Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 公共衛生學院
  3. 流行病學與預防醫學研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83285
Title: 二元無序間隔時間資料之相關性分析
Association Analysis of Unordered Bivariate Gap Times Data
Other Titles: Association Analysis of Unordered Bivariate Gap Times Data
Authors: 吳志賢
Jhih-Sian Wu
Advisor: 張淑惠
Shu-Hui Chang
Keyword: 二元復發事件,合成概似函數,條件風險比,間隔時間,誘導相依設限,倒數機率設限權重,
bivariate recurrent events,composite likelihood function,conditional hazard ratio,gap times,induced dependent censoring,inverse probability of censoring weighting,
Publication Year : 2023
Degree: 碩士
Abstract: 在許多長期的生物醫學研究當中,受試者可能會隨著時間的推移經歷多次不同類型的事件,且這些事件之間並不存在特定的發生順序。例如:在癌症研究當中,局部復發與遠端轉移復發就是兩種無序二元復發事件。此外,同一類型的兩個連續事件之間的間隔時間通常是實務上感興趣的主題,並且每個類型的事件在追蹤時間內可能發生不止一次的復發,因此這類型的數據也稱之為無序二元復發間隔時間資料。本文研究的目的是估計無序二元復發間隔時間資料下,不同類型事件的間隔時間之間的相關性。交叉比是目前進行二元存活時間相關性的常見相關性測度,因為它可以表示為風險比。其估計方法是可透過結合合成概似函數與倒數機率設限權重來消弭間隔時間資料下的誘導相依設限問題。蒙地卡羅模擬則是用來評估本文提出方法的表現。
In many long-term biomedical studies, subjects may experience several events of different types over time, where the different types of events occur in no chronological order. For example, local and distant recurrences are two unordered bivariate events in cancer studies. The gap time between the two successive events of the same type is often of interest in practices and each type of event may occur more than once during the follow-up period. This type of data is called the unordered bivariate recurrent gap times data set. The purpose of this study is to estimate the association between gap times of bivariate events under the unordered bivariate recurrent gap times data. The cross ratio is a popular association measurement for bivariate survival times since it can be expressed into a hazard ratio. The estimation method of the cross or hazard ratio, which is the association measure between gap times of bivariate events is developed by using the composite likelihood approach together with the inverse probability of censoring weighting to eliminate the problem of induced dependent censoring. The Monte Carlo simulation study is conducted to show the performance of the proposed estimation.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83285
DOI: 10.6342/NTU202300387
Fulltext Rights: 同意授權(限校園內公開)
Appears in Collections:流行病學與預防醫學研究所

Files in This Item:
File SizeFormat 
U0001-0420230209549033.pdf
Access limited in NTU ip range
4.55 MBAdobe PDF
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved