsopoulos, V. P.; Papakyriakou, A.; Vourloumis, D.; Spandidos, D. A. Comparative CYP1A1 and CYP1B1 substrate and inhibitor profile of dietary flavonoids. Bioorganic & Medicinal Chemistry. 2011, 19, 2842-2849. Armstrong, B.; Hutchinson, E.; Unwin, J.; Fletcher, T. Lung cancer risk after exposure to polycyclic aromatic hydrocarbons: a review and meta-analysis. Environmental Health Perspectives. 2004, 112, 970-978. Bailey, S. A.; Zidell, R. H.; Perry, R. W. Relationships between organ weight and body/brain weight in the rat: what is the best analytical endpoint? Toxicologic Pathology. 2004, 32, 448-466. Bandowe, B. A. M.; Sobocka, J.; Wilcke, W. Oxygen-containing polycyclic aromatic hydrocarbons (OPAHs) in urban soils of Bratislava, Slovakia: patterns, relation to PAHs and vertical distribution. Environmental Pollution. 2011, 159, 539-549. Barkley, L.; Santocanale, C. MicroRNA-29a regulates the benzo[a]pyrene dihydrodiol epoxide-induced DNA damage response through Cdc7 kinase in lung cancer cells. Oncogenesis. 2013, 2, e57-e57. Barnes, J. L.; Zubair, M.; John, K.; Poirier, M. C.; Martin, F. L. Carcinogens and DNA damage. Biochemical Society Transactions. 2018, 46, 1213-1224. Beischlag, T. V.; Morales, J. L.; Hollingshead, B. D.; Perdew, G. H. The aryl hydrocarbon receptor complex and the control of gene expression. Critical Reviews? in Eukaryotic Gene Expression. 2008, 18, 207-250. Benavente-Garc?a, O.; Castillo, J.; Marin, F. R.; Ortu?o, A.; Del R?o, J. A. Uses and properties of citrus flavonoids. Journal of Agricultural and Food Chemistry. 1997, 45, 4505-4515. Benford, D.; Bolger, P. M.; Carthew, P.; Coulet, M.; DiNovi, M.; Leblanc, J. C.; Renwick, A. G.; Setzer, W.; Schlatter, J.; Smith, B. Application of the Margin of Exposure (MOE) approach to substances in food that are genotoxic and carcinogenic. Food and Chemical Toxicology. 2010, 48, 2-24. Bingham, S. Diet and colorectal cancer prevention. Biochemical Society Transactions. 2000, 28, 12-16. Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry. 1976, 72, 248-254. Braithwaite, E.; Wu, X.; Wang, Z. Repair of DNA lesions induced by polycyclic aromatic hydrocarbons in human cell-free extracts: involvement of two excision repair mechanisms in vitro. Carcinogenesis. 1998, 19, 1239-1246. Bried?, J. J.; Godschalk, R. W.; Emans, M. T.; De Kok, T. M.; Van Agen, E.; van Maanen, J. M.; Van Schooten, F. J.; Kleinjans, J. C. In vitro and in vivo studies on oxygen free radical and DNA adduct formation in rat lung and liver during benzo[a]pyrene metabolism. Free Radical Research. 2004, 38, 995-1002. Cadet, J.; Douki, T.; Gasparutto, D.; Ravanat, J. L. Oxidative damage to DNA: formation, measurement and biochemical features. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis. 2003, 531, 5-23. Calomme, M.; Pieters, L.; Vlietinck, A.; Berghe, D. V. Inhibition of bacterial mutagenesis by Citrus flavonoids. Planta Medica. 1996, 62, 222-226. Cassidy, A.; Minihane, A. M. The role of metabolism (and the microbiome) in defining the clinical efficacy of dietary flavonoids. The American Journal of Clinical Nutrition. 2017, 105, 10-22. Castell?, A.; Amiano, P.; Fern?ndez de Larrea, N.; Mart?n, V.; Alonso, M. H.; Casta?o-Vinyals, G.; P?rez-G?mez, B.; Olmedo-Requena, R.; Guevara, M.; Fernandez-Tardon, G. Low adherence to the western and high adherence to the mediterranean dietary patterns could prevent colorectal cancer. European Journal of Nutrition. 2019, 58, 1495-1505. Catterall, F.; McArdle, N.; Mitchell, L.; Papayanni, A.; Clifford, M.; Ioannides, C. Hepatic and intestinal cytochrome P450 and conjugase activities in rats treated with black tea theafulvins and theaflavins. Food and Chemical Toxicology. 2003, 41, 1141-1147. Cavalieri, E.; Rogan, E. G. Central role of radical cations in metabolic activation of polycyclic aromatic hydrocarbons. Xenobiotica. 1995, 25, 677-688. Cavalieri, E. L.; Rogan, E. G. The approach to understanding aromatic hydrocarbon carcinogenesis. The central role of radical cations in metabolic activation. Pharmacology & Therapeutics. 1992, 55, 183-199. Chassaing, B.; Aitken, J. D.; Malleshappa, M.; Vijay?Kumar, M. Dextran sulfate sodium (DSS)?induced colitis in mice. Current Protocols in Immunology. 2014, 104, 15.25. Chen, B.; Lin, Y. Formation of polycyclic aromatic hydrocarbons during processing of duck meat. Journal of Agricultural and Food Chemistry. 1997, 45, 1394-1403. Chen, D. F.; Lu, L. G.; Tao, K. Z.; Lu, Z. J.; Yuan, Y. Z. Recovery from TNBS?induced colitis leads to the resistance to recurrent colitis and an increased ratio of FOXP 3 to CD 3 mRNA. Journal of Digestive Diseases. 2013, 14, 587-595. Chen, H.; Teng, Y.; Wang, J. Source apportionment of polycyclic aromatic hydrocarbons (PAHs) in surface sediments of the Rizhao coastal area (China) using diagnostic ratios and factor analysis with nonnegative constraints. Science of the Total Environment. 2012, 414, 293-300. Chen, L.; Teng, H.; Jia, Z.; Battino, M.; Miron, A.; Yu, Z.; Cao, H.; Xiao, J. Intracellular signaling pathways of inflammation modulated by dietary flavonoids: The most recent evidence. Critical Reviews in Food Science and Nutrition. 2018, 58, 2908-2924. Cheng, J.; Yuan, T.; Wu, Q.; Zhao, W.; Xie, H.; Ma, Y.; Ma, J.; Wang, W. PM10-bound polycyclic aromatic hydrocarbons (PAHs) and cancer risk estimation in the atmosphere surrounding an industrial area of Shanghai, China. Water, Air, and Soil Pollution. 2007, 183, 437-446. Cheng, T.; Lam, A. K.; Gopalan, V. Diet derived polycyclic aromatic hydrocarbons and its pathogenic roles in colorectal carcinogenesis. Critical Reviews in Oncology/Hematology. 2021, 168, 103522. Chikara, S.; Nagaprashantha, L. D.; Singhal, J.; Horne, D.; Awasthi, S.; Singhal, S. S. Oxidative stress and dietary phytochemicals: Role in cancer chemoprevention and treatment. Cancer Letters. 2018, 413, 122-134. Chiou, Y.; Zheng, Y.; Tsai, M.; Lai, C.; Ho, C.; Pan, M. 5-Demethylnobiletin more potently inhibits colon cancer cell growth than nobiletin in vitro and in vivo. Journal of Food Bioactives. 2018, 2, 91-97. Cho, S. R.; Lim, Y. A.; Lee, W. G. Unusually high alkaline phosphatase due to intestinal isoenzyme in a healthy adult. Clinical Chemistry and Laboratory Medicine. 2005, 43, 1274-1275. Choi, H.; Harrison, R.; Komulainen, H.; Saborit, J. M. D., Polycyclic aromatic hydrocarbons. In WHO Guidelines for Indoor Air Quality: Selected Pollutants. World Health Organization: 2010. Choi, I. S.; Lee, Y. G.; Khanal, S. K.; Park, B. J.; Bae, H. J. A low-energy, cost-effective approach to fruit and citrus peel waste processing for bioethanol production. Applied Energy. 2015, 140, 65-74. Chou, Y.; Lin, Y.; Lin, P.; Tung, Y.; Ho, C.; Pan, M. Dietary 5-demethylnobiletin modulates xenobiotic-metabolizing enzymes and ameliorates colon carcinogenesis in benzo[a]pyrene-induced mice. Food and Chemical Toxicology. 2021, 155, 112380. Ciolino, H.; Yeh, G. The flavonoid galangin is an inhibitor of CYP1A1 activity and an agonist/antagonist of the aryl hydrocarbon receptor. British Journal of Cancer. 1999, 79, 1340-1346. Cirmi, S.; Ferlazzo, N.; Lombardo, G. E.; Maugeri, A.; Calapai, G.; Gangemi, S.; Navarra, M. Chemopreventive agents and inhibitors of cancer hallmarks: may citrus offer new perspectives? Nutrients. 2016, 8, 698. Clapp, R. W.; Jacobs, M. M.; Loechler, E. L. Environmental and occupational causes of cancer: new evidence 2005-2007. Reviews on Environmental Health. 2008, 23, 1-38. D'Uva, G.; Baci, D.; Albini, A.; Noonan, D. M. Cancer chemoprevention revisited: cytochrome P450 family 1B1 as a target in the tumor and the microenvironment. Cancer Treatment Reviews. 2018, 63, 1-18. Davis, C.; Bryan, J.; Hodgson, J.; Murphy, K. Definition of the Mediterranean diet: a literature review. Nutrients. 2015, 7, 9139-9153. De Jong, W. H.; Kroese, E. D.; Vos, J. G.; Van Loveren, H. Detection of immunotoxicity of benzo[a]pyrene in a subacute toxicity study after oral exposure in rats. Toxicological Sciences. 1999, 50, 214-220. Diggs, D. L.; Huderson, A. C.; Harris, K. L.; Myers, J. N.; Banks, L. D.; Rekhadevi, P. V.; Niaz, M. S.; Ramesh, A. Polycyclic aromatic hydrocarbons and digestive tract cancers: a perspective. Journal of Environmental Science and Health. 2011, 29, 324-357. Ding, X.; Kaminsky, L. S. Human extrahepatic cytochromes P450: function in xenobiotic metabolism and tissue-selective chemical toxicity in the respiratory and gastrointestinal tracts. Annual Review of Pharmacology and Toxicology. 2003, 43, 149. Dong, J.; Zhang, Q.; Cui, Q.; Huang, G.; Pan, X.; Li, S. Flavonoids and naphthoflavonoids: wider roles in the modulation of cytochrome P450 family 1 enzymes. ChemMedChem. 2016, 11, 2102-2118. Dong, P.; Qiu, P.; Zhu, Y.; Li, S.; Ho, C.; McClements, D. J.; Xiao, H. Simultaneous determination of four 5-hydroxy polymethoxyflavones by reversed-phase high performance liquid chromatography with electrochemical detection. Journal of Chromatography A. 2010, 1217, 642-647. Donovan, M. G.; Selmin, O. I.; Doetschman, T. C.; Romagnolo, D. F. Mediterranean diet: prevention of colorectal cancer. Frontiers in Nutrition. 2017, 4, 59. Duan, L.; Dou, L.; Yu, K.; Guo, L.; BaiZhong, C.; Li, P.; Liu, E. Polymethoxyflavones in peel of Citrus reticulata ‘Chachi’and their biological activities. Food Chemistry. 2017, 234, 254-261. Ellacott, K. L.; Morton, G. J.; Woods, S. C.; Tso, P.; Schwartz, M. W. Assessment of feeding behavior in laboratory mice. Cell Metabolism. 2010, 12, 10-17. Farinetti, A.; Zurlo, V.; Manenti, A.; Coppi, F.; Mattioli, A. V. Mediterranean diet and colorectal cancer: A systematic review. Nutrition. 2017, 43, 83-88. Fedorenko, A. G.; Chernikova, N.; Minkina, T.; Sushkova, S.; Dudnikova, T.; Antonenko, E.; Fedorenko, G.; Bauer, T.; Mandzhieva, S.; Barbashev, A. Effects of benzo[a]pyrene toxicity on morphology and ultrastructure of Hordeum sativum. Environmental Geochemistry and Health. 2021, 43, 1551-1562. Feng, Y.; Shu, L.; Zheng, P.; Zhang, X.; Si, C.; Yu, X.; Gao, W.; Zhang, L. Dietary patterns and colorectal cancer risk: a meta-analysis. European Journal of Cancer Prevention. 2017, 26, 201-211. Fernandez, N. J.; Kidney, B. A. Alkaline phosphatase: beyond the liver. Veterinary Clinical Pathology. 2007, 36, 223-233. Galati, G.; O'brien, P. J. Potential toxicity of flavonoids and other dietary phenolics: significance for their chemopreventive and anticancer properties. Free Radical Biology and Medicine. 2004, 37, 287-303. Galv?n, N.; Teske, D. E.; Zhou, G.; Moorthy, B.; MacWilliams, P. S.; Czuprynski, C. J.; Jefcoate, C. R. Induction of CYP1A1 and CYP1B1 in liver and lung by benzo(a)pyrene and 7, 12-d imethylbenz(a)anthracene do not affect distribution of polycyclic hydrocarbons to target tissue: role of AhR and CYP1B1 in bone marrow cytotoxicity. Toxicology and Applied Pharmacology. 2005, 202, 244-257. Garcia-Suastegui, W.; Huerta-Chagoya, A.; Carrasco-Colin, K.; Pratt, M.; John, K.; Petrosyan, P.; Rubio, J.; Poirier, M.; Gonsebatt, M. Seasonal variations in the levels of PAH-DNA adducts in young adults living in Mexico City. Mutagenesis. 2010, 26, 385-391. Geneva. 10993-5: 2009 Biological evaluation of medical devices-part 5: tests for in vitro cytotoxicity. International Organization for Standardization. 2009. Genies, C.; Maitre, A.; Lef?bvre, E.; Jullien, A.; Chopard-Lallier, M.; Douki, T. The extreme variety of genotoxic response to benzo[a]pyrene in three different human cell lines from three different organs. PloS One. 2013, 8, e78356. Giudice, A.; Montella, M. Activation of the Nrf2-ARE signaling pathway: a promising strategy in cancer prevention. Bioessays. 2006, 28, 169-181. Goh, J. X. H.; Tan, L. T.; Goh, J. K.; Chan, K. G.; Pusparajah, P.; Lee, L.; Goh, B. Nobiletin and derivatives: functional compounds from citrus fruit peel for colon cancer chemoprevention. Cancers. 2019, 11, 867. Green, C. O.; Wheatley, A. O.; Mcgrowder, D. A.; Dilworth, L. L.; Asemota, H. N. Citrus peel polymethoxylated flavones extract modulates liver and heart function parameters in diet induced hypercholesterolemic rats. Food and Chemical Toxicology. 2013, 51, 306-309. Guerra, F.; Arbini, A. A.; Moro, L. Mitochondria and cancer chemoresistance. Biochimica et Biophysica Acta-Bioenergetics. 2017, 1858, 686-699. Guo, N.; Faller, D. V.; Vaziri, C. Carcinogen-induced S-phase arrest is Chk1 mediated and caffeine sensitive. Cell Growth & Differentiation. 2002, 13, 77-86. H?c-Wydro, K.; Po?e?, K.; Broniatowski, M. The impact of selected Polycyclic aromatic hydrocarbons (PAHs) on the morphology, stability and relaxation of ternary lipid monolayers imitating soil bacteria membrane. Journal of Molecular Liquids. 2019, 276, 409-416. Hakura, A.; Tsutsui, Y.; Sonoda, J.; Kai, J.; Imade, T.; Shimada, M.; Sugihara, Y.; Mikami, T. Comparison between in vivo mutagenicity and carcinogenicity in multiple organs by benzo[a]pyrene in the lacZ transgenic mouse (Muta? Mouse). Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis. 1998, 398, 123-130. Hakura, A.; Sonoda, J.; Tsutsui, Y.; Mikami, T.; Imade, T.; Shimada, M.; Yaguchi, S.; Yamanaka, M.; Tomimatsu, M.; Tsukidate, K. Toxicity profile of benzo[a]pyrene in the male LacZ Transgenic Mouse (MutaMouse) following oral administration for 5 consecutive days. Regulatory Toxicology and Pharmacology. 1998, 27, 273-279. Han, S.; Kim, H. M.; Lee, J. M.; Mok, S. Y.; Lee, S. Isolation and identification of polymethoxyflavones from the hybrid Citrus, hallabong. Journal of Agricultural and Food Chemistry. 2010, 58, 9488-9491. Harris, D. L.; Niaz, M. S.; Morrow, J. D.; Mary, K.; Ramesh, A. Diet as a modifier of benzo(a)pyrene metabolism and benzo(a)pyrene-induced colon tumors in ApcMin mice. Interdisciplinary Studies on Environmental Chemistry-Environmental Research in Asia. 2009, 2, 227-238. Harris, K. L.; Banks, L. D.; Mantey, J. A.; Huderson, A. C.; Ramesh, A. Bioaccessibility of polycyclic aromatic hydrocarbons: relevance to toxicity and carcinogenesis. Expert Opinion on Drug Metabolism & Toxicology. 2013, 9, 1465-1480. He, S.; Li, X.; Li, C.; Deng, H.; Shao, Y.; Yuan, L. Isoorientin attenuates benzo[a]pyrene-induced colonic injury and gut microbiota disorders in mice. Food Research International. 2019, 126, 108599. Heo, M. Y.; Lee, S. J.; Kwon, C. H.; Kim, S. W.; Sohn, D. H.; Au, W. W. Anticlastogenic effects of galangin against bleomycin-induced chromosomal aberrations in mouse spleen lymphocytes. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis. 1994, 311, 225-229. Honda, M.; Suzuki, N. Toxicities of polycyclic aromatic hydrocarbons for aquatic animals. International Journal of Rnvironmental Research and Public Health. 2020, 17, 1363. Huang, M. T.; Chang, R. L.; Wood, A. W.; Newmark, H. L.; Sayer, J. M.; Yagi, H.; Jerina, D. M.; Conney, A. H. Inhibition of the mutagenicity of bay-region diol-epoxides of polycyclic aromatic hydrocarbons by tannic acid, hydroxylated anthraquinones and hydroxylated cinnamic acid derivatives. Carcinogenesis. 1985, 6, 237-242. Hwa, B.; Guo, J.; Bellamri, M.; Turesky, R. J. DNA adducts: Formation, biological effects, and new biospecimens for mass spectrometric measurements in humans. Mass Spectrometry Reviews. 2020, 39, 55-82. IARC. IARC monographs on the identification of carcinogenic hazards to humans. World Health Organization. 2019. Iyer, S. S.; Gensollen, T.; Gandhi, A.; Oh, S. F.; Neves, J. F.; Collin, F.; Lavin, R.; Serra, C.; Glickman, J.; de Silva, P. S. Dietary and microbial oxazoles induce intestinal inflammation by modulating aryl hydrocarbon receptor responses. Cell. 2018, 173, 1123-1134. e11. Jayaprakasha, G. K.; Negi, P. S.; Sikder, S.; Mohanrao, L. J.; Sakariah, K. K. Antibacterial activity of Citrus reticulata peel extracts. Zeitschrift F?r Naturforschung C. 2000, 55, 1030-1034. Jee, S. C.; Kim, M.; Kim, K. S.; Kim, H. S.; Sung, J. S. Protective effects of myricetin on benzo[a]pyrene-induced 8-hydroxy-2'-deoxyguanosine and BPDE-DNA adduct. Antioxidants. 2020, 9, 446. Jeong, D.; Park, H.; Jang, B. K.; Ju, Y.; Shin, M. H.; Oh, E. J.; Lee, E. J.; Kim, S. R. Recent advances in the biological valorization of citrus peel waste into fuels and chemicals. Bioresource Technology. 2021, 323, 124603. John, K.; Ragavan, N.; Pratt, M. M.; Singh, P. B.; Al?Buheissi, S.; Matanhelia, S. S.; Phillips, D. H.; Poirier, M. C.; Martin, F. L. Quantification of phase I/II metabolizing enzyme gene expression and polycyclic aromatic hydrocarbon-DNA adduct levels in human prostate. The Prostate. 2009, 69, 505-519. Kamaraj, S.; Vinodhkumar, R.; Anandakumar, P.; Jagan, S.; Ramakrishnan, G.; Devaki, T. The effects of quercetin on antioxidant status and tumor markers in the lung and serum of mice treated with benzo(a)pyrene. Biological and Pharmaceutical Bulletin. 2007, 30, 2268-2273. Kapila, V.; Wehrle, C. J.; Tuma, F., Physiology, spleen. In StatPearls, StatPearls Publishing. 2021. Kaur, J.; Madan, S.; Hamid, A.; Singla, A.; Mahmood, A. Intestinal alkaline phosphatase secretion in oil-fed rats. Digestive Diseases and Sciences. 2007, 52, 665-670. Kazerouni, N.; Sinha, R.; Hsu, C. H.; Greenberg, A.; Rothman, N. Analysis of 200 food items for benzo[a]pyrene and estimation of its intake in an epidemiologic study. Food and Chemical Toxicology. 2001, 39, 423-436. Kim, K. H.; Jahan, S. A.; Kabir, E.; Brown, R. J. A review of airborne polycyclic aromatic hydrocarbons (PAHs) and their human health effects. Environment International. 2013, 60, 71-80. Klaunig, J. E.; Wang, Z. Oxidative stress in carcinogenesis. Current Opinion in Toxicology. 2018, 7, 116-121. Kronenberg, M.; Trably, E.; Bernet, N.; Patureau, D. Biodegradation of polycyclic aromatic hydrocarbons: Using microbial bioelectrochemical systems to overcome an impasse. Environmental Pollution. 2017, 231, 509-523. Kuchino, Y.; Mori, F.; Kasai, H.; Inoue, H.; Iwai, S.; Miura, K.; Ohtsuka, E.; Nishimura, S. Misreading of DNA templates containing 8-hydroxydeoxyguanosine at the modified base and at adjacent residues. Nature. 1987, 327, 77-79. Kumar, M.; Sharma, V.; Sehgal, A.; Jain, M. Protective effects of green and white tea against benzo(a)pyrene induced oxidative stress and DNA damage in murine model. Nutrition and Cancer. 2012, 64, 300-306. Landis-Piwowar, K. R.; Iyer, N. R. Cancer chemoprevention: current state of the art. Cancer Growth and Metastasis. 2014, 7, 19-25. Lawal, A. T. Polycyclic aromatic hydrocarbons. A review. Cogent Environmental Science. 2017, 3(1), 1339841. Leclerc, D.; Pires, A. C. S.; Guillemin, G. J.; Gilot, D. Detrimental activation of AhR pathway in cancer: an overview of therapeutic strategies. Current Opinion in Immunology. 2021, 70, 15-26. Lehr, R. E.; Jerina, D. M. Metabolic activations of polycyclic hydrocarbons. Archives of Toxicology. 1977, 39, 1-6. Lerda, D. Polycyclic aromatic hydrocarbons (PAHs) factsheet. Joint Research Centre, Technical notes. 2011, 27, 6-13. Li, C.; Schluesener, H. Health-promoting effects of the citrus flavanone hesperidin. Critical Reviews in Food Science and Nutrition. 2017, 57, 613-631. Li, G.; Rouseff, R.; Cheng, Y.; Zhou, Q.; Wu, H. Comprehensive identification and distribution pattern of 37 oxygenated heterocyclic compounds in commercially important citrus juices. Lebensmittel-Wissenschaft&Technologie. 2021, 152, 112351. Li, P.; Wang, Y.; Li, Y.; Wai, K.; Li, H.; Tong, L. Gas-particle partitioning and precipitation scavenging of polycyclic aromatic hydrocarbons (PAHs) in the free troposphere in southern China. Atmospheric Environment. 2016, 128, 165-174. Li, S.; Lo, C.; Ho, C. Hydroxylated polymethoxyflavones and methylated flavonoids in sweet orange (Citrus sinensis) peel. Journal of Agricultural and Food Chemistry. 2006, 54, 4176-4185. Li, S.; Wang, Y.; Dushenkov, S.; Ho, C. Bioavailability of polymethoxyflavones. Dietary Supplements. 2008, 987, 233-245. Li, S.; Pan, M.; Lo, C.; Tan, D.; Wang, Y.; Shahidi, F.; Ho, C. Chemistry and health effects of polymethoxyflavones and hydroxylated polymethoxyflavones. Journal of Functional Foods. 2009, 1, 2-12. Lipkin, M.; Reddy, B.; Newmark, H.; Lamprecht, S. A. Dietary factors in human colorectal cancer. Annual Review of Nutrition. 1999, 19, 545. Liskova, A.; Stefanicka, P.; Samec, M.; Smejkal, K.; Zubor, P.; Bielik, T.; Biskupska-Bodova, K.; Kwon, T. K.; Danko, J.; B?sselberg, D. Dietary phytochemicals as the potential protectors against carcinogenesis and their role in cancer chemoprevention. Clinical and Experimental Medicine. 2020, 20, 173-190. Lorentzen, R. J.; Ts'o, P. O. Benzo[a]pyrenedione/benzo[a]pyrenediol oxidation-reduction couples and the generation of reactive reduced molecular oxygen. Biochemistry. 1977, 16, 1467-1473. Lu, L. J. W.; Disher, R. M.; Reddy, M. R.; Randerath, K. 32P-postlabeling assay in mice of transplacental DNA damage induced by the environmental carcinogens safrole, 4-aminobiphenyl, and benzo(a)pyrene. Cancer Research. 1986, 46, 3046-3054. Luch, A. Nature and nurture-lessons from chemical carcinogenesis. Nature Reviews Cancer. 2005, 5, 113-125. Lv, K.; Zhang, L.; Zhao, H.; Ho, C.; Li, S. Recent study on the anticancer activity of nobiletin and its metabolites. Journal of Food Bioactives. 2021, 14, 53-59. Magalh?es, B.; Peleteiro, B.; Lunet, N. Dietary patterns and colorectal cancer. European Journal of Cancer Prevention. 2012, 21, 15-23. Magkoufopoulou, C.; Claessen, S.; Jennen, D.; Kleinjans, J.; Van-Delft, J. Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011, 26, 593-604. Mahmoud, A. M.; Hernandez Bautista, R. J.; Sandhu, M. A.; Hussein, O. E. Beneficial effects of citrus flavonoids on cardiovascular and metabolic health. Oxidative Medicine and Cellular Longevity. 2019, 2019, 5484138. Majewski, G.; Widziewicz, K.; Rogula-Koz?owska, W.; Rogula-Kopiec, P.; Kociszewska, K.; Rozbicki, T.; Majder-?opatka, M.; Niemczyk, M. PM origin or exposure duration? Health hazards from PM-bound mercury and PM-bound PAHs among students and lecturers. International Journal of Environmental Research and Public Health. 2018, 15, 316. Mantey, J. A.; Rekhadevi, P. V.; Diggs, D. L.; Ramesh, A. Metabolism of benzo(a)pyrene by subcellular fractions of gastrointestinal (GI) tract and liver in ApcMin mouse model of colon cancer. Tumor Biology. 2014, 35, 4929-4935. Markowicz, P.; L?ndahl, J.; Wierzbicka, A.; Suleiman, R.; Shihadeh, A.; Larsson, L. A study on particles and some microbial markers in waterpipe tobacco smoke. Science of the Total Environment. 2014, 499, 107-113. Mojiri, A.; Zhou, J. L.; Ohashi, A.; Ozaki, N.; Kindaichi, T. Comprehensive review of polycyclic aromatic hydrocarbons in water sources, their effects and treatments. Science of the Total Environment. 2019, 696, 133971. Moon, Y. J.; Wang, X.; Morris, M. E. Dietary flavonoids: effects on xenobiotic and carcinogen metabolism. Toxicology In Vitro. 2006, 20, 187-210. Murray, G. I.; Melvin, W. T.; Greenlee, W. F.; Burke, M. D. Regulation, function, and tissue-specific expression of cytochrome P450 CYP1B1. Annual Review of Pharmacology and Toxicology. 2001, 41, 297-316. Murray, I. A.; Patterson, A. D.; Perdew, G. H. Aryl hydrocarbon receptor ligands in cancer: friend and foe. Nature Reviews Cancer. 2014, 14, 801-814. Myers, J. N.; Harris, K. L.; Rekhadevi, P. V.; Pratap, S.; Ramesh, A. Benzo(a)pyrene-induced cytotoxicity, cell proliferation, DNA damage, and altered gene expression profiles in HT-29 human colon cancer cells. Cell Biology and Toxicology. 2021, 37, 891-913. Nebert, D. W.; Dalton, T. P. The role of cytochrome P450 enzymes in endogenous signalling pathways and environmental carcinogenesis. Nature Reviews Cancer. 2006, 6, 947-960. Nielsen, I. L.; Chee, W. S.; Poulsen, L.; Offord-Cavin, E.; Rasmussen, S. E.; Frederiksen, H.; Enslen, M.; Barron, D.; Horcajada, M. N.; Williamson, G. Bioavailability is improved by enzymatic modification of the citrus flavonoid hesperidin in humans: a randomized, double-blind, crossover trial. The Journal of Nutrition. 2006, 136, 404-408. Nirogi, R.; Goyal, V. K.; Jana, S.; Pandey, S. K.; Gothi, A. What suits best for organ weight analysis: review of relationship between organ weight and body/brain weight for rodent toxicity studies. International Journal of Pharmaceutical Sciences Review and Research. 2014, 5, 1525-1532. Niziolek-Kierecka, M.; Dreij, K.; Lundstedt, S.; Stenius, U. γH2AX, pChk1, and Wip1 as potential markers of persistent DNA damage derived from dibenzo[a, l]pyrene and PAH-containing extracts from contaminated soils. Chemical Research in Toxicology. 2012, 25, 862-872. Nyengaard, J.; Bendtsen, T. Glomerular number and size in relation to age, kidney weight, and body surface in normal man. The Anatomical Record. 1992, 232, 194-201. Oesch, F.; Hengstler, J. G.; Arand, M. Detoxication strategy of epoxide hydrolase-The Basis for a novel threshold for definable genotoxic carcinogens. Nonlinearity in Biology, Toxicology, and Medicine. 2004, 2, 21-26. Olsson, A. C.; Fevotte, J.; Fletcher, T.; Cassidy, A.; Mannetje, A.; Zaridze, D.; Szeszenia-Dabrowska, N.; Rudnai, P.; Lissowska, J.; Fabianova, E. Occupational exposure to polycyclic aromatic hydrocarbons and lung cancer risk: a multicenter study in Europe. Occupational and Environmental Medicine. 2010, 67, 98-103. Pan, M. H.; Lai, C. S.; Wu, J. C.; Ho, C. T. Molecular mechanisms for chemoprevention of colorectal cancer by natural dietary compounds. Molecular Nutrition & Food Research. 2011, 55, 32-45. Paris, A.; Ledauphin, J.; Poinot, P.; Gaillard, J. L. Polycyclic aromatic hydrocarbons in fruits and vegetables: Origin, analysis, and occurrence. Environmental Pollution. 2018, 234, 96-106. Park, J. H.; Kotani, T.; Konno, T.; Setiawan, J.; Kitamura, Y.; Imada, S.; Usui, Y.; Hatano, N.; Shinohara, M.; Saito, Y. Promotion of intestinal epithelial cell turnover by commensal bacteria: role of short-chain fatty acids. PloS One. 2016, 11, e0156334. Pastorelli, R.; Cerri, A.; Mezzetti, M.; Consonni, E.; Airoldi, L. Effect of DNA repair gene polymorphisms on BPDE?DNA adducts in human lymphocytes. International Journal of Cancer. 2002, 100, 9-13. Penning, T. M.; Ohnishi, S. T.; Ohnishi, T.; Harvey, R. G. Generation of reactive oxygen species during the enzymatic oxidation of polycyclic aromatic hydrocarbon trans-dihydrodiols catalyzed by dihydrodiol dehydrogenase. Chemical Research in Toxicology. 1996, 9, 84-92. Peterson, B. S.; Rauh, V. A.; Bansal, R.; Hao, X.; Toth, Z.; Nati, G.; Walsh, K.; Miller, R. L.; Arias, F.; Semanek, D. Effects of prenatal exposure to air pollutants (polycyclic aromatic hydrocarbons) on the development of brain white matter, cognition, and behavior in later childhood. JAMA Psychiatry. 2015, 72, 531-540. Phillips, D. H. Polycyclic aromatic hydrocarbons in the diet. Mutation Research/Genetic Toxicology and Environmental Mutagenesis. 1999, 443, 139-147. Qiao, M.; Bai, Y.; Cao, W.; Huo, Y.; Zhao, X.; Liu, D.; Li, Z. Impact of secondary effluent from wastewater treatment plants on urban rivers: Polycyclic aromatic hydrocarbons and derivatives. Chemosphere. 2018, 211, 185-191. Qiu, P.; Dong, P.; Guan, H.; Li, S.; Ho, C. T.; Pan, M. H.; McClements, D. J.; Xiao, H. Inhibitory effects of 5?hydroxy polymethoxyflavones on colon cancer cells. Molecular Nutrition & Food Research. 2010, 54, S244-S252. Ramesh, A.; Walker, S. A.; Hood, D. B.; Guill?n, M. D.; Schneider, K.; Weyand, E. H. Bioavailability and risk assessment of orally ingested polycyclic aromatic hydrocarbons. International Journal of Toxicology. 2004, 23, 301-333. Ravindra, K.; Sokhi, R.; Van, R. Atmospheric polycyclic aromatic hydrocarbons: source attribution, emission factors and regulation. Atmospheric Environment. 2008, 42, 2895-2921. Rees, E. D.; Mandelstam, P.; Lowry, J. Q.; Lipscomb, H. A study of the mechanism of intestinal absorption of benzo(a)pyrene. Biochimica et Biophysica Acta-Biomembranes. 1971, 225, 96-107. Rendic, S. Summary of information on human CYP enzymes: human P450 metabolism data. Drug Metabolism Reviews. 2002, 34, 83-448. Rengarajan, T.; Rajendran, P.; Nandakumar, N.; Lokeshkumar, B.; Nishigaki, I. Exposure to polycyclic aromatic hydrocarbons with special focus on cancer. Asian Pacific Journal of Tropical Biomedicine. 2015, 5, 182-189. Ribi?re, C.; Peyret, P.; Parisot, N.; Darcha, C.; D?chelotte, P. J.; Barnich, N.; Peyretaillade, E.; Boucher, D. Oral exposure to environmental pollutant benzo[a]pyrene impacts the intestinal epithelium and induces gut microbial shifts in murine model. Scientific Reports. 2016, 6, 1-11. Rogakou, E. P.; Pilch, D. R.; Orr, A. H.; Ivanova, V. S.; Bonner, W. M. DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. Journal of Biological Chemistry. 1998, 273, 5858-5868. Schwingshackl, L.; Schwedhelm, C.; Hoffmann, G.; Kn?ppel, S.; Laure, A.; Iqbal, K.; Bechthold, A.; De Henauw, S.; Michels, N.; Devleesschauwer, B. Food groups and risk of colorectal cancer. International Journal of Cancer. 2018, 142, 1748-1758. Semmler-Behnke, M.; Takenaka, S.; Fertsch, S.; Wenk, A.; Seitz, J.; Mayer, P.; Oberd?rster, G.; Kreyling, W. Efficient elimination of inhaled nanoparticles from the alveolar region: evidence for interstitial uptake and subsequent reentrainment onto airways epithelium. Environmental Health Perspectives. 2007, 115, 728-733. Shi, Z.; Dragin, N.; Galvez-Peralta, M.; Jorge-Nebert, L. F.; Miller, M. L.; Wang, B.; Nebert, D. W. Organ-specific roles of CYP1A1 during detoxication of dietary benzo[a]pyrene. Molecular Pharmacology. 2010, 78, 46-57. Shimada, T. Xenobiotic-metabolizing enzymes involved in activation and detoxification of carcinogenic polycyclic aromatic hydrocarbons. Drug Metabolism and Pharmacokinetics. 2006, 21, 257-276. Shu, Y.; Liu, Z.; Zhao, S.; Song, Z.; He, D.; Wang, M.; Zeng, H.; Lu, C.; Lu, A.; Liu, Y. Integrated and global pseudotargeted metabolomics strategy applied to screening for quality control markers of Citrus TCMs. Analytical and Bioanalytical Chemistry. 2017, 409, 4849-4865. Siddiqui, I. A.; Sanna, V.; Ahmad, N.; Sechi, M.; Mukhtar, H. Resveratrol nanoformulation for cancer prevention and therapy. Annals of the New York Academy of Sciences. 2015, 1348, 20-31. Smith, M. T.; Guyton, K. Z.; Kleinstreuer, N.; Borrel, A.; Cardenas, A.; Chiu, W. A.; Felsher, D. W.; Gibbons, C. F.; Goodson, W. H.; Houck, K. A. The key characteristics of carcinogens: relationship to the hallmarks of cancer, relevant biomarkers, and assays to measure them. Cancer Epidemiology and Prevention Biomarkers. 2020, 29, 1887-1903. Sridhar, J.; Ellis, J.; Dupart, P.; Liu, J.; L Stevens, C.; Foroozesh, M. Development of flavone propargyl ethers as potent and selective inhibitors of cytochrome P450 enzymes 1A1 and 1A2. Drug Metabolism Letters. 2012, 6, 275-284. Sung, H.; Ferlay, J.; Siegel, R. L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians. 2021, 71, 209-249. Surh, Y. Transcription factors in the cellular signaling network as prime targets of chemopreventive phytochemicals. Cancer Research and Treatment: Official Journal of Korean Cancer Association. 2004, 36, 275. Takemura, H.; Itoh, T.; Yamamoto, K.; Sakakibara, H.; Shimoi, K. Selective inhibition of methoxyflavonoids on human CYP1B1 activity. Bioorganic & Med | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83525 | - |
dc.description.abstract | 不完全燃燒產生的多環芳香烴 (polycyclic aromatic hydrocarbons, PAHs) 已被證明會引起基因突變。PAHs 中的苯駢芘 (benzo[a]pyrene, B[a]P) 已被廣泛證明具有強烈基因毒性,而飲食攝取 B[a]P 作為主要暴露途徑之一,將嚴重影響腸上皮細胞,增加罹患腸癌風險。B[a]P 會與芳香烴受體 (aryl hydrocarbon receptor, AhR) 結合從而上調細胞色素 P450 家族 1 酵素 (cytochrome P450 family 1, CYP1s) 將其代謝為 B[a]P-7,8-dihydrodiol-9,10-epoxide (B[a]P-7,8-dihydrodiol-9,10-epoxide, BPDE)。該環氧化物可與 DNA 結合形成 DNA 加合物,從而導致 DNA 損傷。值得注意的是,許多研究表明,類黃酮化合物不僅可以作為 AhR 配體調控 AhR/CYP1s 路徑,還可以作為?抑制劑降低 CYP1s 的活性。先前文獻亦表明,多甲氧基黃酮類具有透過調節 CYP1s 為抗癌的良好潛力,尤其是川陳皮素 (nobiletin, NBT) 和 5-去甲基川陳皮素 (5-demethylnobiletin, DMNB)。然而 NBT 和 DMNB 在 B[a]P 代謝途徑中之作用尚未釐清,因此本研究旨在闡明 NBT 和 DMNB 對 B[a]P 誘導 DNA 損傷之影響。體外實驗結果顯示 DMNB 和 NBT 可能透過調節 NCM460 細胞中 AhR/CYP1s 信號途徑潛在地抑制 B[a]P 之代謝轉化,從而使 DMNB 與 NBT 減輕 DNA 損傷並抑制 BPDE-DNA 加合物之形成以防止 NCM460 細胞受到 B[a]P 引發之細胞毒性。另一方面,在 BALB/c 小鼠的實驗結果,發現 DMNB 與 NBT 對 B[a]P 誘導 DNA 損傷具有保護效果。DMNB 與 NBT 減緩 B[a]P 所造成的肝損傷及減少尿液中 8-羥基-2-脫氧鳥? (8-hydroxy-2’-deoxyguanosin, 8-OHdG);此外,更可以藉由抑制 BPDE-DNA 加合物和 DNA 受損反應以改善肝臟和結腸之 DNA 損傷。在 B[a]P 代謝的干預作用中,DMNB 和 NBT分別具有抑制?活性和調節 AhR/CYP1s 路徑之能力。綜合上述,DMNB 和 NBT 可以透過調控生物轉化機制減緩 B[a]P 誘導 DNA 損傷,對 B[a]P 具有化學預防作用且在阻斷癌症發展方面有良好應用價值,有助於未來發展以 DMNB 與 NBT 作為結腸直腸癌化學預防試劑之策略,更可提供農業副產物於保健食品應用之依據。 | zh_TW |
dc.description.abstract | Polycyclic aromatic hydrocarbons (PAHs) generated from incomplete combustion have been proved that they cause gene mutations. Benzo[a]pyrene (B[a]P) of PAHs has been widely evidenced by its strong genotoxicities. Oral consumption as the primary route of B[a]P exposure will severely affect intestinal epithelial cells and rise the risk of colorectal cancer. B[a]P will be metabolized into B[a]P-7,8-dihydrodiol-9,10-epoxide (BPDE) by cytochrome P450 family 1 enzymes (CYP1s) that are upregulated through aryl hydrocarbon receptor (AhR). The epoxide can bind with DNA to form DNA adducts, leading to DNA injuries. Notably, many studies have indicated that flavonoids not only mediate the AhR/CYP1s pathway as AhR ligands, but also inhibit CYP1s activity as enzyme inhibitors. Previous studies also showed polymethoxyflavones possess high potential for anti-cancer effects through regulating CYP1s, especially nobiletin (NBT) and 5-demethylnobiletin (DMNB). However, the roles of NBT and DMNB in B[a]P metabolism remain unclear. Therefore, this study aimed to clarify the effect of NBT and DMNB on B[a]P-induced DNA damage in vitro and in vivo. The in vitro results showed DMNB and NBT might potentially abate the metabolic transformation of B[a]P via regulating AhR/CYP1s signaling pathway in NCM460 cells. Therefore, DMNB and NBT prevented NCM460 cells from B[a]P-induced cytotoxicity via alleviating DNA damage and inhibiting the formation of BPDE-DNA adduct. On the other hand, a protective effect of DMNB and NBT against B[a]P-induced DNA damage was found in BALB/c mice. DMNB and NBT mitigated liver damage and reduced urinary 8-hydroxy-2’-deoxyguanosine (8-OHdG) which were brought by B[a]P. Furthermore, DMNB and NBT ameliorated hepatic and colonic DNA injury via inhibition of BPDE-DNA adduct and DNA damage response. In B[a]P metabolism of the intervening roles, DMNB and NBT possess the capacity of inhibiting enzyme activity and regulating the AhR/CYP1s pathway, respectively. In conclusion, these results showed that DMNB and NBT attenuated B[a]P-induced DNA damage via mediating biotransformation, indicating their chemopreventive effects against B[a]P and high potential of application in blocking carcinogenesis. It will be a promising strategy using DMNB and NBT as colorectal cancer chemopreventive agents in the future, and also provide a basis for the application of agricultural by-products in dietary supplements. | en |
dc.description.provenance | Made available in DSpace on 2023-03-19T21:09:37Z (GMT). No. of bitstreams: 1 U0001-3108202219082400.pdf: 6145190 bytes, checksum: 409f9eaddb95996cc89a3969fec8878b (MD5) Previous issue date: 2022 | en |
dc.description.tableofcontents | 謝誌 I 摘要 III Abstract V Graphic abstract VII 目錄 VIII 附圖目錄 XI 附表目錄 XII 圖目錄 XIII 縮寫表 XIV 第一章、 文獻回顧 1 第一節、 結腸直腸癌 (colorectal cancer) 1 (一) 結腸直腸癌概述 1 (二) 癌症發展概述 3 第二節、 多環芳香烴 (polycyclic aromatic hydrocarbons, PAHs) 5 (一) 多環芳香烴概述 5 (二) 食源性暴露途徑 7 (三) 生物毒性 7 (四) 苯駢芘 (benzo[a]pyrene, B[a]P) 10 (五) 生物轉化機制 (biotransformation) 12 第三節、 植物天然化合物 15 (一) 植物天然化合物概述 15 (二) 化學預防 (chemoprevention) 15 第四節、 多甲氧基黃酮類化合物 (polymethoxyflavones, PMFs) 17 (一) 多甲氧基類黃酮化合物概述 17 (二) 川陳皮素及 5-去甲基川陳皮素 19 第二章、 研究目的與實驗架構 23 第一節、 研究目的 23 第二節、 實驗架構 24 (一) 細胞實驗 24 (二) 動物實驗 24 第三章、 材料方法 25 第一節、 實驗材料與儀器25 (一) 樣品與誘導劑 25 (二) 化學試藥與耗材 25 (三) 細胞株 26 (四) 抗體 26 (五) 儀器 27 第二節、 細胞實驗 27 (一) 細胞株培養 27 (二) 細胞存活率試驗 29 (三) 彗星試驗 30 (四) 細胞蛋白質萃取 31 第三節、 動物實驗 32 (一) 實驗動物品系與飼養 32 (二) 動物實驗設計 32 (三) 動物試驗方法 32 (四) 體重、攝食及飲水量測量 33 (五) 動物犧牲與臟器觀察 33 (六) 血清生化值分析 34 (七) 蘇木精-伊紅染色與免疫螢光染色 34 (八) DNA 氧化型損傷分析 41 (九) DNA 萃取與 DNA adduct 測定 41 (十) 肝臟及腸道組織蛋白質萃取 45 (十一) 蛋白質定量 45 (十二) 酵素活性測定 (EROD assay) 46 (十三) 蛋白質電泳與西方墨點法 47 第四節、 統計分析 50 第四章、 結果與討論 51 第一節、 評估 DMNB 與 NBT 對 B[a]P 誘導 NCM460 之影響 51 (一) B[a]P、DMNB 與 NBT 對 NCM460 細胞存活率之影響 51 (二) DMNB 與 NBT 對 B[a]P 誘導 NCM460 DNA 損傷之影響 54 (三) DMNB 與 NBT 對 B[a]P 誘導 NCM460 代謝路徑之影響 59 (四) DMNB 與 NBT 對 B[a]P 誘導 NCM460 酵素活性之影響 63 第二節、 評估 DMNB 與 NBT 對 B[a]P 誘導 BALB/c 小鼠之影響 66 (一) 外觀、體重、攝食量及飲水量之變化 66 (二) 臨床表徵之變化 68 (三) DMNB 與 NBT 對 B[a]P 誘導小鼠體內生化數值之影響 72 第三節、 DMNB 與 NBT 抑制 B[a]P 誘導小鼠肝臟及結腸 DNA 損傷 75 (一) DMNB 與 NBT 對 B[a]P 誘導小鼠 BPDE-DNA adduct 之影響 75 (二) DMNB 與 NBT 對 B[a]P 誘導小鼠 DNA 受損反應蛋白之影響 79 第四節、 DMNB 與 NBT 對 B[a]P 在肝臟及腸道生物轉化作用之影響 84 (一) DMNB 與 NBT 對 B[a]P 誘導小鼠代謝路徑相關蛋白之影響 84 (二) DMNB 與 NBT 對 B[a]P 誘導小鼠 CYP1s 酵素活性之影響 89 第五章、 結論與展望 92 參考文獻 95 附錄 111 | |
dc.language.iso | zh-TW | |
dc.title | 以體外及體內模式探討 5-去甲基川陳皮素與川陳皮素抑制苯駢芘誘導 DNA 損傷之分子機制 | zh_TW |
dc.title | Study on the molecular mechanisms of 5-demethylnobiletin and nobiletin inhibiting benzo[a]pyrene-induced DNA damage in vitro and in vivo | en |
dc.type | Thesis | |
dc.date.schoolyear | 110-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 何元順(Yuan-Soon Ho),黃步敏(Bu-Miin Huang),廖秀娟(Vivian Hsiu-Chuan Liao),王應然(Ying-Jan Wang) | |
dc.contributor.oralexamcommittee-orcid | ,廖秀娟(0000-0002-4676-9953) | |
dc.subject.keyword | 苯駢芘,BPDE-DNA 加合物,細胞色素 P450 家族 1 酵素,川陳皮素,5-去甲基川陳皮素, | zh_TW |
dc.subject.keyword | benzo[a]pyrene,BPDE-DNA adduct,CYP1s,nobiletin,5-demethylnobiletin, | en |
dc.relation.page | 111 | |
dc.identifier.doi | 10.6342/NTU202203036 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2022-09-02 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 食品科技研究所 | zh_TW |
顯示於系所單位: | 食品科技研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-3108202219082400.pdf 目前未授權公開取用 | 6 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。