Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 地理環境資源學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83249
Title: 最小化空間異質性損失之分群演算法
An Optimal Zoning Algorithm For Preserving of Spatial Heterogeneity
Other Titles: An Optimal Zoning Algorithm For Preserving of Spatial Heterogeneity
Authors: 陳立恆
Li-Heng Chen
Advisor: 溫在弘
Tzai-Hung Wen
Co-Advisor: 鄭克聲
Ke-Sheng Cheng
Keyword: MAUP,分區效果,空間分群演算法,空間劃分,空間數據挖掘,
MAUP,Regionalization,Spatial cluster algorithm,spatial data mining,Segregation,
Publication Year : 2022
Degree: 碩士
Abstract: 空間分析中常利用聚合資料的方法來去除資料的不確定性並做後續的分析,然而聚合的結果不同進而導致空間現象在統計解讀的不同,其為Modifiable area unit problem (MAUP) 中分區效果的影響。如何控制MAUP儼然成為重要議題。近年來,研究指出Spatial aggregation entropy (SAE) 可做為衡量MAUP的統計量。然而,目前SAE多用於檢視區域分區受MAUP影響的結果而未應用於最適分群方法,且SAE對於相同變異不同平均的組別,有估計上的差異。因此本研究欲將以SAE進行改善後,做為目標函數並提出新的演算法 Searching Neighbors and Aggregating algorithm (SNA),目的是在給定分組數下計算最小異質性損失量的空間劃分。為了衡量演算法的表現,本研究模擬12種不同空間型態之資料與臺灣中部鄉鎮區域之收入平均與變異係數,應用於不同演算法中,討論其整體分組與各組組內均質程度以評估演算法的表現。結果顯示,SNA的表現與自相關的程度有關。在高度自相關時,SNA整體表現較其他演算法都來的好,中度自相關時,該演算法在分組數小於6時表現較佳。而低度自相關時該演算法則表現較差。本研究以改良後的SAE作為目標函數控制MAUP的效果,與過往分群方法比較,討論分群結果在統計量上的表現,並提供單變量在特定尺度下,最小異質性損失量的空間劃分結果。
Aggregation is typically used to smooth the noise in data for spatial analysis. Different aggregating methods may lead to various zoning schemes, and the statistical outcome may differ owing to the zoning effect of the modifiable area unit problem (MAUP). The spatial aggregation entropy (SAE) method has been proposed to measure the MAUP effect. However, SAE is used to verify the MAUP effect using aggregated data and has not been applied for optimal zoning. This study aims to correct SAE and takes it as the objective function to propose a new algorithm, Searching Neighbors and Aggregating (SNA). The performance of this algorithm is tested via various aggregating method using 12 types of spatial pattern "single-core" hypothetical data and individual income tax data of middle Taiwan. The results show that SNA's performance is related to spatial autocorrelation (SA). Specifically, SNA's performance is the best when SA is high (0.9), or SA is approximately 0.5 and the number of groups is less than six. Overall, this study corrects the SAE formula and provides a new algorithm that returns the optimal zoning, thereby preserving most spatial heterogeneity at a specific scale.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83249
DOI: 10.6342/NTU202300092
Fulltext Rights: 未授權
Appears in Collections:地理環境資源學系

Files in This Item:
File SizeFormat 
U0001-0345230112148006.pdf
  Restricted Access
3.54 MBAdobe PDF
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved