請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83378完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 潘敏雄(Min-Hsiung Pan) | |
| dc.contributor.author | Siao-En Hwang | en |
| dc.contributor.author | 黃曉恩 | zh_TW |
| dc.date.accessioned | 2023-03-19T21:06:06Z | - |
| dc.date.copyright | 2022-10-19 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-09-20 | |
| dc.identifier.citation | Abuhattum, S., Kotzbeck, P., Schl??ler, R., Harger, A., Ariza de Schellenberger, A., Kim, K., Escolano, J.-C., M?ller, T., Braun, J., & Wabitsch, M. (2022). Adipose cells and tissues soften with lipid accumulation while in diabetes adipose tissue stiffens. Scientific Reports, 12, 1-17. Abuqwider, J. N., Mauriello, G., & Altamimi, M. (2021). Akkermansia muciniphila, a new generation of beneficial microbiota in modulating obesity: a systematic review. Microorganisms, 9, 1098. Ahmad, A., Yang, W., Chen, G., Shafiq, M., Javed, S., Ali Zaidi, S. S., Shahid, R., Liu, C., & Bokhari, H. (2019). Analysis of gut microbiota of obese individuals with type 2 diabetes and healthy individuals. PLoS ONE, 14, 0226372. Ahmadian, M., Wang, Y., & Sul, H. S. (2010). Lipolysis in adipocytes. The International Journal of Biochemistry & Cell Biology, 42, 555-559. Akilen, R., Tsiami, A., Devendra, D., & Robinson, N. (2010). Glycated haemoglobin and blood pressure-lowering effect of cinnamon in multi-ethnic type 2 diabetic patients in the UK: a randomized, placebo-controlled, double-blind clinical trial. Diabetic Medicine, 27, 1159-1167. Alalaiwe, A., Fang, J. Y., Lee, H. J., Chiu, C. H., & Hsu, C. Y. (2021). The demethoxy derivatives of curcumin exhibit greater differentiation suppression in 3T3-L1 adipocytes than curcumin: a mechanistic study of adipogenesis and molecular docking. Biomolecules, 11, 1025. Anand, P., Kunnumakkara, A. B., Newman, R. A., & Aggarwal, B. B. (2007). Bioavailability of curcumin: problems and promises. Molecular Pharmaceutics, 4, 807-818. Andoh, A., Nishida, A., Takahashi, K., Inatomi, O., Imaeda, H., Bamba, S., Kito, K., Sugimoto, M., & Kobayashi, T. (2016). Comparison of the gut microbial community between obese and lean peoples using 16S gene sequencing in a Japanese population. Journal of Clinical Biochemistry and Nutrition, 59, 65-70. Apovian, C. M., Aronne, L. J., Bessesen, D. H., McDonnell, M. E., Murad, M. H., Pagotto, U., Ryan, D. H., & Still, C. D. (2015). Pharmacological management of obesity: an endocrine Society clinical practice guideline. The Journal of Clinical Endocrinology & Metabolism, 100, 342-362. Arai, S., Iwabuchi, N., Takahashi, S., Xiao, J. Z., Abe, F., & Hachimura, S. (2018). Orally administered heat-killed Lactobacillus paracasei MCC1849 enhances antigen-specific IgA secretion and induces follicular helper T cells in mice. PLoS ONE, 13, 0199018. Aranaz, P., Ramos-Lopez, O., Cuevas-Sierra, A., Martinez, J. A., Milagro, F. I., & Riezu-Boj, J. I. (2021). A predictive regression model of the obesity-related inflammatory status based on gut microbiota composition. International Journal of Obesity, 45, 2261-2268. Ashida, H., Tian, X., Kitakaze, T., & Yamashita, Y. (2020). Bisacurone suppresses hepatic lipid accumulation through inhibiting lipogenesis and promoting lipolysis. Journal of Clinical Biochemistry and Nutrition, 67, 43-52. Badimon, L., Onate, B., & Vilahur, G. (2015). Adipose-derived mesenchymal stem cells and their reparative potential in ischemic heart disease. Revista Espa?ola de Cardiolog?a, 68, 599-611. Balaji, S., & Chempakam, B. (2010). Toxicity prediction of compounds from turmeric (Curcuma longa L). Food and Chemical Toxicology, 48, 2951-2959. Barber, T. M., Kyrou, I., Randeva, H. S., & Weickert, M. O. (2021). Mechanisms of insulin resistance at the crossroad of obesity with associated metabolic abnormalities and cognitive dysfunction. International Journal of Molecular Sciences, 22, 546. Bechmann, L. P., Hannivoort, R. A., Gerken, G., Hotamisligil, G. S., Trauner, M., & Canbay, A. (2012). The interaction of hepatic lipid and glucose metabolism in liver diseases. Journal of Hepatology, 56, 952-964. Bengoa, A. A., Dardis, C., Gagliarini, N., Garrote, G. L., & Abraham, A. G. (2020). Exopolysaccharides from Lactobacillus paracasei isolated from kefir as potential bioactive compounds for microbiota modulation. Frontiers in Microbiology, 11, 583254. Berndt, J., Kovacs, P., Ruschke, K., Kl?ting, N., Fasshauer, M., Sch?n, M. R., K?rner, A., Stumvoll, M., & Bl?her, M. (2007). Fatty acid synthase gene expression in human adipose tissue: association with obesity and type 2 diabetes. Diabetologia, 50, 1472-1480. Berni Canani, R., De Filippis, F., Nocerino, R., Laiola, M., Paparo, L., Calignano, A., De Caro, C., Coretti, L., Chiariotti, L., & Gilbert, J. A. (2017). Specific signatures of the gut microbiota and increased levels of butyrate in children treated with fermented cow's milk containing heat-killed Lactobacillus paracasei CBA L74. Applied and Environmental Microbiology, 83, 01206-01217. Bes?Rastrollo, M., S?nchez?Villegas, A., De la Fuente, C., De Irala, J., Martinez, J., & Mart?nez?Gonz?lez, M. (2006). Olive oil consumption and weight change: the SUN prospective cohort study. Lipids, 41, 249-256. Bloemen, J. G., Venema, K., van de Poll, M. C., Olde Damink, S. W., Buurman, W. A., & Dejong, C. H. (2009). Short chain fatty acids exchange across the gut and liver in humans measured at surgery. Clinical Nutrition, 28, 657-661. Bolsoni-Lopes, A., & Alonso-Vale, M. I. (2015). Lipolysis and lipases in white adipose tissue–an update. Archives of Endocrinology and Metabolism, 59, 335-342. Boulang?, C. L., Neves, A. L., Chilloux, J., Nicholson, J. K., & Dumas, M. E. (2016). Impact of the gut microbiota on inflammation, obesity, and metabolic disease. Genome Medicine, 8, 1-12. Bowe, B., Xie, Y., Xian, H., Balasubramanian, S., Zayed, M. A., & Al-Aly, Z. (2016). High density lipoprotein cholesterol and the risk of all-cause mortality among US veterans. Clinical Journal of the American Society of Nephrology, 11, 1784-1793. Brahe, L., Le Chatelier, E., Prifti, E., Pons, N., Kennedy, S., Hansen, T., Pedersen, O., Astrup, A., Ehrlich, S., & Larsen, L. (2015). Specific gut microbiota features and metabolic markers in postmenopausal women with obesity. Nutrition & Diabetes, 5, 159. Brown, A. J., Goldsworthy, S. M., Barnes, A. A., Eilert, M. M., Tcheang, L., Daniels, D., Muir, A. I., Wigglesworth, M. J., Kinghorn, I., Fraser, N. J., Pike, N. B., Strum, J. C., Steplewski, K. M., Murdock, P. R., Holder, J. C., Marshall, F. H., Szekeres, P. G., Wilson, S., Ignar, D. M., Foord, S. M., Wise, A., & Dowell, S. J. (2003). The Orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. Journal of Biological Chemistry, 278, 11312-11319. Brown, M. S., & Goldstein, J. L. (2008). Selective versus total insulin resistance: A pathogenic paradox. Cell Metabolism, 7, 95-96. Bruun, J. M., Lihn, A. S., Pedersen, S. B., & Richelsen, B. (2005). Monocyte chemoattractant protein-1 release is higher in visceral than subcutaneous human adipose tissue (AT): implication of macrophages resident in the AT. The Journal of Clinical Endocrinology & Metabolism, 90, 2282-2289. Byndloss, M. X., Olsan, E. E., Rivera-Ch?vez, F., Tiffany, C. R., Cevallos, S. A., Lokken, K. L., Torres, T. P., Byndloss, A. J., Faber, F., Gao, Y., Litvak, Y., Lopez, C. A., Xu, G., Napoli, E., Giulivi, C., Tsolis, R. M., Revzin, A., Lebrilla, C. B., & B?umler, A. J. (2017). Microbiota-activated PPAR-γ signaling inhibits dysbiotic Enterobacteriaceae expansion. Science, 357, 570-575. Byun, M., Yu, O., Cha, Y., & Park, T. (2016). Korean traditional Chungkookjang improves body composition, lipid profiles and atherogenic indices in overweight/obese subjects: a double-blind, randomized, crossover, placebo-controlled clinical trial. European Journal of Clinical Nutrition, 70, 1116-1122. Campbell, J. E., & Newgard, C. B. (2021). Mechanisms controlling pancreatic islet cell function in insulin secretion. Nature Reviews Molecular Cell Biology, 22, 142-158. Cani, P. D., Amar, J., Iglesias, M. A., Poggi, M., Knauf, C., Bastelica, D., Neyrinck, A. M., Fava, F., Tuohy, K. M., & Chabo, C. (2007). Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes, 56, 1761-1772. Cant?, C., & Auwerx, J. (2009). PGC-1α, SIRT1 and AMPK, an energy sensing network that controls energy expenditure. Current Opinion in Lipidology, 20, 98-105. Canfora, E. E., Jocken, J. W., & Blaak, E. E. (2015). Short-chain fatty acids in control of body weight and insulin sensitivity. Nature Reviews. Endocrinology, 11, 577-591. Caristia, S., De Vito, M., Sarro, A., Leone, A., Pecere, A., Zibetti, A., Filigheddu, N., Zeppegno, P., Prodam, F., & Faggiano, F. (2020). Is caloric restriction associated with better healthy aging outcomes? A systematic review and meta-analysis of randomized controlled trials. Nutrients, 12, 2290. Carlos, S., De La Fuente-Arrillaga, C., Bes-Rastrollo, M., Razquin, C., Rico-Camp?, A., Mart?nez-Gonz?lez, M. A., & Ruiz-Canela, M. (2018). Mediterranean diet and health outcomes in the SUN cohort. Nutrients, 10, 439. Chang, W. C., Wu, J. S. B., Chen, C. W., Kuo, P. L., Chien, H. M., Wang, Y. T., & Shen, S. C. (2015). Protective effect of vanillic acid against hyperinsulinemia, hyperglycemia and hyperlipidemia via alleviating hepatic insulin resistance and inflammation in high-fat diet (HFD)-fed rats. Nutrients, 7, 9946-9959. Chen, H. C., & Farese, R. V. (2002). Determination of adipocyte size by computer image analysis. Journal of Lipid Research, 43, 986-989. Chen, S. C., Brooks, R., Houskeeper, J., Bremner, S. K., Dunlop, J., Viollet, B., Logan, P. J., Salt, I. P., Ahmed, S. F., & Yarwood, S. J. (2017). Metformin suppresses adipogenesis through both AMP-activated protein kinase (AMPK)-dependent and AMPK-independent mechanisms. Molecular and Cellular Endocrinology, 440, 57-68. Chiu, C. H., Lu, T. Y., Tseng, Y. Y., & Pan, T. M. (2006). The effects of Lactobacillus-fermented milk on lipid metabolism in hamsters fed on high-cholesterol diet. Applied Microbiology and Biotechnology, 71, 238-245. Coblijn, U. K., Goucham, A. B., Lagarde, S. M., Kuiken, S. D., & van Wagensveld, B. A. (2014). Development of ulcer disease after Roux-en-Y gastric bypass, incidence, risk factors, and patient presentation: a systematic review. Obesity Surgery, 24, 299-309. Cohen, J. C., Horton, J. D., & Hobbs, H. H. (2011). Human fatty liver disease: Old Questions and New Insights. Science, 332, 1519-1523. Cristancho, A. G., & Lazar, M. A. (2011). Forming functional fat: a growing understanding of adipocyte differentiation. Nature Reviews Molecular Cell Biology, 12, 722-734. Cummings, J. H., Pomare, E. W., Branch, W. J., Naylor, C. P., & Macfarlane, G. T. (1987). Short chain fatty acids in human large intestine, portal, hepatic and venous blood. Gut, 28, 1221-1227. Czech, M. P. (2017). Insulin action and resistance in obesity and type 2 diabetes. Nature Medicine, 23, 804-814. Dang, F., Jiang, Y., Pan, R., Zhou, Y., Wu, S., Wang, R., Zhuang, K., Zhang, W., Li, T., & Man, C. (2018). Administration of Lactobacillus paracasei ameliorates type 2 diabetes in mice. Food & Function, 9, 3630-3639. Davis, C. D. (2016). The gut microbiome and its role in obesity. Nutrition Today, 51, 167-174. Davis, J., Juarez, D., & Hodges, K. (2013). Relationship of ethnicity and body mass index with the development of hypertension and hyperlipidemia. Ethnicity & Disease, 23, 65. Defronzo, R. A., Ferrannini, E., Groop, L., Henry, R. R., Herman, W. H., Holst, J. J., Hu, F. B., Kahn, C. R., Raz, I., Shulman, G. I., Simonson, D. C., Testa, M. A., & Weiss, R. (2015). Type 2 diabetes mellitus. Nature Reviews Disease Primers, 1, 15019. Del Chierico, F., Vernocchi, P., Bonizzi, L., Carsetti, R., Castellazzi, A. M., Dallapiccola, B., de Vos, W., Guerzoni, M. E., Manco, M., Marseglia, G. L., Muraca, M., Roncada, P., Salvatori, G., Signore, F., Urbani, A., & Putignani, L. (2012). Early-life gut microbiota under physiological and pathological conditions: the central role of combined meta-omics-based approaches. Journal of Proteomics, 75, 4580-4587. Den Besten, G., Van Eunen, K., Groen, A. K., Venema, K., Reijngoud, D.-J., & Bakker, B. M. (2013). The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. Journal of Lipid Research, 54, 2325-2340. Deng, X. Q., Chen, L. L., & Li, N. X. (2007). The expression of SIRT1 in nonalcoholic fatty liver disease induced by high?fat diet in rats. Liver International, 27, 708-715. Derrien, M., van Passel, M. W., van de Bovenkamp, J. H., Schipper, R., de Vos, W., & Dekker, J. (2010). Mucin-bacterial interactions in the human oral cavity and digestive tract. Gut Microbes, 1, 254-268. Deshpande, S., Lalitha, V., Ingle, A., Raste, A., Gadre, S., & Maru, G. (1998). Subchronic oral toxicity of turmeric and ethanolic turmeric extract in female mice and rats. Toxicology Letters, 95, 183-193. Deshpande, S. S., Ingle, A. D., & Maru, G. (1997). Inhibitory effects of curcumin-free aqueous turmeric extract on benzo [a] pyrene-induced forestomach papillomas in mice. Cancer Letters, 118, 79-85. Didari, T., Solki, S., Mozaffari, S., Nikfar, S., & Abdollahi, M. (2014). A systematic review of the safety of probiotics. Expert Opinion on Drug Safety, 13, 227-239. Ding, L., Li, J., Song, B., Xiao, X., Zhang, B., Qi, M., Huang, W., Yang, L., & Wang, Z. (2016). Curcumin rescues high fat diet-induced obesity and insulin sensitivity in mice through regulating SREBP pathway. Toxicology and Applied Pharmacology, 304, 99-109. Ding, R. B., Bao, J., & Deng, C. X. (2017). Emerging roles of SIRT1 in fatty liver diseases. International Journal of Biological Sciences, 13, 852. Donnelly, K. L., Smith, C. I., Schwarzenberg, S. J., Jessurun, J., Boldt, M. D., & Parks, E. J. (2005). Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. Journal of Clinical Investigation, 115, 1343-1351. Dou, X., Fan, C., Wo, L., Yan, J., Qian, Y., & Wo, X. (2008). Curcumin up-regulates LDL receptor expression via the sterol regulatory element pathway in HepG2 cells. Planta Medica, 74, 1374-1379. Drolet, R., Richard, C., Sniderman, A., Mailloux, J., Fortier, M., Huot, C., Rh?aume, C., & Tchernof, A. (2008). Hypertrophy and hyperplasia of abdominal adipose tissues in women. International Journal of Obesity, 32, 283-291. Ebrahimzadeh Attari, V., Ostadrahimi, A., Asghari Jafarabadi, M., Mehralizadeh, S., & Mahluji, S. (2016). Changes of serum adipocytokines and body weight following Zingiber officinale supplementation in obese women: a RCT. European Journal of Nutrition, 55, 2129-2136. Ejaz, A., Wu, D., Kwan, P., & Meydani, M. (2009). Curcumin inhibits adipogenesis in 3T3-L1 adipocytes and angiogenesis and obesity in C57/BL mice. The Journal of Nutrition, 139, 919-925. El-Moselhy, M. A., Taye, A., Sharkawi, S. S., El-Sisi, S. F., & Ahmed, A. F. (2011). The antihyperglycemic effect of curcumin in high fat diet fed rats. role of TNF-α and free fatty acids. Food and Chemical Toxicology, 49, 1129-1140. Estall, J. L., Kahn, M., Cooper, M. P., Fisher, F. M., Wu, M. K., Laznik, D., Qu, L., Cohen, D. E., Shulman, G. I., & Spiegelman, B. M. (2009). Sensitivity of lipid metabolism and insulin signaling to genetic alterations in hepatic peroxisome proliferator–activated receptor-γ Coactivator-1α expression. Diabetes, 58, 1499-1508. Eun, C. S., Lim, J. S., Lee, J., Lee, S. P., & Yang, S. A. (2017). The protective effect of fermented Curcuma longa L. on memory dysfunction in oxidative stress-induced C6 gliomal cells, proinflammatory-activated BV2 microglial cells, and scopolamine-induced amnesia model in mice. BMC Complementary and Alternative Medicine, 17, 1-12. Fan, Y., & Pedersen, O. (2021). Gut microbiota in human metabolic health and disease. Nature Reviews Microbiology, 19, 55-71. Feng, W., Wang, H., Zhang, P., Gao, C., Tao, J., Ge, Z., Zhu, D., & Bi, Y. (2017). Modulation of gut microbiota contributes to curcumin-mediated attenuation of hepatic steatosis in rats. Biochimica et Biophysica Acta, 1861, 1801-1812. Ferr?, P., & Foufelle, F. (2010). Hepatic steatosis: a role for de novo lipogenesis and the transcription factor SREBP-1c. Diabetes, Obesity and Metabolism, 12, 83-92. Ferrannini, E., & Camastra, S. (1998). Relationship between impaired glucose tolerance, non-insulin-dependent diabetes mellitus and obesity. European Journal of Clinical Investigation, 28, 3-6. Festi, D., Colecchia, A., Sacco, T., Bondi, M., Roda, E., & Marchesini, G. (2004). Hepatic steatosis in obese patients: clinical aspects and prognostic significance. Obesity Reviews, 5, 27-42. Festi, D., Schiumerini, R., Eusebi, L. H., Marasco, G., Taddia, M., & Colecchia, A. (2014). Gut microbiota and metabolic syndrome. World Journal of Gastroenterology, 20, 16079-16094. Foretz, M., & Viollet, B. (2011). Regulation of hepatic metabolism by AMPK. Journal of Hepatology, 54, 827-829. Franczyk, B., Rysz, J., ?awi?ski, J., Rysz-G?rzy?ska, M., & Gluba-Brz?zka, A. (2021). Is a high HDL-cholesterol level always beneficial? Biomedicines, 9, 1083. Fujiwara, H., Hosokawa, M., Zhou, X., Fujimoto, S., Fukuda, K., Toyoda, K., Nishi, Y., Fujita, Y., Yamada, K., Yamada, Y., Seino, Y., & Inagaki, N. (2008). Curcumin inhibits glucose production in isolated mice hepatocytes. Diabetes Research and Clinical Practice, 80, 185-191. G?le?, S., & Erol, C. (2020). High-density lipoprotein cholesterol and risk of cardiovascular disease. Journal of Cardiology, 19, 133-134. Gabriely, I., Ma, X. H., Yang, X. M., Atzmon, G., Rajala, M. W., Berg, A. H., Scherer, P., Rossetti, L., & Barzilai, N. (2002). Removal of visceral fat prevents onsulin resistance and glucose intolerance of aging. Diabetes, 51, 2951-2958. Ganjali, S., Sahebkar, A., Mahdipour, E., Jamialahmadi, K., Torabi, S., Akhlaghi, S., Ferns, G., Parizadeh, S. M. R., & Ghayour-Mobarhan, M. (2014). Investigation of the effects of curcumin on serum cytokines in obese individuals: a randomized controlled trial. The Scientific World Journal, 2014. 898361. Gao, D., Madi, M., Ding, C., Fok, M., Steele, T., Ford, C., Hunter, L., & Bing, C. (2014). Interleukin-1β mediates macrophage-induced impairment of insulin signaling in human primary adipocytes. American Journal of Physiology-Endocrinology and Metabolism, 307, 289-304. Gao, X., Chang, S., Liu, S., Peng, L., Xie, J., Dong, W., Tian, Y., & Sheng, J. (2020). Correlations between α-linolenic acid-improved multitissue homeostasis and gut microbiota in mice fed a high-fat diet. Msystems, 5, 00391-00320. Gao, Z., Yin, J., Zhang, J., Ward, R. E., Martin, R. J., Lefevre, M., Cefalu, W. T., & Ye, J. (2009). Butyrate improves insulin sensitivity and increases energy expenditure in mice. Diabetes, 58, 1509-1517. Ghiamati Yazdi, F., Zakeri, A., Ark, I. v., Leusink-Muis, T., Braber, S., Soleimanian-Zad, S., & Folkerts, G. (2020). Crude turmeric extract improves the suppressive effects of Lactobacillus rhamnosus GG on allergic inflammation in a murine model of house dust mite-induced asthma. Frontiers in Immunology, 11, 1092. Ghosh, S. S., He, H., Wang, J., Gehr, T. W., & Ghosh, S. (2018). Curcumin-mediated regulation of intestinal barrier function: the mechanism underlying its beneficial effects. Tissue Barriers, 6, 1425085. Goel, R., Nasta, A. M., Goel, M., Prasad, A., Jammu, G., Fobi, M., Ismail, M., Raj, P., Palaniappan, R., & Aggarwal, S. (2021). Complications after bariatric surgery: a multicentric study of 11,568 patients from Indian bariatric surgery outcomes reporting group. Journal of Minimal Access Surgery, 17, 213. Gonzales, A. M., & Orlando, R. A. (2008). Curcumin and resveratrol inhibit nuclear factor-kappaB-mediated cytokine expression in adipocytes. Nutrition & Metabolism, 5, 1-13. Grevengoed, T. J., Klett, E. L., & Coleman, R. A. (2014). Acyl-coA metabolism and partitioning. Annual Review of Nutrition, 34, 1-30. Guo, X., Xu, Y., Geng, R., Qiu, J., & He, X. (2022). Curcumin alleviates dextran sulfate sodium?induced colitis in mice through regulating gut microbiota. Molecular Nutrition & Food Research, 66, 2100943. Gupta, S. C., Sung, B., Kim, J. H., Prasad, S., Li, S., & Aggarwal, B. B. (2013). Multitargeting by turmeric, the golden spice: From kitchen to clinic. Molecular Nutrition & Food Research, 57, 1510-1528. Haeusler, R. A., McGraw, T. E., & Accili, D. (2018). Biochemical and cellular properties of insulin receptor signalling. Nature Reviews Molecular Cell Biology, 19, 31-44. Hafidi, M. E., Buelna-Chontal, M., S?nchez-Mu?oz, F., & Carb?, R. (2019). Adipogenesis: a necessary but harmful strategy. International Journal of Molecular Sciences, 20, 3657. Haghikia, A., Zimmermann, F., Schumann, P., Jasina, A., Roessler, J., Schmidt, D., Heinze, P., Kaisler, J., Nageswaran, V., & Aigner, A. (2022). Propionate attenuates atherosclerosis by immune-dependent regulation of intestinal cholesterol metabolism. European Heart Journal, 43, 518-533. Han, K. H., Lee, C. H., Kinoshita, M., Oh, C. H., Shimada, K. i., & Fukushima, M. (2016). Spent turmeric reduces fat mass in rats fed a high-fat diet. Food & Function, 7, 1814-1824. Ho, J. N., Jang, J. Y., Yoon, H. G., Kim, Y., Kim, S., Jun, W., & Lee, J. (2012). Anti?obesity effect of a standardised ethanol extract from Curcuma longa L. fermented with Aspergillus oryzae in ob/ob mice and primary mouse adipocytes. Journal of the Science of Food and Agriculture, 92, 1833-1840. Hodson, L., & Gunn, P. J. (2019). The regulation of hepatic fatty acid synthesis and partitioning: the effect of nutritional state. Nature Reviews Endocrinology, 15, 689-700. Houten, S. M., Violante, S., Ventura, F. V., & Wanders, R. J. (2016). The biochemistry and physiology of mitochondrial fatty acid β-oxidation and its genetic disorders. Annual Review of Physiology, 78, 23-44. Hsiao, W. Y., & Guertin, D. A. (2019). De Novo Lipogenesis as a source of second messengers in adipocytes. Current Diabetes Reports, 19, 138. Hung, S. C., Tseng, W. T., & Pan, T. M. (2016). Lactobacillus paracasei subsp. paracasei NTU 101 ameliorates impaired glucose tolerance induced by a high-fat, high-fructose diet in Sprague-Dawley rats. Journal of Functional Foods, 24, 472-481. Iqbal, M., Sharma, S. D., Okazaki, Y., Fujisawa, M., & Okada, S. (2003). Dietary supplementation of curcumin enhances antioxidant and phase II metabolizing enzymes in ddY male mice: possible role in protection against chemical carcinogenesis and toxicity. Pharmacology & Toxicology, 92, 33-38. Irfan, Yin, L., Anne, Funai, K., Coleman, T., John, Meral, Razani, B., Song, H., Fu Hsu, F., Turk, J., & Clay. (2012). Inhibiting adipose tissue lipogenesis reprograms thermogenesis and PPARγ activation to decrease diet-induced obesity. Cell Metabolism, 16, 189-201. Jager, J., Gr?meaux, T., Cormont, M., Le Marchand-Brustel, Y., & Tanti, J. F. (2007). Interleukin-1β-induced insulin resistance in adipocytes through down-regulation of insulin receptor substrate-1 expression. Endocrinology, 148, 241-251. Jakab, J., Mi?ki?, B., Mik?i?, ?., Jurani?, B., ?osi?, V., Schwarz, D., & V?ev, A. (2021). Adipogenesis as a potential anti-obesity target: a review of pharmacological treatment and natural products. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 14, 67. Jakicic, J. M., & Otto, A. D. (2005). Physical activity considerations for the treatment and prevention of obesity. The American Journal of Clinical Nutrition, 82, 226-229. James, D. E., St?ckli, J., & Birnbaum, M. J. (2021). The aetiology and molecular landscape of insulin resistance. Nature Reviews Molecular Cell Biology, 22, 751-771. Jamil, H., Gordon, D. A., Eustice, D. C., Brooks, C. M., Dickson Jr, J. K., Chen, Y., RIccI, B., Chu, C. H., Harrity, T. W., & Ciosek Jr, C. P. (1996). An inhibitor of the microsomal triglyceride transfer protein inhibits apoB secretion from HepG2 cells. Proceedings of the National Academy of Sciences, 93, 11991-11995. Jang, E. M., Choi, M. S., Jung, U. J., Kim, M. J., Kim, H. J., Jeon, S. M., Shin, S. K., Seong, C. N., & Lee, M. K. (2008). Beneficial effects of curcumin on hyperlipidemia and insulin resistance in high-fat–fed hamsters. Metabolism, 57, 1576-1583. Jantawong, C., Priprem, A., Intuyod, K., Pairojkul, C., Pinlaor, P., Waraasawapati, S., Mongkon, I., Chamgramol, Y., & Pinlaor, S. (2021). Curcumin-loaded nanocomplexes: Acute and chronic toxicity studies in mice and hamsters. Toxicology Reports, 8, 1346-1357. Ji, Y., Xie, Q., Meng, X., Wang, W., Li, S., Lang, X., Zhao, C., Yuan, Y., & Ye, H. (2022). Lactobacillus paracasei improves dietary fatty liver by reducing insulin resistance and inflammation in obese mice model. Journal of Functional Foods, 95, 105150. Jo, J., Gavrilova, O., Pack, S., Jou, W., Mullen, S., Sumner, A. E., Cushman, S. W., & Periwal, V. (2009). Hypertrophy and/or hyperplasia: dynamics of adipose tissue growth. PLoS Computational Biology, 5, 1000324. Jones, J. R., Barrick, C., Kim, K. A., Lindner, J., Blondeau, B., Fujimoto, Y., Shiota, M., Kesterson, R. A., Kahn, B. B., & Magnuson, M. A. (2005). Deletion of PPARγ in adipose tissues of mice protects against high fat diet-induced obesity and insulin resistance. Proceedings of the National Academy of Sciences, 102, 6207-6212. Jung, U., & Choi, M. S. (2014). Obesity and Its Metabolic Complications: The role of adipokines and the relationship between obesity, inflammation, insulin resistance, dyslipidemia and nonalcoholic fatty liver disease. International Journal of Molecular Sciences, 15, 6184-6223. Jung, Y., Park, J., Kim, H. L., Sim, J. E., Youn, D. H., Kang, J., Lim, S., Jeong, M. Y., Yang, W. M., & Lee, S. G. (2018). Vanillic acid attenuates obesity via activation of the AMPK pathway and thermogenic factors in vivo and in vitro. The Federation of American Societies for Experimental Biology Journal, 32, 1388-1402. Juul, F., & Hemmingsson, E. (2015). Trends in consumption of ultra-processed foods and obesity in Sweden between 1960 and 2010. Public Health Nutrition, 18, 3096-3107. Kahn, S. E., Hull, R. L., & Utzschneider, K. M. (2006). Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature, 444, 840-846. Kanety, H., Feinstein, R., Papa, M. Z., Hemi, R., & Karasik, A. (1995). Tumor necrosis factor α-induced phosphorylation of insulin receptor substrate-1 (IRS-1): Possible mechanism for suppression of insulin-stimulated tyrosine phosphorylation of IRS-1. Journal of Biological Chemistry, 270, 23780-23784. Kang, J. K., Kang, H. J., Seo, J. H., Kim, S. O., Choi, J. H., Cho, D. Y., Park, C. G., & Lee, H. Y. (2009). Effects of fermented turmeric (Curcuma longa) by Bacillus natto supplementation on liver function and serum lipid parameters in mice. Journal of the Korean Society of Food Science and Nutrition, 38, 430-435. Kareem, K. Y., Hooi Ling, F., Teck Chwen, L., May Foong, O., & Anjas Asmara, S. (2014). Inhibitory activity of postbiotic produced by strains of Lactobacillus plantarum using reconstituted media supplemented with inulin. Gut pathogens, 6, 1-7. Kern, P. A., Saghizadeh, M., Ong, J. M., Bosch, R. J., Deem, R., & Simsolo, R. B. (1995). The expression of tumor necrosis factor in human adipose tissue. regulation by obesity, weight loss, and relationship to lipoprotein lipase. The Journal of Clinical Investigation, 95, 2111-2119. Kershaw, E. E., & Flier, J. S. (2004). Adipose tissue as an endocrine organ. The Journal of Clinical Endocrinology & Metabolism, 89, 2548-2556. Khadka, S., Omura, S., Sato, F., Nishio, K., Kakeya, H., & Tsunoda, I. (2021). Curcumin β-D-Glucuronide modulates an autoimmune model of multiple sclerosis with altered gut microbiota in the ileum and feces. Frontiers in Cellular and Infection Microbiology, 11, 772962. Kim, C. H. (2021). Control of lymphocyte functions by gut microbiota-derived short-chain fatty acids. Cellular & Molecular Immunology, 18, 1161-1171. Kim, J., Choi, J., Kwon, S. Y., McEvoy, J. W., Blaha, M. J., Blumenthal, R. S., Guallar, E., Zhao, D., & Michos, E. D. (2018). Association of multivitamin and mineral supplementation and risk of cardiovascular disease. circulation: Cardiovascular Quality and Outcomes, 11, 004224. Kim, J. H., Gupta, S. C., Park, B., Yadav, V. R., & Aggarwal, B. B. (2012). Turmeric (Curcuma longa) inhibits inflammatory nuclear factor (NF)?κB and NF?κB?regulated gene products and induces death receptors leading to suppressed proliferation, induced chemosensitization, and suppressed osteoclastogenesis. Molecular Nutrition & Food Research, 56, 454-465. Kim, J. H., Kim, O. K., Yoon, H. G., Park, J., You, Y., Kim, K., Lee, Y. H., Choi, K. C., Lee, J., & Jun, W. (2016). Anti-obesity effect of extract from fermented Curcuma longa L. through regulation of adipogenesis and lipolysis pathway in high-fat diet-induced obese rats. Food & Nutrition Research, 60, 30428. Kim, J. J., & Sears, D. D. (2010). TLR4 and insulin resistance. Gastroenterology Research and Practice, 2010. 212563. Kim, J. W., Lee, Y. S., Seol, D. J., Cho, I. J., Ku, S. K., Choi, J. S., & Lee, H. J. (2018). Anti-obesity and fatty liver-preventing activities of Lonicera caerulea in high-fat diet-fed mice. International Journal of Molecular Medicine, 42, 3047-3064. Kim, S., Lee, Y., Kim, Y., Seo, Y., Lee, H., Ha, J., Lee, J., Choi, Y., Oh, H., & Yoon, Y. (2020). Akkermansia muciniphila prevents fatty liver disease, decreases serum triglycerides, and maintains gut homeostasis. Applied and Environmental Microbiology, 86, 03004-03019. Kim, S., Shin, Y. C., Kim, T. Y., Kim, Y., Lee, Y. S., Lee, S. H., Kim, M. N., O, E., Kim, K. S., & Kweon, M. N. (2021). Mucin degrader Akkermansia muciniphila accelerates intestinal stem cell-mediated epithelial development. Gut Microbes, 13, 1892441. Kim, Y., Rouse, M., Gonz?lez-Mariscal, I., Egan, J. M., & O’Connell, J. F. (2019). Dietary curcumin enhances insulin clearance in diet-induced obese mice via regulation of hepatic PI3K-AKT axis and IDE, and preservation of islet integrity. Nutrition & Metabolism, 16. 48. Kondo, T., Kishi, M., Fushimi, T., & Kaga, T. (2009). Acetic acid upregulates the expression of genes for fatty acid oxidation enzymes in liver to suppress body fat accumulation. Journal of Agricultural and Food Chemistry, 57, 5982-5986. Kong, L. C., Holmes, B. A., Cotillard, A., Habi-Rachedi, F., Brazeilles, R., Gougis, S., Gausser?s, N., Cani, P. D., Fellahi, S., Bastard, J. P., Kennedy, S. P., Dor?, J., Ehrlich, S. D., Zucker, J. D., Rizkalla, S. W., & Cl?ment, K. (2014). Dietary patterns differently associate with inflammation and gut microbiota in overweight and obese subjects. PLoS ONE, 9, 109434. Kuipers, F., Jong, M. C., Lin, Y., Eck, M. v., Havinga, R., Bloks, V., Verkade, H. J., Hofker, M. H., Moshage, H., & Berkel, T. (1997). Impaired secretion of very low density lipoprotein-triglycerides by apolipoprotein E-deficient mouse hepatocytes. The Journal of Clinical Investigation, 100, 2915-2922. Kurokawa, J., Arai, S., Nakashima, K., Nagano, H., Nishijima, A., Miyata, K., Ose, R., Mori, M., Kubota, N., & Kadowaki, T. (2010). Macrophage-derived AIM is endocytosed into adipocytes and decreases lipid droplets via inhibition of fatty acid synthase activity. Cell Metabolism, 11, 479-492. Kwon, D. Y., Daily III, J. W., Kim, H. J., & Park, S. (2010). Antidiabetic effects of fermented soybean products on type 2 diabetes. Nutrition Research, 30, 1-13. Lagathu, C., Yvan-Charvet, L., Bastard, J. P., Maachi, M., Quignard-Boulang?, A., Capeau, J., & Caron, M. (2006). Long-term treatment with interleukin-1β induces insulin resistance in murine and human adipocytes. Diabetologia, 49, 2162-2173. Lai, C. S., Liao, S. N., Tsai, M. L., Kalyanam, N., Majeed, M., Majeed, A., Ho, C. T., & Pan, M. H. (2015). Calebin?A inhibits adipogenesis and hepatic steatosis in high?fat diet?induced obesity via activation of AMPK signaling. Molecular Nutrition & Food Research, 59, 1883-1895. Larraufie, P., Martin-Gallausiaux, C., Lapaque, N., Dore, J., Gribble, F. M., Reimann, F., & Blottiere, H. M. (2018). SCFAs strongly stimulate PYY production in human enteroendocrine cells. Scientific Reports, 8. 74. Le Chatelier, E., Nielsen, T., Qin, J., Prifti, E., Hildebrand, F., Falony, G., Almeida, M., Arumugam, M., Batto, J. M., Kennedy, S., Leonard, P., Li, J., Burgdorf, K., Grarup, N., J?rgensen, T., Brandslund, I., Nielsen, H. B., Juncker, A. S., Bertalan, M., Levenez, F., Pons, N., Rasmussen, S., Sunagawa, S., Tap, J., Tims, S., Zoetendal, E. G., Brunak, S., Cl?ment, K., Dor?, J., Kleerebezem, M., Kristiansen, K., Renault, P., Sicheritz-Ponten, T., De Vos, W. M., Zucker, J. D., Raes, J., Hansen, T., Guedon, E., Delorme, C., Layec, S., Khaci, G., Van De Guchte, M., Vandemeulebrouck, G., Jamet, A., Dervyn, R., Sanchez, N., Maguin, E., Haimet | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83378 | - |
| dc.description.abstract | 飲食攝取不當及缺乏活動,使熱量的攝取和消耗失去平衡,造成脂肪肥大及慢性發炎。發炎因子藉由降低組織胰島素受體敏感性而造成胰島素阻抗情形產生,進一步加劇肝臟脂質累積。近年許多研究指出腸道菌相失調也與肥胖相關。薑黃來自薑黃的根莖,動物實驗指出薑黃具有降低發炎及血脂功效。Lactobacillus paracasei 副乾酪乳桿菌為一種常應用於發酵產品的乳酸菌。近年研究表示L. paracasei 發酵綠茶減緩大鼠體重增加功效優於未發酵綠茶。然而目前對於L. paracasei 發酵薑黃在抗肥胖效果尚未明瞭,因此本研究以 50% 高脂飲食誘導小鼠肥胖模式,探討 5% L. paracasei 發酵薑黃粉 (F) 減緩肥胖之效果。 成分分析顯示,薑黃粉發酵後其類薑黃素含量減少。動物實驗結果顯示,與 HFD (High-Fat-Diet)相比,未發酵薑黃粉 (U) 和 發酵薑黃粉 (F) 皆顯著調降肝臟三酸甘油酯累積、血清三酸甘油酯和空腹血糖濃度、性腺脂肪肥大,並恢復肝臟胰島素受體路徑蛋白表現量。此外,F 顯著減少體重增加、肝臟重量、性腺脂肪重量、血清總膽固醇濃度。進一步探討,F 降低性腺脂肪的脂肪新生、脂質合成及發炎相關蛋白表現量。F 也透過增加性腺脂肪胰島素受體路徑蛋白,達到改善胰島素阻抗作用。在肝臟脂質代謝上,F 增加脂肪酸 β-氧化並減少脂質合成相關蛋白表現量。與 U 相比,F 於體重、肝臟及性腺脂肪重量、性腺脂肪肥大、脂肪新生、脂質合成作用、脂肪發炎情形、葡萄糖受體路徑、肝臟脂質代謝中SIRT 1、PPARα 和 PGC-1α蛋白表現量的改善作用較為顯著。腸道菌相分析結果顯示,U 和 F 介入皆能調節腸道菌相組成。與 U 相比,F 則顯著增加有益菌 Eggerthella sinensis JCM 14551、短鏈脂肪酸產生菌 Anaerostipes hadrus、[Bacteroides] pectinophilus 並顯著降低有害菌 Roseburia faecis 比例,進而增加小鼠糞便中丙酸鹽濃度。 綜合上述結果,F 可能藉由減少小鼠性腺脂肪的脂肪新生和脂質合成、發炎、改善性腺脂肪與肝臟胰島素受體敏感性,減少肝臟脂質累積,以及調控腸道菌相以達到改善高脂飲食誘導肥胖作用。F 於部分臟器及分子機制的作用效果大於 U,而薑黃經Lactobacillus paracasei發酵後產生脂代謝物可能扮演關鍵角色。 | zh_TW |
| dc.description.abstract | Improper eating habits and lack of physical activity can cause an imbalance of calorie consumption and expenditure, which results in adipocyte hypertrophy and chronic inflammation. Increasing inflammatory cytokines may consequently lead to insulin resistance by reducing tissue insulin receptor sensitivity and subsequently exacerbating lipid accumulation in the liver. Besides, recent studies have pointed out that gut microbiota dysbiosis is associated with the incidence of obesity. Turmeric is derived from the rhizome of Curcuma longa. It has beneficial properties to relieve inflammation and hyperlipidemia in previous animal studies. Lactobacillus paracasei is a lactic acid bacteria species that has been widely used in fermented products. A previous study showed that the effect of L. paracasei fermented green tea in reducing weight gain in rats could be better than unfermented green tea. Yet, the anti-obesity effects of L. paracasei fermented turmeric haven’t been investigated. Therefore, an animal study is designed to clarify the ameliorative effect of 5% L. paracasei fermented turmeric on 50% High-Fat-Diet (HFD)-induced obesity in mice. Our results showed that curcuminoid content of turmeric was decreased after fermentation. In vivo study showed that both unfermented turmeric (U) and L. paracasei fermented turmeric (F) significantly reduced liver triglyceride accumulation, serum triglyceride and fasting blood glucose levels, perigonadal adipocyte hypertrophy, and restored the expression of hepatic insulin receptor pathway protein expressions. Furthermore, F significantly suppressed the body weight gain, liver weight, perigonadal adipose tissue weight, and serum total cholesterol levels. In addition, F downregulated the expressions of adipogenesis, lipogenesis and inflammatory–related protein in perigonadal adipose tissue. F also ameliorated insulin resistance via activating insulin receptor pathway protein expressions in perigonadal adipose tissues. For liver lipid metabolism, F increased fatty acid β-oxidation and decreased lipogenesis–related protein expressions. In particular, F exerted greater effects on improved body weight gain, liver and perigonadal tissue weight, perigonadal adipocyte hypertrophy, adipogenesis, lipogenesis, inflammation, insulin receptor pathway, liver fatty acid β-oxidation protein SIRT 1, PPARα, and PGC-1α than U. Gut microbiota analysis showed that U and F modulated microbiota composition. Compared with U, F significantly increased the beneficial bacteria Eggerthella sinensis JCM 14551, short-chain fatty acid-producing bacteria Anaerostipes hadrus, [Bacteroides] pectinophilus and significantly reduced the proportion of harmful bacteria Roseburia faecis, thereby increasing propionate concentrations in mouse feces. In summary, our results suggest that fermented turmeric (F) may be beneficial for obesity prevention by reducing adipogenesis, lipogenesis and inflammatory responses in perigonadal adipose tissues, improving the insulin sensitivity of perigonadal adipose tissue and liver, reducing liver lipid accumulation, and regulating the gut microbiota. Compared with U, F had more significant anti-obesity effects on some organs and molecular mechanisms, and the metabolites produced by turmeric fermentation by Lactobacillus paracasei may play a key role. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T21:06:06Z (GMT). No. of bitstreams: 1 U0001-2009202209552000.pdf: 5324664 bytes, checksum: d62b364c56b1931336b173fb20f0b3d7 (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 中文摘要 I Abstract III 目錄 V 附圖目錄 IX 附表目錄 X 圖目錄 XI 表目錄 XII 縮寫表 XIII 第一章、文獻回顧 1 第一節、肥胖 1 (一) 肥胖簡介 1 (二) 肥胖成因 1 (三) 肥胖治療方式 2 第二節、白色脂肪 4 (一) 白色脂肪與肥胖相關性 4 (二) 脂肪分解 (Lipolysis) 5 (三) 脂質合成 (Lipogenesis) 6 (四) 脂肪新生 (Adipogenesis) 7 第三節、肝臟 9 (一) 肝臟與肥胖相關性 9 (二) 脂質合成 (Lipogenesis) 10 (三) 脂肪酸 β-氧化 (β-oxidation) 13 第四節、 胰島素與肥胖的關係 15 (一) 胰島素功能及機制 15 (二) 脂肪組織與胰島素阻抗關係 17 第五節、腸道菌相 21 (一) 腸道菌相與肥胖關係 21 (二) 短鏈脂肪酸功能 22 第六節、發酵薑黃粉 24 (一) 薑黃 24 (二) 副乾酪乳桿菌與發酵代謝物 26 (三) 發酵薑黃粉 28 第二章、實驗目的與研究架構 29 第一節、研究目的 29 第二節、實驗架構 30 第三章、材料與方法 31 第一節、實驗材料 31 (一) 儀器設備 31 (二) 藥品試劑 32 (三) 抗體 33 (四) 免疫分析套組 34 第二節、樣品 35 (一) 樣品來源 35 (二) 樣品製備 35 (三) 樣品成分分析 36 第三節、動物實驗 (in vivo) 方法 37 (一) 動物品系及飼養環境 37 (二) 飼料配製 38 (三) 口服葡萄糖耐受性試驗 39 (四) 動物犧牲 40 (五) 組織切片染色 41 (六) 血清胰島素含量測定 44 (七) 肝臟三酸甘油酯萃取及定量 45 (八) 組織均質及蛋白質萃取 46 (九) 蛋白質定量 47 (十) 西方墨點法 48 (十一) 糞便 DNA 萃取 51 (十二) 16S rDNA 基因定序及分析 52 (十三) 短鏈脂肪酸分析 53 (十四) 統計分析 55 第四章、結果與討論 56 第一節 類薑黃素含量分析 56 第二節 動物實驗 (in vivo) 57 (一) 發酵薑黃粉對高脂飲食誘導肥胖小鼠體重及外觀影響 57 (二) 發酵薑黃粉對高脂飲食誘導肥胖小鼠攝食量之影響 61 (三) 發酵薑黃粉對高脂飲食誘導肥胖小鼠血液生化值之影響 62 (四) 發酵薑黃粉對高脂飲食誘導肥胖小鼠葡萄糖耐量影響 67 (五) 發酵薑黃粉對高脂飲食誘導肥胖小鼠空腹血糖及胰島素之影響 70 (六) 發酵薑黃粉對高脂飲食誘導肥胖小鼠腎臟、脾臟、肝臟及脂質蓄積影響.. 72 (七) 發酵薑黃粉對高脂飲食誘導肥胖小鼠脂肪組織及脂質蓄積影響 76 (八) 發酵薑黃粉對高脂飲食誘導肥胖小鼠性腺脂肪之脂肪新生及脂質合成影 響………………………………………………………………….…………. ...81 (九) 發酵薑黃粉對高脂飲食誘導肥胖小鼠性腺脂肪發炎影響 83 (十) 發酵薑黃粉對高脂飲食誘導肥胖小鼠性腺脂肪及肝臟胰島素受體路徑影響 85 (十一) 發酵薑黃粉對高脂飲食誘導肥胖小鼠肝臟脂質代謝影響 89 (十二) 發酵薑黃粉對高脂飲食誘導肥胖小鼠之腸道菌相影響 93 (十三) 發酵薑黃粉對高脂飲食誘導肥胖小鼠糞便之短鏈脂肪酸影響 101 第五章、結論 104 參考文獻 106 附錄 131 | |
| dc.language.iso | zh-TW | |
| dc.subject | 腸道菌相 | zh_TW |
| dc.subject | 發酵薑黃粉 | zh_TW |
| dc.subject | 薑黃 | zh_TW |
| dc.subject | Lactobacillus paracasei | zh_TW |
| dc.subject | 肥胖 | zh_TW |
| dc.subject | Fermented turmeric | en |
| dc.subject | Gut microbiota | en |
| dc.subject | Obesity | en |
| dc.subject | Lactobacillus paracasei | en |
| dc.subject | Turmeric | en |
| dc.title | Lactobacillus paracasei 發酵薑黃粉抗肥胖之功效 | zh_TW |
| dc.title | The anti-obesity effect of Lactobacillus paracasei fermented turmeric in high-fat diet fed mice | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 何元順(Yuan-Soon Ho),黃步敏(Bu-Miin Huang),王應然(Ying-Jan Wang),郭靜娟(Ching-Chuan Kuo) | |
| dc.subject.keyword | 肥胖,Lactobacillus paracasei,薑黃,發酵薑黃粉,腸道菌相, | zh_TW |
| dc.subject.keyword | Obesity,Lactobacillus paracasei,Turmeric,Fermented turmeric,Gut microbiota, | en |
| dc.relation.page | 131 | |
| dc.identifier.doi | 10.6342/NTU202203623 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2022-09-22 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 食品科技研究所 | zh_TW |
| 顯示於系所單位: | 食品科技研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2009202209552000.pdf 未授權公開取用 | 5.2 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
