Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83080
Title: 通過結合建模和學習來恢復和增強圖像和視頻
Restoring and Enhancing Images and Videos by Combining Modeling and Learning
Other Titles: Restoring and Enhancing Images and Videos by Combining Modeling and Learning
Authors: 劉育綸
Yu-Lun Liu
Advisor: 莊永裕
Yung-Yu Chuang
Keyword: 圖像恢復,光流估計,多幀融合,計算攝影,卷積神經網絡,基於單圖像的 HDR 重建,視頻幀插值,反射去除,視頻穩定,新視角合成,
Image-restoration,Optical flow estimation,Multi-frame fusion,Computational photography,Convolutional neural networks,Single-image-based HDR reconstruction,Video frame interpolation,Reflection removal,Video stabilization,Novel view synthesis,
Publication Year : 2022
Degree: 博士
Abstract: 我們生活在一個豐富多彩、充滿活力和連續的世界中,人類視覺系統可以捕捉光線並將其傳遞給大腦進行進一步分析。十多年來,人們一直試圖使用數位相機來模仿人類的視覺系統並捕捉我們所看到的場景。然而,因為數位相機的不完美,充分獲取信息並反映人眼的感知具有挑戰性。因此,本論文的中心主題是彌合不完善的相機系統與人類視覺感知之間的差距。本論文的重點是圖像恢復和視頻增強,其中不完美的拍攝過程會破壞輸入圖像/視頻。我們嘗試使用基於深度學習的方法來解決以下任務:(1)單圖像 HDR 重建,(2)視頻幀插值,(3)多幀障礙消除,(4)視頻穩定,以及(5)空間-時間視圖合成。與將網絡視為黑盒並學習輸入-輸出映射函數的標準基於學習的方法不同,我們將物理約束或先驗項作為正則化來提高輸出質量和泛化能力。
We live in a colorful, dynamic, and continuous world. The human visual system can capture light and pass it to the brain for further analysis. People have tried to use the digital camera to mimic the human visual system and capture the scenes we saw for over a decade. However, with the imperfection of the digital camera, it is challenging to fully acquire the information and reflect the perception of the human eyes. Therefore, this dissertation's central theme is to bridge the gap between imperfect camera systems and human visual perception. This dissertation focuses on image restoration and video enhancement, where the imperfect capturing process corrupts input images/videos. We try to tackle the following tasks with learning-based approaches: (1) single-image HDR reconstruction, (2) video frame interpolation, (3) multi-frame obstruction removal, (4) video stabilization, and (5) space-time view synthesis. Unlike the standard learning-based approaches that treat the network as a black box and learn an input-output mapping function, we integrate physical constraints or prior terms as regularization to improve the output quality and the generalization ability.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83080
DOI: 10.6342/NTU202210149
Fulltext Rights: 同意授權(全球公開)
Appears in Collections:資訊工程學系

Files in This Item:
File SizeFormat 
U0001-1116221219382014.pdf53.21 MBAdobe PDFView/Open
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved